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Abstract. Several variational principles are derived for the initial-boundary-value
problem of fully coupled linear thermoelasticity for an inhomogeneous, anisotropic
continuum. A consistent set of field variables is employed and a method based on the
Laplace transform is used to incorporate the initial conditions explicitly into the for-
mulation. These principles lend themselves readily to numerical solutions based on an
extended Ritz method.

1. Introduction. The application of variational methods for both the unified develop-
ment of the theory and for the approximate solution of fully coupled initial-boundary-
value problems in linear thermoelasticity is not new. As a starting point, the work of
Biot [1] introduced a variational principle in terms of a pair of vector-valued primary
variables, the displacement of a material point and a variable which he termed the
entropy displacement. The Euler equations of the principle are the thermoelastic equa-
tions of motion and the corrected heat conduction equation. A generalization of Biot’s
principle [2] incorporated the additional primary variables of the stress tensor and a
thermal dis-equilibrium force conjugate to the entropy displacement. Euler equations
representing the linear thermoelastic stress-strain relationship, the Fourier heat con-
duction law, and a relationship between the temperature and the thermal gradient, as
well as the aforementioned field equations, are products of that variational principle.

The most general variational statement of the coupled thermoelastic problem was
made by Bao-Lian’ Fu [3] and later by Ben-Amoz [4], both of whom obtain essentially
the same Euler equations and natural boundary conditions. Both prescribe a boundary
condition on the entropy displacement vector rather than on the heat flux vector, and
Ben-Amoz obtains a sixth Euler equation, representing a relationship between the
temperature and the thermal gradient.

Impetus for further development of variational principles for the coupled thermo-
elastic problem is suggested by recent work of Gurtin (5], [6]. In these treatments of
linear elastodynamics and transient heat conduction Gurtin, utilizing the operational
methods of Mikusinski [7], explicitly introduces the initial conditions appropriate to
the problem into the field equations and governing functionals, and derives alternate
characterizations of the problems. The following work represents an extension of these
concepts to the field theory of linear coupled thermoelasticity, and an attempt to remove
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a lack of consistency (present in the existing variational formulations) in the choice of
the field variables and boundary conditions.

2. Notation. Mathematical preliminaries. The notation and format used by Gurtin
[5] will largely be employed here. Therefore the standard indicial system, with Greek
and Latin subscripts ranging over the integral values (1, 2) and (1, 2, 3) respectively, is
used throughout. The reference frame is Cartesian, repeated subscripts imply summation,
and Kronecker’s delta is denoted by §;; . Parenthetical superscripts, as well as super-
posed dots, indicate the order of time differentiation, and subscripts preceded by a comma
denote space differentiation with respect to the Cartesian coordinates. Parentheses about
a pair of free subscripts will signify the symmetric part of the tensor with respect to
those subscripts.

A region V shall denote the closure of an open, bounded, connected set contained
in the three-dimensional Euclidean space E. The boundary of ¥ we denote by S, being
the union of a finite number of nonintersecting closed regular surfaces. The term regular
surface is used in the sense of Kellogg [8]. The interior of V is V, and n is the outward
unit normal vector to S. S, and 8, are a dual system of complementary regular subsets
of S, where S, and 8, denote the closures of S, and 8, , respectively.

The domain of definition for all functions of the position vector x and the time ¢ is
the set which is the Cartesian product of the region of space ¥ and the interval of time
[0, ©) denoted by V X [0, «).

The values of a function f(x, t) and its derivatives are defined on the boundary of
the domain of definition ¥V X [0, «) by

diea(o, t) = lim o fiTux, 9, 2.1
(x,t)> (X0, to)

wherex, € V, 1 = 0orx, € S, t, € [0, og). We say that the function f is in the function
class C**" if and only if it is defined on V X [0, =), and all of the functions

W (m=0,1,2,--- , M; n=20,1,2,---,N) (2.2)
H—/

m indices

exist and are continuous on V X [0, «).

A point x € 8, or a point (x,t) € S X [0, =), such that n is continuous at x, will
be termed a regular point. A function f will be said to be piecewise regular on S, X [0, =)
if:and only if f is piecewise continuous on S, X [0, ), and every regular point of that
region is a point of continuity of f. Two piecewise regular functions defined on S, X
[0, =) are said to be equal if and only if they are equal at every regular point
(x, 1) € 8. X [0, ). ]

Let f and g be functions of space and time defined on ¥V X [0, «) such that both are
continuous on [0, «) for each x & V. The convolution of f and g is given by

fromn = [ & i— D, @OETX0, =), @3

having the well-known properties:
(a) g*xf=1*g, (2.4a)
(b) g*(*h) =(g*)*h =g*f*h, (2.4b)

