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TWISTING OF PARTIALLY ORIENTED LIQUID CRYSTALS*

By J. L. ERICKSEN (The Johns Hopkins University)

1. Introduction. Liquid crystals consist of relatively rigid molecules, one dimension
being large compared to the others. In liquid crystal phases, there is a general tendency
for these to align themselves parallel to each other. In isotropic liquid phases, these
directions are distributed more or less randomly, at least in fluids at rest. When alignment
is nearly perfect, it seems reasonable to attempt to describe these with theories of oriented
materials. The molecular interpretation suggests using one director of fixed magnitude,
which is the common practice.' Experimentally, there are suggestions of fractional
orientation, i.e., of states of orientation intermediate between random and perfect align-
ment.” In a rather crude way, we might account for this by letting the magnitude of the
vector be variable, zero magnitude corresponding to random orientation. Let n denote
the vector. If n be interpreted as some statistical average of vectors of fixed length
associated with individual molecules, its length will never exceed this length. We shall
not discuss the rather difficult problem of determining what restrictions this imposes
on constitutive equations.

That this mode of describing fractional orientation is crude can be seen by examining
molecular theories of, say, solutions involving rigid dumbbell molecules, such as that
discussed by Prager [4]. These may be inadequate to describe liquid crystals, but they
serve to illustrate the point. In them, calculating the stress involves calculating an
average of the type (p.p;), p: being a relative position vector associated with a molecule.
This and averages of the type (p; - - - p;) can be related through a system of differential
equations, in principle infinite in number. In effect, we assume that such averages are
simply related to (p;). When alignment is perfect, this is of course correct, but otherwise
it involves some error.

Elsewhere [5], I have discussed a one-parameter family of general solutions in the
hydrostatic theory of liquid crystals, for the case where n is constrained to be of fixed
magnitude. This involves a twisted orientation pattern of a type commonly observed
in liquid crystals of cholesteric type. As is discussed by Brown and Shaw [3, Sec. XG],
similar patterns can be produced in liquid crystals of nematic type. Our purpose is to
explore what occurs to this pattern when the magnitude of n is not so constrained.

2. Governing equations. We employ the hydrostatic theory of liquid crystals, as
presented by Ericksen [6], assuming incompressibility. This theory involves a stored
energy function W, interpretable as Helmholz free energy per unit volume, of the form®

W = W, Vn). ey
It is subject to the condition that rigidly rotating the material not affect it. Formally,
W(Rn, RVnR") = W(n, Vn), @)

*Received January 27, 1967.

13ee, e.g., Frank [1].

2See, e.g., Peters and Peters [2] or the discussion of the “swarm hypothesis” in Brown and Shaw
(3, Sec. III].

3We use standard direct and Cartesian notations.
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R being any rotation matrix,

R' =R", detR = 1. 3)
This implies that
1 — aw )i W
A =mn; on, + 7 o, + N, oy, =A4;;. )

A common additional assumption is that n is physically indistinguishable from —n, or

W(—n, —Vn) = W(n, Vn). 5)
For liquid crystals of nematic type, but not those of cholesteric type, (3) is replaced by
R7'=R", detR = +1. (6)

Generally, applicability of (5) or (6) is inferred from known symmetry properties of
the individual molecules in an obvious way.

In the absence of body forces, including some of a generalized nature,* the equations
of static equilibrium are, in part,

aW/on, — (dW/dn, ) .. = 0. )
In terms of W, the stress tensor is given by
Lij = —=p o — TN, (8)
where p is an unspecified pressure and
Ty = oW /o, ; . 9)
The remaining equilibrium equations,
b = 0,
are satisfied if (7) holds and
p = —W + const. (10)
Let v denote a unit normal to any surface and set
T: = 7v; . (11)
We can decompose this vector into a part parallel to n and a part perpendicular to n,
T =1 + 7n, 12)
I = Tn, T =0. (13)

The couple stress vector acting on this surface is given by
nxT =nxT,
the couple stress tensor 1 thus being given by

l,',- = €Mk Tp; - (].4:)

4Some such are associated with body couples resulting from applied electric or magnetic fields.
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Loosely speaking, Vi represents a surface ‘‘squeezing’” action, tending to promote
changes in the magnitude of n, while T promotes changes in its direction. There are
various observations indicating how one can influence surface orientations. As is dis-
cussed by Brown and Shaw (3, Sec. XG], one can produce different surface orientations
by putting the liquid crystal in contact with solid single crystals. This forces an orienta-
tion depending on the type, cut and orientation of the solid. Techniques for quantitative
measurement of the implied couple stress seem not to exist. It is even less clear how one
controls perfection of alignment by surface actions, though there are suggestions that
some such effect may occur at interfaces.

3. Twisting. Experimentally, the direction of n, as a function of position, is inferred
from optical observations, frequently using polarized light. In liquid crystals of choles-
teric type, it is common to find patterns which, at least locally, are represented by

n = n(cos 6, sin 4, 0), 6 =az; +b, (15)

where a and b are constants. The observed value of a seems to be characteristic of a
given material, though it does vary with such factors as temperature and concentration
of solutions. As an inverse assumption, we try (15) with n constant, assuming

n >0, a 0. (16)

For such a field, it is possible to say much about W and its derivatives, exploiting
the invariance of W. To a large extent, the reasoning is a repetition of that given by
Ericksen [5], so we omit some detail. First, W clearly reduces to a function of n, # and
0’ = a. The effect of applying arbitrary rotations about the x;-axis is to change b, hence
6 arbitrarily. Since W must be unaffected, as are n and a, it must be independent of 6,

W = f(n, a). a7
A calculation gives
af oW oW
n—-=—n; + nl,
m  on; om; ., (18)

of _ W . _ . w_ w
da on, ( z;n z) + ( rn 1) + ( arsn, — nﬁ) + on,, ( arsn, + nl)

a prime denoting differentiation with respect to z; . In the latter, the terms explicitly
involving x; cancel out, as follows from (4),
S0

af/aa =N, aW/anz_a — Ng 6W/6n1_3 . (19)
-Consider
n; dW/on, ;5 ,

which transforms as a scalar under rotations leaving the z;-axis fixed. A repetition of
the above argument gives

n; OW/on, s = gln, a).

