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ON LOCAL STABILITY OF A FINITELY DEFORMED SOLID
SUBJECTED TO FOLLOWER TYPE LOADS*

BY
S. NEMAT-NASSER

University of California/San Diego, La Jolla

Abstract. In this study the problem of the local stability (stability in the small)
of a finitely deformed solid subjected to a set of follower type surface loads is analyzed,
and a necessary, and a sufficient condition for asymptotic stability is established. Cer-
tain implications of the commonly used modal analysis are also investigated, and neces-
sary and sufficient conditions for stability are formulated.

1. Introduction. Although the problem of the stability of an equilibrium con-
figuration of a finitely deformed elastic solid has received considerable attention in
recent years, most writers on the subject consider the special case of dead loading’
[1]-[5].% Since such a system of loads constitutes a potential force field, a static analysis
proves adequate provided a liberal attitude is adopted in viewing several exceptions
(5]-(7].

The static approach ceases to be valid when the solid is subjected to a more general
type of surface loading, for example, a system of follower type loads. This fact has
been vividly demonstrated in a number of studies [8]-[11], where a dynamic concept
of stability had to be adopted instead. The majority of these studies, however, are
based on approximations and therefore have limited applicability [10], [11]. The de-
formations which precede the loss of stability are, in general, neglected, and Hooke’s
Law is used to relate the additional stresses to the small strains that are superposed
on the equilibrium state of the initial strain. Moreover, the description of the follower
type loads employed [10] appears to be dubious and involves approximations which
are questionable.

In this study the problem of the local stability (stability in the small) of a finitely
deformed solid subjected to a set of follower type surface loads is analyzed. The actual
motion rather than a “virtual” displacement from the equilibrium configuration is
considered, and a necessary, and a sufficient condition for asymptotic stability is es-
tablished. Certain implications of the commonly used modal analysis are also investi-
gated, and necessary and sufficient conditions for stability are formulated.

To avoid unnecessary complications, body forces are neglected, and it is assumed
that on part of the boundary of the solid the displacements are prescribed so as to pre-
clude a rigid-body motion. Moreover, although dissipation of energy is by necessity
included in the analysis (by postulating the existence of a “damping stress”), no en-
croachment is made upon the territory of the thermodynamics of deformations. The

*Received March 22, 1967. The results presented in this paper were obtained in the course of
research sponsored under Contract No. N00014-67-A-0109-0003, Task NR 064-496 by the Office of
Naval Research, Washington, D. C.

In addition to dead loading, Pearson [1] considered pressure loading which, however, constitutes a
conservative force field in most practical cases (see Sec. 3 of this paper).

*Numbers in brackets refer to references listed at end of the paper.
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investigation of thermoelastic stability and other related thermal phenomena would
require an extensive study [12], [13] and is avoided here. It may, therefore, be assumed
that the considered deformations take place under isothermal conditions.

2. Statement of problem and basic equations. Let a body B with material volume
Vo and material surface S, be deformed from its unstrained configuration C,
to a strained configuration C by the application of surface tractions T on part of its
boundary 8% . On the remaining part of the boundary (S, — S7) of the body, the dis-
placements are prescribed so as to preclude all possible rigid-body motions. Let V
denote the volume and S the surface of the body B in configuration C which is assumed
to constitute an equilibrium state. Using a fixed Cartesian coordinate system, the
Lagrangian strain tensor 7,; is

_1 (% du; | du .6_%)
i = 2 \9a; + da; + da; da; 1)

where u; denotes the displacement of a material point which is carried from position
a; in configuration C, into position z; = a; + u; in configuration C. The mapping a;
into z; must of course be one-to-one so that the Jacobian J = det |dx;/da;| exists and
is finite.

In the absence of body forces, the equations of equilibrium are

60’;,—/63:; = 0; in V (2.23)
or
OS“/aa; = 0; in Vo (2.2b)

where ¢,; is the Eulerian and S;; the Lagrangian stress tensor, respectively [14]. Referred
to configuration C, the boundary conditions are

O;Vs = ti on ST,
u; =0 on S—8"

where »; is the exterior unit normal to S” and #; the components of surface tractions T.
If E defines the strain-energy function, then o;; and S;; are given as, [14],

(2.3)

- Py _ p O dr; OF
74 T Ty das S = Po 9ay 8a; I @4
where p is the mass-density in C and p, that in C, .