(0 g*x(f+h=9g*f+g+*h (2.40)
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A corollary of Titchmarsh’s theorem [9] will prove useful in later work and is introduced
in the form

f* g = 0 implies either f = O or g = 0. (2.5)

The term functional will be used to identify a real-valued function whose domain
is a subset of a linear space. If L is a linear space, K a subset of L, and Q{-} a functional
defined on K, then for

R RcI, R + AR € K for every real \, (2.6)
formally define the notation

8:21R) = L QIR + AR} oo @.7)

The variation of Q{-} is zero at B over K and is written
8Q{R} = 0 over K, (2.8)

if and only if 6z2{R} exists and equals zero for every choice of £ consistent with (2.6).

Three lemmas which are analogous to the fundamental lemma of the calculus of
variations, and which have been proved by Gurtin [5] are now stated. Based on these
lemmas we also state a corollary which will be needed in the subsequent development.

2.1. LEmMA. Let f be a continuous function on V X [0, ), and suppose
f [f*glx, HdV =0 (0=t< ) 2.9)
\ 4
for every g € C™'~ which, together with its space derivatives, vanishes on S X [0, «). Then

f=0 on VX0, . (2.10)

2.2 LeMMA. Let f be a piecewise regular function on S; X [0, »), and suppose,
[ iramnis=0 0st<e) @.11)
S’
for every g € C™'" that vanishes on S; X [0, «). Then

f=0 on 8 X[0,®). (2.12)
2.3 LEmMA. Let f; be continuous on S, X [0, =), and suppose

[ i mmnas =0 ©st< =) 2.13)

for every g;; € C™'" which, together with all ils space derivatives, vanishes on S, X [0, «)
and which has the property
Gii = Gii - (2.14)
Then
fi=0 on S X [0, ®). (2.15)

A corollary of Lemma 2.3 is:
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2.4 CorOLLARY. Let [ be continuous on §; X [0, =), and suppose

[ U @n@ nas=0 ©=i< = 2.16)
S1
for every g, X C°'~ which, together with its space derivatives, vanishes on $, X [0, ). Then

=0 on 8 X [0, »). (2.17)

3. The initial-boundary-value problem with mixed boundary conditions. The
fundamental system of field equations for linear coupled thermoelasticity, characterizing
inhomogeneous and anisotropic solids, is now stated for reference. Let V be the region
of space occupied by the solid and let ¥ X [0, =) denote the domain of definition for
all functions of position and time.

Let ui(x, 1), e;(x, 1), 7:;(x, 1), Fi(x, 1), ¢:(x, t), and J.(x, t), in this order, represent
the Cartesian components of the displacement vector u(x, f), the infinitesimal strain
tensor e(x, t), the stress tensor =(x, t), the body force vector F(x, t), the heat flux vector
q(x, t), and the thermal gradient vector 9(x, t). Also let 6(x, ) denote the temperature
above a quiescent reference state T, (a constant absolute temperature), and let n(x, t)
and H(x, t), respectively, be the specific entropy per unit mass and the rate of internal
heat generation per unit volume within the solid.

Then the strain-displacement and thermal gradient-temperature relations are

ei; = 3 + ui) = uup (3.1a)
and
d;=6,, on V X [0, =). (3.1b)
The equations of motion and of energy are, respectively,
15, + Fi = pils T = Tii, (3.2a)
and
¢+ pTen=H on V X [0, =), (3.2b)

where p(x) is the mass density of the solid. Then introduce ¢;;.(x), k:;(X), a;;(x), C.(x),
and C.(x) as, respectively, the components of the isothermal elasticity tensor c(x),
the thermal conductivity tensor k(x), the thermal expansion tensor a(x), and the scalar
specific heats for zero deformation and for zero stress. The three sets of tensor com-
ponents, x:;x:(X), A;;(x), and B;;(x), will be termed the components of the isothermal
compliance tensor x(x), the thermal resistivity tensor A(x), and the thermoelasticity
tensor 3(x). These quantities are related through

CiirtXetmn = OimOin , (3.3a)
Eihni = 8, (3.3Db)
Bii = Cijmua (3.3¢)
Co=0C, = a;BiiToe/p on V, (3.3d)

and satisfy the symmetry conditions
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Cijkt = Ciikt = Cilij »

Xiikt = Xiikl = Xkiii »

ki; = kii
Nij = Ny
Qij = Qji,

B:i =By; on V.
The constitutive relations and the equation of state are then
Tii = Cijuln — Bi;0,
¢ = —kid;,
and
pTon = pC.0 + B:;Toe;; on V X [0, =),
or, alternatively,
e;; = XijmTu + @;;0,
4 = —Nigi
and
pTon = pC.0 + a;;Tor;; on V X [0, ).
Associated with this system of field equations are the initial conditions
ui(x, 0) = d;(x),
U4:(x, 0) = vi(x),
and
6(x,0) = 6,(x) on V,
the displacement boundary conditions
u; =4; on S, X [0, »),
the iraction boundary conditions
T:=rm; =T, on S, X [0, »),
the temperature boundary condition
6=14 on § X [0, =),
and the heat flux boundary condition

Q= Qine=Q on §, X [0, =).