Now consider a rotation through 180°, with axis parallel to n. The effect should be to
teverse the sign of g. However, it is easily seen that the arguments of g are unaltered, so
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Precisely similar arguments give, for example,

6W/6n3 = n; aW/an:;'.' = 0,

6W/8n3_3 = h(n, a), n: aW/an.'.S = j(nr a)'

Thus
A — aW ’ _a__W_ n”
W =0-= an‘ ng + an.',sn"
(2 () Tt (2 )
- [ani a'n.',a .3 n‘. + ani.a n‘
_ [a_vz _ ( aW)] ,
- 6'n. an,,-_, i
and

W _ (aw) _ oW _ (aW)' — o
ng ong,;/ ;i ons ons,3 '

whence follows that there exists a scalar \ such that
w_ (W),
on; o/ T
From (18), (20) and (22), we have

A4
= ﬂn‘ - (aW)n, ,

371«,‘ 6’n.~,3
oW oW,
- 6’n.~ i + 6’n.~,3 i s
C &
= "on
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@n

(22)

(23)

Comparing (7), (22) and (23), we see that (15) s a solution provided the constants n and

a are chosen to satisfy the equation
df/on = 0.

(29

With obvious restrictions on the form of f, and ignoring the trivial parameter b, this
will determine one parameter in terms of the other, leaving us with a one-parameter

family of solutions.

Symmetry arguments such as are illustrated above, combined with (19) and (24), show

that derivatives of W must be of the following form
aW/on, = (—a/n’)0f/da)n: ,
GI’V/0n3_3 = h(n, a),

OW/om, s = h bapg + k(n, g ; o, 8 =1,2

oW /on, s = —(1/n)(3f/da)n, ,
oW /on,.,s = (1/n*)(3f/da)n, ,
W /dns,, = mn, a)n, ,

AW /dng., = —mn, .

(25)
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Further, when (5) applies,
h=Fk=0. (26)

This follows from considering the effect of a 180° rotation about the x;-axis, combined
with the substitution n — —n, n’ —» —n’. When both (5) and (6) apply, consideration
of reflections in the zs-direction gives the added simplification
.f(nt a) = j(n) _a)» (27)
mn, a) = —m(n, —a).

That this is as much as can be said in general can be seen by examining special forms of
W, e.g.
W = F, 4+ Fau . + Fan;niny + Fang e (28)

where the F’s are arbitrary functions of the two invariants
n-n, n-curln, (29)

except for obvious restrictions imposed when (5) or (6) applies. With this, it is routine
to calculate stress, couple stress, etc. For example, using (13),

2T = (b + knd)n-v, (30)

7 thus being greatest in absolute value when v is parallel to n, as intuition might suggest.
Further, from (26), it vanishes for all surfaces when (5) applies. Further, (8), (9) and
(25) yield

1 00 0 0 0
[lt:]] = =p|l0 1 O||+ || O 0 0 . 31y
0 01 ahn, , —ahn,, —a df/da

From (10) and (17), p is constant, so the stresses are uniform. Further, planes z; =
const. are subject to no shearing stress, as are planes with n as normal. When (26) holds,
the stress is symmetric, consisting of a uniaxial stress superposed on a hydrostatic
pressure. A similar calculation gives

lg = m(n® 8ap — Namp), @, B=1,2

s = —lsy = hny , (32)
ly = —lyy = —hny ,

133 = af/aa.

Various “universal relations” result from eliminating arbitrary functions between these
various relations. For example,

ala3 =a af/(?a = tu - t33 = tzz - t33 . (33)
4, Minimum energy. Likely to be of especial interest are solutions which, at least
among those here considered, correspond to absolute or relative minimum values of

the energy. Presumably, the commonly observed twist of liquid crystals of cholesteric
type is singled out by this requirement. One of the competitors is the limiting case

n =0,
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which can be shown to be a solution. When this minimizes the energy, the liquid is most
likely to be in its isotropic phase, so we ignore this. When (27) holds,

I m0)=0, mn,0 =0, (34)

which, with (24), indicates that f takes on extremal values with no twist, but a value of
n which need not be zero. From (25), (26) and (34) imply that all derivatives of W
vanish. For liquid crystals of nematic type, there is some reason to think that such a
configuration is of minimum energy, as is discussed by Ericksen [7].

Taking into account (24), necessary conditions for minimum energy are

of _
%=, (35)
‘”(d)+‘”(d)+2 2 dadn 2 0, (36)
9f 3f o’f _
(0n> zdn + dadn 0. (37)

Attendant simplifications of the stress and couple stress can be read off from (31) and
(32). For example, when (26) holds, the stress reduces to a hydrostatic pressure and
the planes z; = const. are free of couple stress. Elimination of dn between (36) and (37),

yields the inequality
& [a_f (L )] >
an® Lon® od® daon/ 1= 0. (38)

For such an extremal twist, it is not necessary that all couple stresses vanish.
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