To assure the stability of the configuration C, it is customary to consider an arbitrary
virtual® displacement »* from configuration C to a virtual configuration C* and then
require that the work of the surface tractions on these displacements does not exceed
the corresponding increase in the total internal energy of the body [1]-[4]. Such a stability
criterion, though not limited to small deformations from C, places restrictions on the
type of loading. Since it considers a virtual rather than the actual motion of the body
from C to C* the work of the applied surface tractions cannot, in general, be uniquely
defined unless these tractions are derivable from a potential (for example, when they
constitute a system of dead loads). In this regard, the assertion made by Beatty [4]

3Such a virtual displacement must of course be compatible with the prescribed displacement bound-
ary conditions.
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that such a criterion is not restricted by the type of loading does not appear convincing.
Indeed, if the surface tractions are of “follower” type, that is if they follow the deforma-
tions of the surface elements upon which they are acting (see Sec. 3), then Beatty’s
general criterion (his Iq. (1.2.2)), in general, yields no information as to the stability
of the configuration C. To study the stability of the configuration C' when surface trac-
tions are of follower type, the actual motions of the body in the vicinity of C' must
be considered [8]-[11], [15]. This immediately raises the question of energy dissipation
which is an inseparable companion to any actual motion and which can be avoided,
when the body is subjected to a system of dead loads, by considering quasi-static devia-
tions of B from C. Lacking a universally accepted method for the description of energy
dissipation, it appears desirable to sacrifice generality for the sake of simplicity and
postulate the existence of ‘“‘damping stresses’”’, which develop within the body as it
deforms from the equilibrium configuration C to a nonequilibrium configuration C*, ,
and which are responsible for energy dissipation within the body. Here, the subseript ¢
emphasizes that configuration C* is changing with time, since the actual motions are
being considered.

Let v; define the displacement of a material point of B from C to C* . To the first
order of accuracy in the derivatives of v; with respect to z; , the following equations
are obtained :*

_1 (60,- 61),~>
i =g dx; + dx;/’ 2.52)
9;
Tii = Oi aik + Vi + 75, (2.5b)

Yiikt = £ Lo IE O O P (2.50)

where e;; is the additional strain and 7,; the Lagrangian stress tensor referred to the
stressed configuration C. The tensor «¥,;: is symmetric with respect to exchange of 7
and j, k and [, and 77 and k! [2]. In Eq. (2.5b), 7Y = 7{? denotes the ‘“damping stress”
which is included to account for energy dissipation within the body. The basic assumption
here is that the stress tensor can be written as the sum of two terms, (1) the elastic
term which, to the first order of accuracy in dv;/dz; , is given by the first two terms in
the right side of (2.5b), and (2) the “damping” (or viscous) term denoted by 7{’
Coleman and Noll [16] have assumed that the damping (or viscous) stresses depend
linearly on the velocity gradient.® This assumption will be employed in Sec. 5 where,
for the analysis, 7{? needs to be defined explicitly. In the remaining part of this paper
it will be assumed that the stress tensor can be written as the sum of the elastic and
the damping parts, and that the rate of the energy dissipation 7{?’v; ; per unit of volume
in configuration C is a positive-definite quantity. (The superposed dot denotes partial
differentiation with respect to time ¢, and a comma followed by the index j indicates
partial differentiation with respect to z; , ¢ and z; being the independent variables.)
Moreover, 72 = 0if v; ; = 0, that is if quasi-static deformations from C are considered.
Since 7;; in Eq. (2.5b) denotes the Lagrangian stress tensor referred to the stressed

configuration C, the conservation of linear momentum can be stated as

4Sce Appendix A for the derivation of Eqs. (2.5b, ¢).
8Note that {2, in general, depends also on the strain and the specific entropy [16].

LE A
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Tij = PV, in V (2.62)
which must now be coupled with the following boundary conditions:
T =1t; on ST
v; = 0; on §— 8"

where ¢/ denotes the change in the surface tractions per unit area in C due to deformation
from configuration C to C*% . ¢/ is identically zero only if the surface tractions constitute
a system of dead loads [4], but in general it is nonzero. Its explicit form depends on
the manner in which the surface tractions change because of the deformations of the
element upon which they are acting. In the following section, ¢/ will be defined for various
follower type surface loadings.