(3.4a)
(3.4b)
(3.4c¢)
(3.4d)
(3.4¢)
(3.41)

(3.5a)
(3.5b)

(3.5¢)

(3.6a)
(3.6b)

(3.6¢)

(3.7a)
(3.7b)

(3.7¢)

(3.8a)

(3.8b)

(3.8¢)

(3.8d)

Here d, v, and 6, are the prescribed initial displacements, initial velocities, and initial
temperature distribution, while , T, §, and @ are the given surface displacements,

tractions, temperature, and normal heat flow.
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It should be noted that the boundary conditions prescribed above may be generalized
to include mixed-mixed conditions for tractions and displacements, as well as the more
general “radiation” type boundary conditions, such as the elastically supported surface
and the thermal convection boundary layer.

Analogous to the work of Gurtin (5], the smoothness requirements and other regularity
assumptions on the ascribable functions are introduced as hypotheses on the data:

(i) p > 0 is continuously differentiable on V;
(ii) ¢ and x are continuously differentiable on V and satisfy (3.3a), (3.4a), and
(3.4b);
(iii) C. > 0and C, > 0 are continuously differentiable on ¥ and satisfy (3.3d);
(iv) k, e, 2, and B are continuously differentiable on V and satisfy (3.3b), (3.3¢),
(3.4¢c), (3.4d), (3.4e), and (3.4f);
(v) dis continuously differentiable on V;
(vi) v and 6, are continuous on V;
(vii) F and H are continuously differentiable on V X [0, ©);
(viii) 14 and @ are continuous on S; X [0, ) and §, X [0, =), respectively;
(ix) T and Q are piecewise continuous on S, X [0, «) and §, X [0, =), respectively.

With the specifications on the data cited above the mixed problem consists of finding
a set of functions [u, e, =, 8, 7, ¢, ] on ¥V X [0, «) which satisfies the field equations
(3.1), (3.2), (3.5), the initial conditions (3.7), and the boundary conditions (3.8).

The ultimate goal is to transform the foregoing statement of the mixed initial-
boundary-value problem into an equivalent variational formulation. To accomplish
this, it is convenient to define an admissible state, and then, in terms of admissible states,
a solution of the mixzed problem. An admissible state, denoted as B = [u, e, =, 6, 7, q, 8],
is an ordered array of functions u, e, =, 8, 7, q, ¥ defined on V X [0, ) with the prop-
erties:

(a) uw € Cl.2' e, € Co.o, r; € CI.O’ = Cl,o’ |
NS Co'l, g;: € Clvo, 4 & CO'O;
(b) €;; = €, Tij = T;j;i ON V X [0, «).
Addition of states and multiplication of a state by a scalar are defined by

R+R=Qu+d,e+&+%0+0,n+7%q+q9 +9] (3.10)

3.9

and
AR = [\u, \e, Mz, N0, g, Aq, M.

In this way the set of all admissible states is a linear space.

A solution of the mixed problem is now defined as an admissible state B = [u, e, =,
6, n, q, 9] which satisfies the field equations (3.1), (3.2), (3.5), the initial conditions
(3.7) and the boundary conditions (3.8).

4. Alternative formulations. Since a major motive for the recasting of the initial-
boundary-value problem of coupled thermoelasticity is to incorporate the initial con-
ditions explicitly into the field equations and into the functionals which arise in the
variational formulations, it is convenient to consider the Laplace transformation of
Eqgs. (3.2). Using (3.5¢) and (3.7)
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Firi + Fi + psdi + poi = ps0, (4.12)
and
Gioi — pC.8o — Bi;Tods,; + pTosii = H. (4.1b)

where a superimposed bar denotes the transformed function and s is the transformation
parameter. Solving (4.1) for @; and #, then applying the inverse transformation, yields

pu; = g * 1o + f (4.2a)
and
pTon = h — g' * q.i (4.2b)
where the functions g, ¢/, f; , and h are defined to be
g) =t gl =1 (0=1t< =), (4.33)
fux, 1) = [g * FJl(x, ) + p(®)[f0i(x) + d.(®)], (4.3b)
and

hx, ) = [g" * HIx, ) + p(®)C.(%) 6o(x) + ToB:;(®d. ;(x), (%, H E VX [0. ). (4.3¢)

The functions f; and & are completely described by information relevant to the mixed

problem.
With these results in mind alternative formulations of the problem can easily be

made.

