
Ill

MOTION IN THE NEIGHBORHOOD OF A STATIONARY POINT*
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Abstract. A perturbed system of differential equations is considered, wherein the
zero order rate of change of one variable, which depends on the other, slowly changing,
variables, vanishes at a particular point. A detailed analysis of the motions in certain
close neighborhoods of the stationary point of the perturbed system is given, the method
of averaging being applied, after some preliminary transformations have been made.
It is found that the motions corresponding to the averaged equations are damped under
the stability conditions given in [1] by Volosov and Morgunov, who considered a more
general problem. However, our analysis reveals the nature of the motion in the neighbor-
hood of the stationary point, and, moreover, our results are valid for a time interval of
the order of the reciprocal of the perturbation parameter, rather than the reciprocal of
just its square root.

1. Introduction. In this paper we consider the perturbed system of equations

dxjdt = I,(x, y,e) = eX^ix, y) + t2X?\x, ?/)+•••;

dy/dt = Y(x, y; e) = F<0,(x) + eF(1,(x, y) + e2F<2>(x, y) + ■ ■ ■ ,

where e > 0 is a small parameter, and i = 1, • • • , n. It is supposed that

X?\0, 0) = 0; F<0,(0) = 0. (1.2)
In a recent paper [1], Volosov and Morgunov start from a system of the form (1.1),
wherein they take y to be a vector also. However, the detailed results given in [1] are for
the case when y is scalar (the results for the more general case being very cumbersome),
and we will confine our attention to this case.

Volosov and Morgunov suppose that, for sufficiently small e, the system (1.1) has a
stationary point x = a(t), y = /3(e) where

ai(e) = + e2o42> + • • • , /3(e) = e/3U> + e2/3(2) + • ■ • , (1-3)
and, letting

M; = - eau°), {i = 1, ••• , ft); un+l = y, (1.4)

they reduce the system (1.1) to one of the form

du/dt = A(e)u + F(u, e). (1.5)
Here A (e) is a matrix of order n + 1, of the form

eGEil ' ' ' €@in tbi

A(e) =
€dni * * *

Ci € di • • • Cn 6 dn €h

(1.6)
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where

a a = (al!7te,)(0, 0); bt = (dX^/dy)(0, 0), (1.7)
c. = (dYll)/dXj)(0)] h = (,dY"/dy)(0, 0), (1.8)

and
p>2 y(0) r. y(1)

the summation convention being understood. We have changed the notation somewhat,
since we are considering only the case when y is a scalar, and have corrected a misprint
in the definition of df (a factor J appearing, in [1], in front of the term containing the
second derivatives).

If the right hand sides of (1.1) are sufficiently smooth, then in (1.5)

Ft = 0(e2 + e2 | |u| | + e ||u||2) (i = 1, •••,»); (1 1Q)

Fn+1 =0(e2 + e2 ||u|| + ||u||2).

Instead of (1.5), Volosov and Morgunov considered a nonautonomous system of equa-
tions of the form

dz/dt = A(e)z + 4»(e, Z, t), (1.11)

where

= 0(e2 + e2 ||z|| + e ||z||2) (»=1, •••,«); (L12)

<3>„+1 = 0(e2 + e2||z||+l|z||2).

They derived stability conditions which ensure that, for arbitrary 5 > 0, there exist
Ci, C2 and e0 > 0 such that, for 0 < e < e0, every solution of (1.11) satisfying
| |z(£0) 11 < 5e, also satisfies ||z(<)|| < C2t/2, for t0 < t < (t0 + Cie~1/2). The essence of the
stability conditions is that they imply, for all eigenvalues \(e) of the matrix A (e) given
in (1.6), that Re X(e) < — le, where I > 0 is a constant.

