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SERIES REPRESENTATIONS OF FOURIER INTEGRALS*

BY

H. C. LEVEY AND J. J. MAHONY1

University of Western Australia, Nedlands

Summary. General series representations, valid at least for small values of x, are
obtained for the representative Fourier integral /„ A(k) exp (ikx) dk for a variety of
asymptotic forms of behaviour of the function A(k), assumed bounded and integrable
in any finite range. The results obtained should be of value in the numerical evaluation
of such integrals as well as in the determination of their analytic properties.

1. Introduction. The solutions of many problems in applied mathematics can be
obtained in terms of Fourier integrals for which no closed inverted form is available.
In such cases recourse is often made to the use of asymptotic approximations and numeri-
cal methods in order to obtain useful answers. This paper is concerned with the deriva-
tions of series approximations to such integrals in cases where the standard numerical
methods are of doubtful value and the usual asymptotic methods are not applicable.
It suffices to consider the integral,

I(x) = f A(k) exp (ikx) dk (1)
J 0

where A (k) is a bounded, integrable function in any finite range and x is of unrestricted
sign, as being representative of all Fourier integrals as all others can be compounded
simply from integrals of this type. When \x\ is large, suitable approximate representations
are readily obtainable by asymptotic methods such as steepest descents or stationary
phase. For other values of \x\, Filon's method of numerical integration can be applied
but when \x\ is small and A (7c) does not decay rapidly at infinity significant contributions
to I may arise from a large range of integration so that numerical integration techniques
become much less attractive and accurate.

Some approximate analytic techniques are available for dealing with the case \x\
small but these are far from comprehensive. Thus if A(k) is exponentially small for
large values of k, then a formal power series representation can be obtained for I(x)
by replacing exp (ikx) by its Taylor series and integrating term by term. The resulting
series,

I(x) = [ A(k)k" dk, (2)
n = 0 ^ 0

will be at least usefully asymptotic since all the integrals are convergent. If A(k) is
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algebraically small, with a large enough index, for large values of k then the integrals in
the early terms of the series in Eq. 2 will be convergent. In such cases one may expect
that the early, well-defined terms provide an asymptotic representation for I(x) but
the number of such terms obtainable in this way is limited by the power of the dominant
term in the asymptotic behaviour of A(k). When A (k) is merely bounded or algebraically
large at infinity the integral, when interpreted in terms of generalized functions, is
dominated for small values of \x\ by the contributions from the neighbourhood of k = <*>.
In such cases it therefore suffices to find some standard function f(x), whose Fourier
transform F(k) shares the same asymptotic behaviour for large k as A{k), at least to
some desired order. Then one merely writes

I(x) = j(x) + e die (3)

and the dominant behaviour for small values of |a;| can be determined from that of /.
Since for any singularity in / there are standard procedures and results (e.g. Lighthill
[2]) for determining the asymptotic behaviour of F(k) it is normally a matter of no
great difficulty to determine the general nature of the singularities of 7(x) by inspection
of the asymptotic behaviour of A (k). Again this method is not applicable to the deter-
mination of any regular portion of I(x) since the first approach clearly indicates that
there will be contributions from the finite portion of the range.

In this paper series approximations to I(x) are obtained, for small values of \x\,
for a variety of asymptotic behaviours of A (k). The methods used do not rely on the
fact that the contributions come solely from infinity or the finite portion of the range
nor do they place any restriction on the number of terms in the series which can be
obtained. In view of the previously noted possibility of extracting singular behaviour
by the use of standard functions attention will be confined to those cases where I(x)
is defined as an ordinary function, at least for x 5^ 0. Thus it will be assumed that A (k)
tends to zero as k tends to infinity. The analysis which follows can be justified by careful
use of limit processes but its presentation in a manner which makes this clear involves
excessive computation, none of which contributes to the form of the final result. Thus,
in order to justify the method of derivation used in the later work, a simple example is
considered in Sec. 2 and the analysis is presented in a way which permits the rigorous
demonstration of asymptotic nature of the series containing only the first few terms.
Moreover, certain features of the structure of the computation are recognized, which
enable one to demonstrate a rationale whereby much of the labour involved in obtaining
the general term can be avoided. This rationale is applied in the remainder of the paper
to derive a range of general results.