4.1 TuroreEM. Letu; € C°?, r;; € C*°, and suppose r;; = 7;; . Then u, , v;; satisfy
the equations of motion (3.2a) as well as the initial conditions (3.7a) and (3.7b) if and only

gl
g * Tii.i + f,‘ = pu; on V X [O, 03) (4.4)

The proof of this theorem has been given by Gurtin [5).

4.2. THEOREM. Letn € C*', q; € C**°, and suppose the equation of state (3.5¢) holds
for t = 0. Then n and g; satisfy the energy equation (3.2b) as well as the initial conditions

(8.7¢) if and only if
h - g' * q,".' = pToﬂ on V X [O, w). (4.5)
Proof. Suppose (3.2b), (3.7¢), and (8.5¢) (for ¢ = 0) hold. Then (4.3a) implies

[0 (0 = 0. ))®, ) = p@To [ i(x, 7) dr
p®)Ton(x, ) = pxX)Ton(x, 0) (4.6)
p@Ton(x, £) — p(X)Co(x)0o(x) — ToBii(x) ds,i(X).

Thus, and by (4.3¢), equation (4.5) is met. Conversely, suppose (4.5) holds. Then, by
reversing the argument, and utilizing the definitions (4.3a) and (4.3¢), it is directly
verified that 7, ¢; meet (3.2b). Since (3.5¢) (for ¢ = 0), (4.3a), (4.3¢), (4.5) imply (3.7¢),
the proof is complete.

It

Il
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4.3. TueoreM. Let R = [u, e, x, 8, 2, q, 9] be an admissible state. Then R is a solution
to the mixed problem of coupled thermoelasticity if and only if it meets the field equations
(3.1), (3.5), (4.4), (4.5), and the boundary conditions (3.8).

This result is a trivial consequence of Theorems 4.1 and 4.2.

As a result of this theorem, an alternative characterization of the solution to the
mixed problem of coupled thermoelasticity has been developed such that the initial
conditions are explicitly incorporated into two of the field equations.

By a displacement and temperature field corresponding to a solution of the mixed problem
is meant an ordered pair [u, 8] made up of a vector-valued function u and a scalar-valued
function 8 such that there exist functions e, =, 5, q, & with the property that [u, e, «,
6, 1, q, 9] is a solution to the mixed problem.

4.4, THEOREM. Letu; € C** and 8 € C*°. Thenu, 0 is a displacement and tempera-
ture field corresponding to a solution of the mixed problem of coupled thermoelasticity if
and only if

g * Cojrttx,r — Bii0),; + fi = pus (4.72)

and
g’ * (ki;0:),s + h = pC.0 + Tofiju;; on V X [0, ©), (4.7b)
w;, =4; on S, X [0, ©), (4.7¢)
Cistthe — Bii)n; = T, om 8, X [0, »), (4.7d)
6=146 on 8 X [0, «), (4.7¢)

and
—kifm =Q on 8 X [0, »). (4.71)

Proof. TFirst suppose u and 8 meet Eqgs. (4.7). Define e and 9 through (3.1) and
<, q, 1 through (3.5). Then, and because of (3.4), the boundary conditions (3.8) are
met. Further (4.7a), (4.7b), (3.1), (3.4), (3.5) imply (4.4), (4.5). Thus, and by Theorem
4.3, [u, e, =, 6, 7, q, 9] is a solution to the mixed problem. Conversely, (3.1), (3.4), (3.5),
(3.8), (4.4), (4.5) imply (4.7) and the proof is therefore complete.

By a stress and heat flux field corresponding to a solution of the mized problem is meant
an ordered pair [z, q] made up of a symmetric second-order tensor-valued function =
and a vector-valued function q such that there exist functions u, e, 6, 5, & with the prop-
erty that [u, e, =, 6, 9, q, 9] is a solution of the mixed problem.