Let

B(P) =

dll

^nl

Ci

d\n b\

P

Cn 0

(1.13)

Then, for n > 1, the stability conditions given by Yolosov and Morgunov [1] are that

bfii = -fc2 < 0, (1.14)

that all the roots of det B(p) =0 should be distinct and have negative real parts, and that

£ A,.,..k\au + h) > 0. (1.15)
• l < t s < • • • < t n — » <»

Here A;, , ... (ik = 1, • • • , n) are the third order diagonal minors of det B(0),
obtained by deleting the indicated rows and columns. For n = 1 the stability conditions
are just
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blCl < 0; (an + h) <0 (» = 1). (1.16)

In this paper we confine our attention to the system (1.1), and give a detailed analysis
of the motions in certain close neighborhoods of the stationary point a(e), (3(e). In [2] we
considered the case n = 1, and investigated nonlinear oscillations in the neighborhood
of the stationary point, with (x — a(e)) = 0(e1/2) and (y — /3(e)) = 0(1). Here we
consider n > 1, and investigate slightly nonlinear oscillations in the neighborhood of
the stationary point. We first suppose that ||x — a(e)[| = 0(e) and (y — 13(e)) = 0(e1/2),
and, after some preliminary transformations, apply the standard method of averaging [3].
It is found that the motion corresponding to the first order averaged equations is damped
under the stability conditions given by Volosov and Morgunov, although we do not
require that the roots of det B(p) = 0 be distinct. We obtain the condition (1.15) in the
equivalent form

(h — k~2b,cpapi) < 0. (1-17)

The condition (1.14) implies that the motion is one of perturbed linear oscillations, the
period of the oscillations being of order e~1/2. We point out that our results show that,
if the initial values are within order e of the stationary point (and hence within order e of
the origin) then, although (y — 13(e)) becomes of order e1/2, in a time of order e_1/2,
||x — «(e) 11 remains of order e. Moreover, our averaged equations are valid for an interval
of time t of order e-1, and \y — /3(e) | < 0(e1/2), ||x — «(e)11 < 0(e) throughout that time.

We secondly assume that (y — /3(e)) = 0(e1/2) and ||x — «(e)|| = 0(e1/2), but subject
to Ci(Xi — a,-(e)) = 0(e). Note, from (1.8), that ||x|| = 0(e1/2) and CiX{ = 0(e) imply
that F<0)(x) = 0(e), and hence, from (1-1), that dy/dt = 0(e). The method of averaging
is applied, after some preliminary transformations, and it is again found that the motion
corresponding to the averaged equations is damped under the stability conditions given
by Volosov and Morgunov, and the assumed order relations hold for a time interval t of
order e_1. We emphasize, however, that we have investigated only the autonomous
system (1.1) and, consequently, our results are less general, in this sense, than those of
Volosov and Morgunov [1].

2. Motion in a certain close neighborhood. We first set

= [«<(m2) + m2£<]; y = [/3(m2) + mi]; r = mt, (2.1)

where yi = e'2 > 0, and a and /? have expansions as in (1.3). If det B(0) ^ 0, where
B(p) is given by (1.13), then the equations

X,.(«(e), /3(e); e) = 0; F(«(e), /3(e); e) = 0 (2.2)

may be solved for a(e) and /3(e), for sufficiently small e. In particular, from (1.1)—(1.3),
(1.7) and (1.8),

a<,«,n) + MU) + ^2)(0, 0) = 0; c,ar + Fa'(0, 0) = 0. (2.3)

Substituting (2.1) into (1.1), it is found that

d^/dr = bit) + txZid, n); dri/dr = C& + /iV(£, »?; ju), (2.4)

where

Z<(k, r,) + MZ?\t, ri) + • • • , (2.5)

N& 77,-M) = Ar(1)(?, v) + »N(2)(Z, „) + • • • , (2.6)
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and
Z!!)(0, 0) = 0; Na\0, 0) = 0 (1=1,2, ■■■). (2.7)

In particular,

Z?\z, v) = (a,,*, + giV2); -v<n(5, v) = hv, (2.8)
where

g{ = h(d'X\u/dtf)(0, 0). (2.9)
We suppose that (1.14) holds and make the transformations