2. Motivating example. Consider the case when x is strictly positive and, for
large values of k, A(k) has the asymptotic behaviour k~l + 0 (exp —k). Here and in
what follows the notation 0 (exp —k) is loosely used to denote any quantity whose limit
behaviour is essentially, that is neglecting algebraic factors, that of the exponential.
Let R be any suitably large parameter, obviously dependent on x, chosen to satisfy
the relations

R 1 and Rx« 1. (4)

Then one divides the range of integration at k = R and considers the two subranges
separately. In the finite range (exp ikx) can be replaced by a finite Taylor approximation
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together with error estimate. In the infinite range A (7c) can be replaced by its asymptotic
representation together with the appropriate error estimate. Thus, for example, the
following estimate2

I(x) = f" A(k)(l + ikx - i/cV) dk + 0(RV) + f eihx dlc/k + 0{e~R)
Jo J R

can be obtained. The first integral becomes large with R but the manner in which this
occurs can be extracted explicitly by writing

j* A(k) dk = Ln R + J* |a(/c) - H(k~ dk,

= Ln R + ^ } dk + 0{e~B)

where H(k) denotes the Heaviside unit step function. Similarly the other terms can
be arranged as

f kA(k) dk = R + [ {kA(k) - 1} dk + 0(e~R)
Jo Jo

and

[* k2A(k) dk = iR2 + [ {k2A(k) - k} dk + 0(e'K)
J 0 J 0

  —^ du - Ln Rx,
' Rx U

which take the form, appropriate to this simple example, of asymptotic series in de-
scending powers of R. Further the infinite integral can be rearranged as

[ e'kx dk/k = [ eiu du/u,
J R J Rx

» _l„&+
J o U J q U

= — Ln Rx + [   U~ du — iRx + \R2x2 + 0(R3x3)
Jo U

which is in the form of series in ascending powers of Rx. When the contributions from
the two subranges are added together there is considerable cancellation of terms in-
volving R and the resulting estimate

/(*> - -Ln x + ( {iffl \a + f «" - - »>du

+ ix f {kA(k) — 1} dk + — f {/c2^4.(/c) — fcj dk + 0(Rix')
Jo Jo

is obtained. It is now a trivial matter to show, by appropriate choice of R(x) that the
largest error is o(x2+a) for any a in the range 0 < a < 1.

2This is overgenerous in that it permits A(k) to be its maximum over the whole range despite the
fact that A(k) is 0(i:_1) for large k.
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Because of its implications in later work the important observation about the above
analysis is the cancellation of the terms such as Ln R, ixR and x2R2/A which appear as
large terms in the finite range integral. If this cancellation can be shown to be a general
phenomenon and not merely specific to this particular problem then it will become a
straightforward matter to calculate higher terms in such series even when A(lc) is not
merely limited to a single algebraic term. There are heuristic arguments which suggest
that in fact the cancellation must occur. Thus the integral I(x) must be independent of
the particular value of R chosen and hence so must be the coefficients in the asymptotic
representation for small x. In order to complete this line of argument however it would be
necessary to show that the integral does have an asymptotic expansion of the form which
develops in the analysis. It is just conceivable that other powers of x arise through some
eventual relationship forced between R and x by the behaviour of the remainder term
together with the failure of cancellation to occur. Alternatively, it is noteworthy that
the cancellation of the terms large in R is of exactly the same type which occurs in the
method of matched asymptotic expansions, which is unproved but highly successful.