4.5. TuporEM. Let 7,; € C*° and q; € C*° with 7;; = 7;; . Then =, q is a stress
and heat flux field corresponding to the solution of the mixed problem of coupled thermo-
elasticity if and only if

[% (9* 7mm + fu):'

and

/.
- %:_7 (B = g * Qum) = XhitiTie (4.8a)
0

1)

[alilfkl - P% (h - g’ * Qm.m)] = )‘ii(]i onm V X [01 oo)' (4'8b)

1
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-,1;(9 *1,:+ 1) =4 on S X0, »), (4.8¢)
i =Ty =T, on S, X [0, ), (4.8d)
p—lé: (h =g * Qun) —alyriy = 6 on 8 X [0, @), (4.80)
and
gni =Q =0 on 8 X [0, »), (4.80)
where
@) = 2SO @ = X — @b (). 4.9)

Proof First suppose = and q meet Egs. (4.8). Define u from (4.4), n from (4.5), 6
from (3.6¢), e from (3.6a), and ¥ from (3.6b). Then (4.8a), (4.8b), (4.8¢), (4.8¢), (4.9),
(3.6), (4.4), (4.5) imply (3.1), (3.8a), (3.8¢c). Finally (3.5) hold by virtue of (3.3), (3.6).
Thus, and by Theorem 4.3, [u, e, =, 6, 9, q, 8] is a solution of the mixed problem. Con-
versely, (3.1), (3.3), (3.5), (4.4), (4.5), (3.8) imply (4.8) and the proof is complete.

The fact that the behavior of the stresses in linear elastodynamics can be char-
acterized by a single tensorial field equation, similar in form to (4.8a), is due to Ignaczak
(10]. Here, by (4.8a), (4.8b), this has been extended to the linear theory of dynamiec,
coupled thermoelasticity.

5. Variational principles characterizing coupled thermoelasticity. The most general
variational principle to be considered here will be one in which the admissible states
(which constitute a linear space) are not required to meet any of the field equations,
initial conditions, or boundary conditions. A number of less general principles can also
be derived, depending on the extent to which certain of the requirements are taken to
be identically satisfied by the admissible states. Three principles will be formulated here,
corresponding roughly to the elasto-static variational principles of Hu-Washizu [11],
[12], Hellinger-Reissner [13], [14], and minimum potential energy [15].

For consequent use, recall from Eqgs. (4.3) that

gty = ¢, g’ =1 0=t < ), (5.1a)
fi, 1) = [g* Fd(x, ) + p@I0n@) + di@)], (5.1b)
and
h(x, t) = [g" * HIX, &) + p(C.(x) 6.X) + ToB:;(®)d:.;(x),  (x, ) E VX0, »). (5.10)
Also T and T shall be written for the traction vectors with components
T: = rimn; , T: = #:m; , (5.1d)
and Q and § for the normal heat fluxes given by
Q=gqn, Q=7an,. (5.1e)

5.1. THEOREM. Let K be the set of all admissible states. Let R = [u, e, =, 0,1,q,8] E K,
and for each t € [0, =) define the functional 2,{-} on K by
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0GR} = 3 [ cu@lg s eu el 0 aV = [ s@BLENg * 1+ e, ) AV
—f B0 g me nltx, 0 aV + 5 [ o0l * wdtx, ) av
— [ B e g eodm nay = [ fgx i eaw nav
— [ @lgxnr ol )V = [ F-lg g % qor oA ) 2V
= [ rs 1wl 0 aV = [ g * @ % g = B+ olx, DV
+ [ e rocada nas + [ lgr @ - 1) s udx, ) dS

+ S‘}—Oly*g'*Q*9](x,t)dS+fs’%[g*g’*(Q—Q)*0](x,t)dS,

(5.2)

where
LX) = =t 5.32)
ii(x - p(X)C,(X) ﬁii(x) ( 08

and

clin(X) = ciin(X) + B:;(X)BL(X). (5.3b)

Then
Q. {R} =0 over K 0=1t< ) (5.4)

if and only if R is a solution of the mized problem.

Proof. Let R = [#, &, %, §, 7, §, ] € K, from which it follows that R + A\ € K
for every scalar \. Then, by (5.2), (2.7), (3.4), (5.1d), (5.1e), property (b) of admissible
states, the properties of the convolution, and the divergence theorem,

0 (R} = fV [g * (climen — pBim — 7i7) *&;](x, £) AV

By AT N

- [ :,1'1_ lg*g" * (ki + g) *3)x, 1) dV
Jyv 0

= [ o * rurs + 1. = o) * ) 2V
= [ 4210 @ % g = b+ oTon) » B, D aV
+ [ 10 @ = e * Rl p av
1 ~ .
+ [ g loe g0 —0)+adx 0 av + [ lg* @ —u) T, 0 dS
+ [ r@=tyralmnas+ [ lor g+ (@ — 0+ Qlx, 0 as

-|-L‘%[g*g'*(Q—Q)*g](x,t)dS 0=t< =) (5.5)
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First suppose R is a solution to the mixed problem. Then, by virtue of Theorem 4.3,
(5.5) yields

&U(R} =0 (0=t< x) forevery EEK, (5.6)

which implies (5.4).