Hi = [bi(C sin kr -\- D cos fcr) + Kt]; 17 = A:(C cos kr — D sin fcr), (2.10)

where c,7f, = 0. Then C, D and 7v,: are constants if /x = 0 in (2.4). In order to avoid a
technical difficulty later on, we remove the redundancy associated with the If,- . Since,
from (1.14), not all the c, are zero, we may suppose, without loss of generality, that
Cn 5^ 0. Accordingly,

Ki = —cpKp ; o-p = Cfi/Ct , (2.11)

where we adopt the convention that repeated greek suffices are summed from 2 to n
(whereas repeated latin suffices are summed from 1 to n). It is found, from (2.4)-(2.6),
(2.8), (2.10) and (2.11), that

dC/dr = [i[h cos fcr(C cos lcr — D sin kr) — cPg„ sin kr(C cos kr — D sin kr)2

— k~2b,cpapj sin kr{C sin kr + D cos kr) — k~2cp(apfl — <Tpapl)Kp sin kr]

+ 0(A (2.12)
dD/dr = — n[h sin kr(C cos kr — D sin kr) + cvgP cos /ct(C cos kr — D sin kr)2

+ k~2bjC„apj cos kr(C sin kr + D cos kr) + k~2cv(avp — cos kr]

+ 0(A (2.13)
and

dKa/dr = fi[bj(aai + k~2bacpapl)(C sin kr + D cos kr)

+ (k2ga + bacpgv)(C cos kr — D sin kr)2 + vaftKp\ + 0(m2), (2.14)

for a = 2, • • • , n, where

va» = [(a„j + k~~2bac„app) - <rg{aal + k~2bacpapl)]. (2.15)

Of course, if n = 1 then /vj = 0, and no K„ is present.
We may now apply the method of averaging [3] to Eqs. (2.12)—(2.14). That is, we

assume an asymptotic expansion of the form

C = e + MC(1)(e, 2D, 3C; t) + 0(ai2),

!>=£> + MD!1)(e, 20, X; t) + 0(m2), (2.16)

Ka = Ka + jt55, 3C; t) + 0(yu2),

where C(1), Dw and K'^ are periodic in r, with period 2vk-1, and
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dG/dr = 2D, X) + 0(m2);

dT>/dr = nQw(e, 2D, X) + 0(M2); (2.17)

dKa/dr = nR'^ie, 2D, X) + 0(ix2).

It is a straightforward matter to substitute from (2.16) and (2.17) into (2.12)-(2.14), and
equate the coefficients of n on each side of the equations. In particular,

i?"'(e, 2), X) + (dK^/dr)(e, £>, 3C; r) = [bj(aaj + k~2bacpap,){& sin kr + iD cos kr)

+ (k2ga + bacpgp)(Q cos kr — 2D sin kr)2 + VaeXp]. (2.18)

Averaging (2.18) over a period of r, it follows that

Rlv = [vafXf + Wg« + bacpgv)(e2 + S32)]. (2.19)

Now K[l) may be determined (to within an arbitrary function of 6, 2D, and 3C) from
(2.18), but we do not write out the expression here. Similarly, it is found that

Pm = |(h - k~2bfipapi)Q', Q(1> = i(h - k-2biCpari)3D. (2.20)

Let us consider the first order averaged equations, wherein the O(ji) terms in (2.17)
are neglected. These equations will give G, 3D and X to within O(ju), on an interval of
r of order ju"1 (so that the interval of time t is of order fx~2 = e"1). We comment that, if
the expansions in (2.16) are truncated so that the 0(ji~) terms are omitted, then the
0(ju2) terms in (2.17) will be dependent on r, but periodically so. The explicit dependence
of the averaged equations on r may be removed, of course, to any finite power of n,
provided that the functions entering the original equations are sufficiently smooth. We
now determine conditions under which the first order averaged equations correspond
to damped motion. Thus, from (2.17) and (2.20), C and 2D will decay exponentially if