However, for the case when positive powers of R only occur in the coefficients, it is
possible to give a rigorous inductive demonstration that this cancellation must occur, at
least when A (7c) is dominantly algebraic in its behaviour at infinity. Other cases will
be discussed in Sec. 4 where they arise. First the cancellation is shown to occur in the
leading term and the error estimate obtained, as above, for this leading term. Next, let
it be assumed that the coefficient of xm is the first term in which there is some uncancelled
power of R so then its coefficient gm(R) tends to infinity with R. Let Im-X(x) denote the
approximation to I obtained by stopping at the xm~l term. Then the straightforward
estimate, as above, based on a remainder estimate Rm+1xm shows that [I(x) — /m_i(x)]
is 0{xm-1+a). But

I{x) - Im-,(x) = gm{R)xm + 0(Rm+2xm+1)

and by choice of R = x~1/(m+2), when the remainder is still small in comparison with gm(R),
a contradiction is constructed. It therefore follows that once a first algebraic error
estimate can be established, cancellation of all subsequent algebraically large terms must
occur. We are thus led to the following procedure for handling such Fourier integrals.

1. For the contribution from the finite integral, pick out the coefficient, independent
of R, in the asymptotic representation for large R.

2. For the contribution from the infinite integral, pick out the coefficient, independent
of Rx, in the asymptotic representation for small Rx save that if a Ln Rx term should
occur, the Ln x part should be kept.

3. All other terms may be ignored.

These procedure rules will be applied in the next sections to a variety of functions A (k)
and it will be shown that they permit the determination of the approximation series in
a simple manner. Extensions of the justification to other than positive powers of R will
be given as the need is shown to arise. In each case the procedure rules will be applied
first and then justified.

3. Algebraic asymptotic behaviour. Consider now the case of A(k) bounded, inte-
grable and described, for large values of k, by the representation

A(k) = x; ajc~n (5)
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which may be either convergent or merely asymptotic. Again the range of integration is
divided at k = R where R is chosen so that relations (4) apply. Then one writes

f A(k)eikx dk = [* A(k)kn dk
J 0 o ^ ^ 0

and, in a manner quite analogous to the working of the previous section, the large portion
of the integrals are extracted by writing

dk[ A(k)k" dk = [ \A(k)kn - £ arkn~r - an+1H(k - 1 )/k
Jo JO \ r = 1

+ an+i Ln R + £ - Rn~r+l - £  - R~   
7^[ n — r+1 r^2r-n-l

and it is to be noted that this case differs from the previous example in that negative
powers of R also occur. The infinite integral is transformed, in an analogous manner to
that in the previous section, as follows

[ e'kxk~n dx = |x|"-1 f u~"e"" du (s = sign a;),
J R J R III

[exp (iR \x\ s) ''(is)'-1(» — r — l)l|

+ (is)"'1 f e'"' du/u
JR III

(n - 1)!

where the last result has been obtained by repeated integration by parts. If one applies
the procedure rules, deferring for the present the question of their validity, then
exp (iR |x| s) will be expanded in series form and the terms independent of R selected.
The integral is treated as in the previous section. Thus the only terms which would be
retained from the value of the infinite integral are

(ix)" £1+ P"" "g(1 LnfllA
r = l V J 0 U )(n - 1)1

The value of the integral in this expression can be obtained from the behaviour of the
exponential integral for small values of its argument (e.g. Jahnke and Emde [3]). Thus
when the two ranges are combined, and the terms dependent on R are ignored, one
obtains the series

In(x) = Mk)k" - E arkn~r ~ an+1H(k - 1 )/k] dk
n = 0 n- UO L r-l J

+ a„+1£— Ln | a; | + Ln y + siw/2 + ^ ~ j (6)