3. Description of follower type loads. In the equilibrium configuration C, a surface
element dS with the exterior unit normal v; is subjected to a surface load dP; =t,dS
which may be expressed as

(2.6b)

dl)" = t,’ dS = (T dS)ﬂ',' (3.1)

where 7; denotes a unit vector along ¢; chosen in such a manner that =,»; > 0, and 7 is the
load-intensity which is to be taken negative if ¢;»; < 0 and positive otherwise. Let
u; define a unit vector tangent to a line element dL; in dS and in the plane which con-
tains »; and ;. The surface load dP; on dS may then be expressed as

dAP; = (v dS)[(w s + (i )ud. 32)

The deformation which carries the body B from configuration C into configuration
C* , maps dS into dS* with an exterior unit normal »* , and dL; into dL* with a unit
tangent vector u* such that

dS* = dS + ds’, (3.3a)
vE =v; + v}, (3.3b)
dL¥ = dL; + dL}, (3.3¢)
p¥ = u; + pl (3.3d)

where the primed quantities denote the changes due to the deformation. To the first
order of accuracy in the derivatives of »; with respect to z; , these changes are given by
the following equations:

dS’ = dS(e;; — ), (3.4a)
V=g — o, (3.4b)
L} = v, ; dL, , (3.40)
pi= pi; — p;e("), (3.4d)

where ¢ = v,0; ., and ¢* = p; i in accord with equation (2.5a).

Let dP* define the surface force which is acting on dS* in configuration C* . When
dP* = dP; everywhere on S”, the surface loads are said to constitute a system of dead
loads [4]. If, on the other hand, dP* remains in the plane which contains »* and p*%
such that
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wary = pimk (3.5)

everywhere on S”, then the surface loads are said to constitute a follower type system
of forces. Here 7% denotes a unit vector directed along dP*% = (7*dS*)n* such that
m*v% > 0, where 7* designates the load-intensity in configuration C% . The surface
loads are said to constitute a system of ‘“follower tractions’” if ¥ = 7, and a system
of “follower loads” if (r*dS*) = (7dS). After equations (3.3), dP* may be written as

dP¥ = dP; 4 dP} (3.3¢)
where dP’, is given by
dP} = dP(e;; — €”) + dP,vwe” — wue” — vop; i + wnp;: ;] (3.6a)
for follower tractions, and by
dP} = dP\rwe” — pmune®” — vy + s ;] (3.6b)

for follower loads. Note that in either case, dP’ is a linear and homogeneous function
of both the surface tractions ¢; and the displacement gradient v, ; . Several special cases
follow from Eqgs. (3.6), namely:

(a) normal traction of constant intensity —p:

dP} = (p dS)v;,: — v.e;;) (3.6¢0)

which, if extended over the entire S”, constitutes a conservative force field. This may
be seen by considering the rate of the work W" done by such a load on the body as it
deforms from configuration C;

W= P[ ;i — viesvi dS = %Pif Wi, iv5.¢ — eiie;;) dv.
ST dt Jy
(b) normal load (pdS = constant):
dP: = (p dS)(V;e(') - V,'v,'.,') (3.6d)

which does not constitute a conservative force field even if it is extended over the entire
S”. It, however, contains a conservative component which is identified by considering ",

W.

pf e — v, ;i dS
ST

—%pif ;. 0;.5) dv — pf ;i i dv+pf evp; dS,
dt v 14 S

(¢) tangential traction of constant intensity 7:

dP} = (7 dS)[ui(e;; — e” — 6(")) + pi.] (3.6e)
which also contains a conservative part, since W' can be written as
W' = 1 i (O'kiv,',kv,',,') dl) + / cr,,,-[v;,,-kv} + (e“v;-).k] dU _ f t;(e(") + e("))v; dS
2dt v 14 S

Where T = ti = O;Vi Ol ST.
(d) tangential load (r dS = constant):

dP! = (T dS)(p'ivi.i - I-h'e(”)) (36f)
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the conservative part of which can be identified by considering 17",

W = §dtf (or05,05.;) dv + f v Vi Vi dv — f te™v; dS

From Eqgs. (3.6a, b), the change in surface tractions due to deformations from con-
figuration C is given by

t: = {t.(e,-,- -_ e(”) -_ e(")) + t,v,[u‘(e(') + e(")) - 21/,'6,',']} + t,-v,'.,' (3.73)
for follower tractions, and by
= (tolnle® + e®) — el — Le®) + Lo (3.7b)

for follower loads. In either case, these surface tractions do not constitute a conservative
force field. For instance, the rate at which the additional tractions ¢} defined by Eq.
(3.7b) do work is given by

1d

W = 5&2 o'k,‘v,',kv,'." dv + L 0']“‘1),"1,;1};' dv + L w’ dS

where
w = {eVE” + &) — 2e;] — te™ Jo;

and " = V0V .