Now examine the “only if”’ portion. It must be shown that R & K is a solution to the
mixed problem whenever (5.6) holds. Choose B = [d, 0, 0, 0, 0, 0, 0], and let @i, together
with all of its space derivatives, vanish on S X [0, »). Then, from (5.1), (56.5), (5.6),
follows

[ rus+fi—p il ndv =0 ©st<=), G

and (5.7) must hold for every i € C'* with the foregoing properties. But this fact,
together with Lemma 2.1 implies the validity of (4.4). Next let B = [d, 0, 0, 0, 0, 0, 0],
but this time require only that & vanish on S, X [0, «). Then (5.5), (5.6), (4.4), and
Lemma 2.2 yield

g*(T; — T-) =0 on S; X [0, »), (5.8

and this result, because of (2.5), (5.1a), implies (3.8b). Now let R = [0, 0, 0, §, 0, 0, 0],
and let 4, together with all of its space derivatives, vanish on S X [0, «). Then, from
(5.1), (5.5), (5.6) follows

j;%o lg*(g" * qii — h+ pTom) * B](x, ) dV =0 0 =t < »), (5.9)

and (5.9) must hold for every § € C"° with the aforementioned properties. This, to-
gether with Lemma 2.1, implies (4.5). Then let £ = [0, 0, 0, §, 0, 0, 0], but require only
that § vanish on 8, X [0, »). Then (5.5), (5.6), (4.5), and Lemma 2.2 imply

%;g*g'*(Q—Q)=0 on 8§ X [0, =), (5.10)

and this result, with (2.5), (5.1a), yields (3.8d). Now let £ = [0, 0, 0, 0, 7, O, 0], and
suppose 7 and all its space derivatives vanish on S X [0, «). By (5.5), (5.6), and Lemma
2.1

g* (Ton/C. — Blies; — 6) =0 on V X [0, ). (5.11)

This, together with (2.5), (5.1a), (5.3a), implies (3.5¢). Now let B = [0, &, 0, 0, 0, 0, 0],
and suppose & and all of its space derivatives vanish on § X [0, «). Since R and E are
admissible, = and & are symmetric. Thus (3.4a), (3.4f), (5.5), (5.6), and Lemma 2.1 yield

g * (Clixiers — pBlin — 7:) =0 on V XI[0, ), (6.12)

and this fact, in view of (2.5), (5.1a), (3.5¢), (5.3), implies (3.5a). Then let £ = [0, 0, 0,
0, 0, 0, 8], and suppose & and all of its space derivatives vanish on S X [0, =). Using
(5.5), (5.6), and Lemma 2.1 yields

}— g*g' *(kid; +¢) =0 on VX0, ), (5.13)
o

and this result, with (2.5), (5.1a), implies (3.5b). Next select & = [0, 0, %, 0, 0, 0, 0],



22 R. E. NICKELL AND J. L. SACKMAN [Vol. XXVI, No. 1

where % and all of its space derivatives vanish on S X [0, «), and using (5.5), (5.6), the
symmetry of 4 and e, Lemma 2.1, (2.5), and (5.1a), verify that (3.1a) holds. Then let
R =1o0,0,%0,0, 0, 0], but now assume only that % and its space derivatives vanish on
S; X [0, ). Then (5.5), (5.6), (5.1d), (3.1a), Lemma 2.3, (5.1a), and (2.5) imply (3.8a).
Then let £ = [0, 0, 0, 0, 0, g, 0], where § and all its space derivatives are assumed to
vanish on S X [0, «). Use (5.5), (5.6), Lemma 2.1, (2.5), and (5.1a) to show that (3.1b)
holds. Finally, let & = [0, 0, 0, 0, 0, g, 0], but insist only that § and its space derivatives
vanish on 8§, X [0, «). Then (5.5), (5.6), (5.1e), (3.1b), Corollary 2.4, (5.1a), and (2.5)
imply (3.8c). Therefore R satisfies (3.1), (3.5), (4.4), (4.5), (3.8), and hence from Theorem
4.2 R is seen to be a solution of the mixed problem, which completes the proof.

5.2. THEOREM. Let K be the set of all admissible states that meet the strain-displace-
ment and thermal gradient-temperature relations (3.1). Let R = [u, e, z, 6, 7, q, 9] € K and
for each t € [0, =) define the functional ©,{ -} on K by

OuRY = [ To* 7 *ealx, 0 aV — [ o@lg *n* 01, ) AV

= 5 [ Xiw®lg * v * il AV — [ @@l * 7w * rilx, ) AV

Top(x)

+1 o e nav 45 fp(x>[u su)(x, £) dV

+%fvi‘o‘[g*g'*g;*t?,-](x,t)dV-l-%ﬁ%)—[g*gl*qi*qi](x'[)dv
= [l nav + [ Ftgxnsoits b av
+fs g * (@ — w) * Tu)Cx, ) dS—fS lg* T: * wlx, 1) dS

+ [ Florg s — 0@ nas - [ F-lgrg =@ olx 0 dS, (.14
where a!,(x) and x!;.,(X) are given by (4.9). Then
0.{R} =0 over K 0=t < =) (5.15)
if and only if R is a solution of the mixed problem.