where y is Euler's constant. The convergence properties of the series cannot be discussed
without an extensive knowledge of the behaviour of A(k) but the occurrence of the n\
in the denominator gives reason to hope that a curtailment of the above series will
prove useful for not too small a range of x for quite a wide variety of functions A(k).
Moreover, the potential oscillation in sign, implied by the presence of the factor i",
offers scope for the extension of the useful range by the use of rate of convergence im-
provement techniques.
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The question which remains to be answered is to whether in fact the postulated
cancellation does take place. It is a simple matter to observe that all the Ln R terms do
cancel so that it is only the integral powers of R which need to be considered. It does
not take extensive calculations to show that all the negative powers of R in the coefficient
of x° also cancel; there are no positive powers. It therefore follows that the limit arguments
can be applied to show that the error term for the series in Eq. 6 must be 0(x") for any
a < 1. The previous argument, that the terms involving positive powers of R in the
coefficient of x must also cancel, now applies for, as before, their presence would permit
the refutation of the error estimate by suitably choosing R. However, the negative
powers of R in the coefficient, if they do not cancel, prevent one from inferring that the
error involved, in dropping all higher powers of x, is 0(x1 + a) for any a < 1. If one chooses
R(x) small enough that the R3x2 is 0(x1 + a) then the x/Rm term will not be small enough.
All one can infer, if there is no cancellation, is that there exists a /3 > 0 such that the
error in curtailing the series at the x term is 0(.r1+f3). However, this suffices to enable the
demonstration that the negative powers of R must not occur in the coefficient of x. For,
if there is any term of the form x/Rm, choose the least value of m and then by choosing
R small enough it is possible to refute the error estimate 0{x+l>). The demonstration
hinges on showing that if the coefficients are R dependent inconsistent error estimates
can be obtained by making suitable choices of R(x). Moreover the above argument is
obviously capable of inductive extension so that the presence of negative powers does
not affect the validity of the procedural rules stated at the end of the previous section.
Thus (6) can be shown to be at least asymptotic for small x.

The above analysis has been based on the assumption that A (k) only involves integral
powers of k in its asymptotic behaviour but the analysis can be extended to fractional
powers without much difficulty. Thus if, for large values of k,

A(k) = k~' ± brk(7)
r =0

where 0 < v < 1, then the discussion of the finite range integrals is very similar and
the significant contribution from that range is merely

dk.t~ff M) - £ wr11 = 0 ill J o V. r = 0

The calculation of the contribution from the large values of lz takes the slightly different
form

f i-<r+Fvta dk = \x\r*v~*e + —-—- f
Jr _ r + v - 1 r + v — 1 Jr,

— (r + v—1) iu 7u e du

and it can be seen immediately that in the integration of parts none of the contributions
from the terminal give terms imdependent of R when expanded for small Rx. The reader
can easily verify that the previous proof that the other terms must cancel so that the
contribution from the infinite integral is

i>-h-"-'§?t/;
or the more compact form

iTV" du
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7r cosec viv la;!"-1 X x exp [i(v + l)-a-/2]
11 ^ T(f + r)

obtained by identifying the integral with the F function and using the properties of that
function (Whittaker and Watson). The resulting expression for I(x) is thus

I{x) = f WMk) ~ Z brkn—°\dk
n = 0 n\ Jo k r =0 J

+ eSZexpli("+ 1W21 kr" 5''ffr+T ®
It is apparent that by combining results (6) and (8) one can deal with any combination
of fractional powers in the asymptotic behaviour of k. As far as the finite range contribu-
tion is concerned one merely takes large terms in the integrand until the integral just
converges. In addition, there is a contribution from infinity, which can be immediately
written down by examination of the appropriate coefficient of aT and br on the series
not under the integral sign in Eqs. 6 and 8.