(A - k~2bjcpapj) < 0. (2.21)

For n = 1 this, in addition to (1.14), suffices and we are led to (1.16). For n > 1, if
(2.21) holds, then, from (2.17) and (2.19), Ka(a = 2, • • • , n) will be damped if the
real parts of all the roots of det[Z?(p)] = 0 are negative, where

Eci3 = (yap p 8ap), (2.22)

and 5aS is a Kronecker delta. Note that we do not require that the roots be distinct. We
will now establish the equivalence of (1.15) and (2.21), and also show that

k2 det [E(p)] = det [B(p)], (2.23)

where B(p) is given by (1.13). Thus, since b,c, = — k2, (1.15) is equivalent to
n

0 < X bjCjttu — lc2h + [bifida — c.a,-,) + 6,(c,atI- — c,a,,)]
i,j=l *<j<n

n

= X) bfijda — k2h + (bjCidi,- - bjCjUa) (2.24)
i ,i -l tV i < »

w

= X) bjCidij — k2h.
i.i-l

Next, from (1.13),
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det [B(p)] = (2.25)
L b

c 0 '

where b is an n-column, c is an n-row, and L is an nxn matrix with

Lit = (a,-,- — p 8a). (2.26)

By straightforward manipulations it follows that

L b}
c 0

N b
c 0

(2.27)
M b
c 0

where

Mif = [(a,-,. + k~2biCpav,) - p 5,-,] (2.28)

and

Nn = {[(a,-,- + k'2biCvapi) - (c,/c1)(ail + k~2bfivavl)} - p 5,,}. (2.29)

Note, from (2.11), (2.15) and (2.22), that

Nai = 0; N= Eap (a, /3 = 2, • • • , n). (2.30)

Also, it is readily found from (1.14) and (2.29) that

CiNn + PC,- = 0 (i = 1, • • • ,n). (2.31)

Hence (2.23) follows from (1.14), (2.25), (2.27), (2.30) and (2.31).
3. Motion in a wider neighborhood. We now return to the system (1.1) and set

Xi = [cfiG/) + mw <]; V = [/3(m2) + m]', i~ = (3.1)

where

CiWt = /if, (3-2)

with f = 0(1). Let
•j2 y(l) 1 r\2 y(l)

r^HU{0'0)] Sii, = 2 fet;(0'0)' (3-3)
and

_ i d2Y(0) _ i a3F"" ,n. , .
P<'" 2 dx,-dz,9i,! 6 dxt dx, ^

Then, substituting (3.1) into (1.1), and using (1.7)—(1.9), (2.3), (2.9), and (3.2)-(3.4), it
is found that

dWi/dr = ju(M + aitWf) + p{gii]2 + ruw^7 + siilwjwl) + 0(/i8), (3.5)

and

d-q/dr = (f + PaWiW,) + n(hr) + d,Wi + qmWiWjWi) + 0(^2). (3.6)

If we eliminate w, , using (3.2) and assuming that c, ^ 0, then (3.5) and (3.6), using
(1.14), lead to
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diVa/dr = fi[barj + (aa(i — <rp aal)Wfi] + 0(n2), (3.7)

[(df/dr + k2tf) — c<(aia —

= Mc,[a,i(r/ci) + Sir;2 + (ria - <rarn)waT) + + 0(m2), (3.8)

[(dv/dr — t) — fafiWaWfi]

= n[hv + {da - cTad^Wa + 2(pla - ffapu)wa(f/c1) + + 0(m2), (3.9)

where <ra = (e„/ci) and

/«/) = (Pa/» - 20-api? + ffaOTflPn), (3-10)

Wia0 = 2tT aS.-j/S "1" 11)) (3.11)

Vafiy (QaPy ^^aQlPy (3.12)

for i = 1, • • • , n, and a, 0, y = 2, • • • , n.