For small deformations of the body from configuration C, Eqs. (3.7) precisely define
the changes of surface tractions for follower type loadings. These equations are not re-
ported in Bolotin’s book [10]. Bolotin uses an approximate procedure to develop ¢
in terms of ¢; and the displacement gradient. His expression does not contain the quantity
in the braces in igs. (3.7) and, therefore, appears questionable. ‘

4, Stability criterion, follower type loads. Substitution from Eq. (2.5b) into Egs.
(2.6) yields

(d)

(YiinVe,1) s + o + 750 = pvi’; in V, (4.1a)
(’Ys‘ikzvk,z + g + 1‘5?))1’; = t,'~ ; on ST (4.lb)

where ¢ is defined by equation (3.6¢—f) or (3.7), depending on the nature of loading.
Multiplying both sides of equation (4.1a) by »; and integrating over V results in

2mfhmmm.+mm@k+wmmw+fﬁ%.@—fawm=0. 4.2)
S

The surface integral in this equation can readily be identified with W which was cal-
culated in the preceding section for several cases of surface loadings. For the sake of
explicitness, the tangential loads will be considered first. This way, not only will all
the relevant features of these types of problems be vividly demonstrated, but also
lengthy equations will be avoided. The results will then be extended to include more
general types of surface loadings.

Substitution from Eq. (3.6f) into (4.2) now yields

{2 dtf [’Yllklvk Wi, + pU; 1),] dv}
U“mw"%@wmw+fw%J§ 0. (43)
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In Eq. (4.3), the expression in the first set of braces represents the rate of change of
the internal and the kinetic energies of the body, and the expression in the second
set denotes the rate of energy dissipation plus the rate at which work is done by the
nonconservative part of the surface loads. The potential and the kinetic energies H,
of the body in configuration C* relative to that in C may be written as

1
H, = ) fv [Yiin®i, Ve + poiv;] do. 44

If the configuration C is to be locally stable, H, must stay arbitrarily small for all
t > 0 when it is sufficiently small at ¢ = 0. For asymptotic stability, moreover, H,
must also approach zero for t — «. This definition of stability, although in accord with
the usual energy requirements, does not account for concentration of energy and other
related focusing phenomena [5]-[7], [17]. Such problems are not considered here and
the reader is referred to a paper by Shield [7] for an interesting discussion of the subject.

Since H, is a positive-definite functional, vanishing identically only at the equilibrium
state, a necessary condition for asymptotic stability is

tot+t
f { f [riv;.: — oww; 0] do + f te™v; ds} dt>0 (4.5a)
to v 8

for all finite and positive ¢, , and all sufficiently large ¢. Condition (4.5a) is obviously
assured if the following inequality holds:

f [TE?)U;,; - O'kgv,'_.'kv;'] dv + f t,'e(“)v;' dsS >0 (4.5b)
v 8

which constitutes a sufficient condition for asymptotic stability.®

It is worth noting that requirements (4.5) do not contain elastic properties of the
body directly. They do, however, include the damping stresses which are responsible
for energy dissipation within the body. Since it is the difference between the energy
dissipation and the work done on the body by the nonconservative part of surface
loads that may render the equilibrium configuration C unstable, a stability criterion
which is to account for a general loading but does not involve the energy dissipation
must be viewed with skepticism [4], [15]. When, in contrast to the case of nonconservative
loading the applied tractions are conservative, the energy dissipation does not enter
directly into the analysis, a fact which partly accounts for the great success that the
usual energy method has enjoyed in the past.

Requirements similar to (4.5) are not, however, sufficient for stability when other
loading conditions are considered, since the loss of stability may occur statically. In
the present case, such a possibility is a prior: ruled out due to the fact that H, in Eq. (4.4)
is a positive-definite functional. Had there been a contribution from the work of surface
loads to this quantity, it would have been also necessary to require that H, be positively
definite for all sufficiently small compatible deformations of the body from configuration
C. As an example, consider a body that is subjected to follower loads defined by Eq.
(8.6d). Equation (4.3) must then be replaced by

SNote that if (4.5b) holds, then H, is a monotonically decreasing function of time and, since it is
positive-definite and vanishes only at the equilibrium state, it must approach zero ag t — « (see Secs. 3
and 4 of [5]). This latter assertion follows from the fact that, infinitely adjacent to configuration C, no
equilibrium state with positive H; can exist.
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Hl = {2 dtf [‘Yuklvj lvk l + O'.kv, tv1 k + pvt 1v1 1 + Pv v:] dv}