4. Oscillatory type asymptotic behaviour. A few examples of this type, the first
of which is

A{k) = eik" Z Crk~\ (9)
r = 1

will be considered to illustrate the type of problems which arise and how they may be
overcome. The same technique of subdivision of the range of integration is used and
the consideration of the finite portion leads to integrals of the form

f* A(k)kn dk = J |knA(k) - g Crkn~Vta j dk

+ Z Cr f kn~reika dk + 0(eiRa/R).
r = 1 JO

The finite integral can be evaluated by repeated integration by parts and contribu-
tions from the terminal R of the form R±me'Ra can be ruled out on grounds similar to
the error discussion in Sec. 3. The finite terms with a factor e'Ra would then leave the
coefficients in the resulting series dependent on R so these two must cancel. Thus all
contributions from the upper terminal must be neglected but not those from the lower
terminal so that one can show that the contribution form the finite range is

I(x) = i; { f f knA(k) - i; CX~reika dk + i; cr(n - r)! (-Y r + 1|
n=0 72-' WO L r = 1 J r = 1 )

(10)

It can be shown that the infinite range integral contributes nothing to the accuracy of
the result which almost certainly has an exponentially small error. It suffices to examine
the contribution from the largest term since the other integrals can be treated similarly.
The behaviour of the integral

/;
k~leikaeikx dk

is dominated, for small x, by the factor e,ka in the integral so that it is most readily
estimated by deforming to a path of steepest descent from R to imaginary infinity, the
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direction being dependent on the sign of a. For the case a positive, introduce the variable
change k = R + it and the integral becomes

Hi ' exp [iR(a + a-)] J exp [ — (a + z)^l + dt

and standard asymptotic techniques may be applied. Thus the whole expression contains
a factor e,Ra with sums of various powers of R and x but all these are of the type which
must cancel. Thus Eq. (10) is the complete asymptotic series for I(x). From the results
of the previous section, it is known that this I(x) has a logarithmic singularity of some
type at x = a so that the series in 10 certainly does not converge in |x| > |a| and if
|a| is small it is clear that a better approximation in a reasonable neighbourhood of
x = 0 may well be obtained by using the results of Sec. 3 on the small variable x + a.

Similar arguments may be used to discuss cases where A(k) has the asymptotic
representation

A{/>■) = exp 23 dTk'~l X > 0.
r = 1

These examples divide naturally into the cases X > 1 and X < 1. When X > 1 there is
only a trivial difference from the case X = 1 discussed above. The infinite range integral
is dominated throughout by exp ifikx and so the previous demonstration that it makes
no significant contribution applies with only minor modification. However, because
/ „ exp (t/3/cx) dk is convergent it is necessary to make a minor modification to the form
of Eq. (10) by subtracting one less term so that

m = £ (-~f { [ " I"k?A(k) - Z drk"-' exp (ifcty
„ = 0 'fri WO L r = 1

+ E-f°x J o

dk

n — 1 7 ^ jj-

- du

where the star * denotes the appropriate finite part of this integral the evaluation of
which depends on the parameter X and which will not be completed here although it can
be seen to be related to the r function.

The case X < 1 was the one which was of concern to Levey [1] in his work on the
initial stages of the solution obtained in reference. When X < 1 two subcases can be
recognized by considering the question of estimating the integral whose integrand is
dominated by exp z'j/3fcx + xk\. It is apparent that if one used the technique of deforming
the path of integration off the real axis one will be concerned with the relative dominance
of the two terms near k = R and k near infinity. If x and ft have the same sign the path
of steepest descent from R will reach infinity in the appropriate part of the plane but
if they have opposite signs there will also arise a contribution from the saddlepoint
at k = (—j3X/x)1/ll_x>. Similar conclusions can be reached by the use of stationary
phase arguments. As before, the contribution from near the terminal point of integration
k = R will have an oscillatory exponential factor and hence must be of the type which
cancels. The contribution from the infinite range of integration thus comes solely from
the saddlepoint but the nature of the methods for determining such contributions
prevent the general term from being evaluated in this case. In these circumstances only
the evaluation of the leading useful term, arising from k~1 exp i{kx — /3/c*} dk when
x is positive, will be given explicitly. It follows from standard analysis that the infinite
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range contributes a dominant term, for small positive x,

(2tt)1/2[X(1 - A)/3]~1/2(a7/A/3)x/C2(1-x>) exp (~»{(1 - X)/3(X/3A)^/(1"x> - x/4}).
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