Proof. Let R = [di, e, %, §, 7, G, ®] be an admissible state, and suppose in addition
that R + AR € K for every scalar \. This latter condition is equivalent to the require-
ment that B € K. Then, from (5.14), (2.7), (3.1), (3.4), the properties of the convolution,
and the divergence theorem, follows

5"® f [g * (eu Xulekl - Pa”'rl) * T.,](X t) dVv

+ fv p(X)[g * <%Z — aliTy — 0) * ﬁ](x, Hdv

+ [ 2 la % 0+ @+ Nag) * 7Gx, ) AV
VTO
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— [ o * rus + 10 = o) *@x, 0 av
1 -
- f T g% (9" *qii — h + pTom) * 6](x, £) AV
v 0
+ [ dgx @ —w)+ Td, D as + [ lg+ @ — T x i, b dS
81 Sa

+£‘%[g*g’*(é—0)*Q~](x, t)dS+L;—o[g*g’*(Q—Q‘)*él(x,t)dS

0=t< ). (516
If R is a solution of the mixed problem, then (5.16), because of Theorem 4.3, yields
8:0. (R} = 0, 05t< o, forevery B € K, (5.17)

which implies (5.15). On the other hand (5.16), (5.17), Lemma 2.1, Lemma 2.2, Lemma
2.3, Corollary 2.4, (2.5), (3.1), and Theorem 4.3 imply that R is a solution to the mixed
problem, and the theorem is proved.

Another form of variational principle can be developed by requiring more stringent
conditions on the admissible states. Analogous to the notion of a kinematically admissible
state as used by Gurtin [5], a kinematically and thermally admissible state is introduced as
a state that meets the strain-displacement and thermal gradient-temperature relations
(3.1), the constitutive relations and equation of state (3.5), and the displacement and
temperature boundary conditions (3.8a), (3.8¢). The variational principle based upon
such states represents an extension of the theorem of minimum potential energy.

5.3. THEOREM. Let K be the set of all kinematically and thermally admissible states.
Let R = [u, e, x, 0, 1,q, 8 € K, and for cach t € [0, =) define the functional ®,{-} on
K by

(k) =5 [ g% oo )V = 5 [ ol n» oltx, 9 av

1 171
+5 fv p(X) [u: * w;l(x, ) dV + 2,7 lg*g *q *]x,0)dV

= [ Worudwnav + [ -l ns o o av

— [ eTirudxnas - [ lgr g+ Qra®nas. 618

Sa

Then
§0,{R} =0 over K 0=t =) (5.19)
if and only if R s a solution to the mized problem.
Proof. Let B = [d, &, %, 0, 7, , &) be an admissible state and suppose that
R + AR € K for every scalar . (5.20)
This latter condition is equivalent to the requirement that B meets (3.1), (3.5), with
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=0 on S XI[0, ) (5.21a)
and
6=0 on 8§ X [0, »). (5.21b)

Next use (5.18), (2.7), (3.1), (3.4), (3.5), (5.21), the properties of the convolution, and
the divergence theorem to verify that

6;P, {R} = —fy [lg * 7:7.; + i — puy) *u](x, ) dV
_ f% [ (¢" * gii — h + oTon) * B1(x, £) AV
+ f g * (T; — T * @), 1) 48

+j;;,—0[g*g'*(Q—Q)*§](x,t)dS O=t<=), (522

for every @; € C** and § € C**° which meet (5.21). First suppose R is a solution to the
mixed problem. Then (5.22), by virtue of Theorem 4.3, implies (5.19). On the other
hand (5.19), (5.22), Lemma 2.1, Lemma 2.2, (2.5), (3.1), (3.5), and Theorem 4.3 imply
that R is a solution of the mixed problem. This completes the proof.

6. Variational characterization of displacements and temperature. By an admissible
displacement and temperature field is meant an ordered pair [u, 6] such that the vector-
valued function u € C"'* and the scalar-valued function § & C**°. The linear space of
interest here will be the set of all admissible displacement and temperature fields By
a kinematically and thermally admissible displacement and temperature field is meant an
admissible displacement and temperature field satisfying the boundary conditions (3.8a)
and (3.8¢) on the displacement and temperature. It follows that, if [u, e, =, 6, 7, q, 9] is
a kinematically and thermally admissible state, then [u, 6] is a kinematically and ther-
mally admissible displacement and temperature field. Conversely, the latter assertion
implies the former when e, 9, <, 9, and q are defined through (3.1) and (3.5). Thus the
following corollary to Theorem 5.3 may be stated.