We make the transformations

f = [k(F cos kr — G sin kr) — fapWaWp]; ,g ^

ij = [(Fsin kr + G cos kr) + k'2c{{aia — <raail)wa].

Then (3.8) and (3.9), using (3.7), leads to

dF/dr = n($r sin kr + fc_I$ cos kr) + 0(m2); ^ ^

dG/dr = n($r cos kr — k'1® sin fcr) + 0(/n2),

where

$ = {CjOi^f/cj) + CtQiif + [c,(r,« — (t av,-,) + 2faPb?\wat]

+ [CiUiafi + fpy(aya - <raayl)]wawf}, (3.15)

and

^ = {[ft - k~2baCi(aia — o-aaa)]7j + 2(pla - <rapn)u>0(f/ci)

+ [(d« - o-«di) - k~2Ci{aig - <rgan){afia - <raapi)]wa + va^wawewy}. (3.16)

If $ and ^ in (3.14), and -q in (3.7), are expressed in terms of F, G and wa (a = 2, • • • , n),
using (3.13), then we may apply the method of averaging to the system (3.7) and (3.14).

Now, from (3.13), fixing F, G and wa , and averaging over a period 27r/c-1 of r,

(t]) = k~2Ci(aia — <raan)wa , (3.17)

(f sinfcr) = — §fc(?; (f cos kr) = %kF, (3.18)

(tj sin kr) = \F) (jj cos fcr) = §0, (3.19)

(jj2 sin &r) = k'2Ci(aia — <r0ail)waF, (3.20)

and
(irj2 cos fcr) = k~2Ci(aia — <7aai^waG. (3.21)

Hence, the first order averaged equations corresponding to (3.7) and (3.14) are, from
(3.15M3.21),
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dWJdr = WafiW, , (3.22)
where va$ is given by (2.15), and

cLS/dr — h(^ + k~1ppWp S); dQ/dr = h(k£ — fc 1ppWplF), (3.23)

■where

k = h[h — k~2baCi(aia — aaan) + c.a,^/^], (3.24)

and

Pis = [fc~2c,c,sr,(ai(J - <rfla41) + bafa? + ic,(r,^ - a^r,-,) — fc2(p^ - cr^piO/c,]. (3.25)

From (1.14), (2.11) and (3.24) it follows that

k = \{h- k-'bfitat,). (3.26)
Also, from (3.23),

{d/dT)(tf + g2) = 2MK(ff2 + S2). (3.27)

Hence, from (3.22), (3.26) and (3.27), the motion corresponding to the first order averaged
equations is damped under the same conditions as those obtained in the previous section,
namely, if (2.21) holds and all the roots of det[£J(p)] = 0 have negative real parts, where
Eaf is given by (2.22). Let us examine the relationship between the analysis in the
previous section and that in this one. From (2.1), (2.10) and (3.1),

Wi — n[bi(C sin fcr + D cos fcr) + K{]. (3.28)

Also, from (1.14) and (3.2), since c.T?,- = 0,

f = — fc2(C sin fcr + D cos fcr). (3.29)

Now consider the case w{ = 0(h), (i = 1, • • • , n). Then, from (2.10), (3.13) and (3.29),

F = -kD + 0(h)] G = lcC + O(n). (3.30)
With Wa = O(n), it is seen from (2.20) and (3.26) that the first order averaged equations
for 5 and Q in (3.23) are consistent with the averaged equations for C and 20 in (2.17).
From (2.19), however, it is seen that the first order averaged equation for Wa in (3.22)
is not consistent with the averaged equation for Xa in (2.17), but the reason for this is
clear. Thus, the averaged equations for the slowly varying quantities *W „ corresponding
to wa take the form

dWJdr = waft?, + 0(h) (3.31)
and some of the 0(h) terms must be retained when iff, = /n3Ca . Hence, in order to
recover the result corresponding to (2.19), it is necessary to consider the second order
averaged equations for W a .
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