6.1. CoroLLARY. Let K be the set of all kinematically and thermally admissible displace-
ment and temperature fields. Let [u, 0] € K and for each t € [0, =) define the functional
¢} on K through

ol 0) = 5 [ con®lg * ues * unil(x, ) ¥
+ % fV p(®fu; * w)(x, 1) dV — fvﬂ,.,.(x)[g *u, ;% 6)(x, H) dV
“%Lﬂ%@[g* 0+ 0x, 0dV—%fV’%x)[g*g’* 6.0 % 0,1(x, 1) AV
- fv [fi * wil(x, ) AV + fy}—o lg *h*6)(x, 1) dV

- f o+ Pesudx, 08 — [ g-lg* o'+ Q* 0l(x, 0 dS. ©.1)
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Then
dp.{u, 8} =0 over K 0=t< =) 6.2)

if and only if u and 6 are displacement and temperature fields corresponding to a solution
of the mixed problem of coupled thermoelasticity.

7. Variational characterization of stress and heat flux. By an admissible siress and
heat fluz field is meant an ordered pair [z, q] such that the symmetric second-order tensor-
valued function « € C**° and the vector-valued function ¢ & C*'°. The linear space
basic to the development here is the set of all admissible stress and heat flux fields. By a
dynamically and energetically admissible stress and heat flux field is meant an admissible
stress and heat flux ficld satisfying the boundary conditions (3.8b) and (3.8d) on the
traction vector and normal heat flux.

7.1. TuEoREM. Let K be the set of all dynamically and energetically admissible stress
and heat flux fields. Let R = [z, q] € K and for each t € [0, =) define the functional A, {-}
on K through

Az{R} Xiim @ [ri; * ma](x, ) AV + ‘/;0%(:{) [ris *(h — ¢" * @u.w)]x, 1) AV

_1
2Jy
_1 @, 1/ 1

2 j; TO [g * q: * qi](x’ t) dV + 2 . p(X) [g * Tii,i * Tt'm.m](xr t) dV

1 1 , ,
- 2/, p(X)C,(X)To [g ¥g *qi* qm,m](x’ t) av

1 1 ,
+ ~/;'P(-_X)_ [fi * 7,51, 1) AV + » 2@C.®T, lg" * b * q. :)(x, &) AV

- f [d, * T)(x, £) dS — f }—O[g'* 6+ QI(x, 1) dS, @.1)

where a!;(X) and x};,(X) are given by (4.9). Then
AR} =0 over K (0=1¢< o) (7.2)

if and only if = and q are stress and heat flux fields corresponding to a solution of the mized
problem of coupled thermoelasticity.
Proof. Let B € K so that

T; = ;,'jn,' =0 on S, X [O) °°) (7'33‘)

and

~

@Q=gqgm; =0 on 8 X [0, =). (7.3b)

It follows that R + AR € K for every scalar \. Then, by (7.1), (3.4b), (3.4d), (3.4e),
(2.7), (7.3), the properties of the convolution, the symmetry of =, and the divergence
theorem,
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i , 1 -
8§A¢{R} = ‘/;{l:)dikﬂ'kl +%§; (h— g * Qm,m) - (; [g * T(im.m+f(i]>,j)] * Tg;}(X,l)dV

fo

1 ~ -
+ ];%; g, * {[(al,cﬂ'kl - E [h - g, * Qm.m]>" - )\iiqf:l * Q£}(xr t) a¥
+ {[lp (9% 7., +1) — ﬁ":l * T‘}(x’ ) ds
Si

+ 711_ g’ *{[p_lc' (h — g" * qi) — aljTi; — 9] * Q}(X, nds, 0=t< =, 749
$a ] T

r every B € K. If R corresponds to a solution of the mixed problem then (7.4) and

Theorem 4.5 yield (7.2). On the other hand (7.2), (7.3), (7.4), (3.4), the symmetry of

)
is

Lemma 2.1, Lemma 2.3, Corollary 2.4, (2.5), (5.1), and Theorem 4.5 imply that R
a solution to the mixed problem. This completes the proof.
In closing we note that extensions of these theorems to a theory of time-invariant

thermoviscoelasticity, in which the mechanical properties are independent of tempera-
ture, are easily obtained. Because of the strong thermal dependence of the relaxation
moduli of a real viscoelastic material, such a theory is felt to be of little significance.
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