—{f [r;. + pe;;.wildv — p f e ,; ds}.
1 4 S

For asymptotic stability, it is now sufficient that

(4.6)

li

f [Yiinati e F+ cuv; ;0 + pi,v;.0 + poiv;]l dv > 0
v

and
{f [riP0;.¢ + pess, ‘v]dv-—pfe vv,dS}>0

It should be noted that for surface loads, which constitute a conservative force
field, conditions similar to (4.5) are trivially satisfied and the requirement of H, being
positive-definite (with contributions from the work of surface loads included) suffices
to assure stability. To illustrate this, consider the case of normal tractions (Eq. (3.6¢)).
Equation (4.2) now becomes

Ht = 5&[ ['Ynklv: Vk,1 + 0ili,V; .k P(v- Vi é eiieii) + pv;»l)}] dv

(@
= —f Tii Vi dv.
v

Since the right side of Eq. (4.7) is a negative-definite functional, vanishing only when
v;.; = 0 everywhere in V, the left side of this equation is at least a nonincreasing func-
tional. It therefore follows [5], [15] that, in this case of conservative loading, the con-
figuration C is stable if

“.7)

f [(Viie ;o + ouvi 050 — pO: 05 — esie;;) + prvi] dv > 0 (4.8a)
v

for all compatible deformations of B from C. Now, since the last term in the brackets
in (4.8a) by its very nature is always a positive-definite quantity, a sufficient condition
for the local stability is

f (yiimwe vi,s + cuv;, 00 — PO 05,0 — €iie;)] dv > 0 (4.8b)

for all sufficiently small compatible quasi-static deformations of the body from con-
figuration C. Here v; may be viewed as a virtual displacement, since condition (4.8b)
is static in character. Similar results can be obtained for dead loading and other con-
servative cases. For further discussion regarding stability under dead loads, the reader
is referred to excellent articles by Pearson [1], Hill [2], Beatty [4], and Koiter [5].

The following section will be devoted to the investigation of stability by modal
analysis which is commonly used in aeroelasticity where follower type forces occur
frequently. This kind of analysis, however, requires that the damping stresses 7(
be defined explicitly. Following Coleman and Noll [16], it will be assumed that 1(‘”
depends linearly on the velocity gradient. In addition, it will be assumed that the~
damping stresses are very small and are defined by
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) .
Tii = €Yibi (4.9)

where the tensor v/;,; is symmetric with respect to exchange of 7 and j, k and I, and
7j and kl in analogy with v.;.: (Eq. (2.5¢)), and € is a magnitude parameter which is
assumed to be very small; e < 1. Moreover, to avoid lengthy equations, the examples
of the tangential loads, normal tractions, and dead loads will be used for the detailed
analysis. The extension of the results to other cases of loadings should of course entail
no difficulties.

5. Modal analysis. Substitution of relation (4.9) into Egs. (4.1) results in a system
of linear, autonomous partial differential equations which admits a solution of the form

v, = xe™, i=(=D", r=123. (5.1)

Such a solution is bounded if the eigenvalue N possesses a nonzero real part and a non-
negative imaginary part. In this section the implications of such requirements will
be investigated for sufficiently small damping stresses (¢ << 1). In this case, A and x,
may be written as

A =w+ ie8 + 0(), 52)
X- = ¢, + ey, + 0(€), r=1,23.
Substitution of equations (5.2) and (3.6f) into equations (4.1) now yields
Vrin@rt).r + O@ine + po’0; = 0;  in V  (5.3a)
Oeim¥en)r + ot + 00’ ¥ + 20080; + 0(¥limenn)., =0;  in ¥V (5.3b)
(rinees + 0.4, =0; on S”  (5.3c)
Orivt¥e + 0,.*Y + ovliuee ), = 0; on 8" (5.3d)

where terms of O(¢’) and higher are neglected, e**’ = u;0; ;u; , and e*? = uib; u; .

An explicit expression for 8 can be obtained by multiplying both sides of (5.3a)
by ¢¥; and (5.3b) by ¢; , integrating over V, and then subtracting one of the resulting
equations from the other to arrive at

1
B = 2 {.[ [w¥iinei o — oul¥ine; — 0iu¥)] dv
v

+ fs o€V, — 47 Yy, dS} / {w fv P dv} (5.4)

where in addition to the Gauss theorem, the boundary conditions (5.3¢, d) have been
used. Similarly, multiplying both sides of equations (5.3a, ¢) by ¢; , integrating over
V and S respectively, and then subtracting one of the resulting equations from the
other yields

{f [’Yr,'kt‘Pi.r(Pk.t — Tainpi] AV + L O'rke(w)%l’k dS}
v

=

For stability, both 8 and w® must be real and positive. Since the volume integral
in the denominator of Egs. (5.4) and (5.5) is positive-definite, for stability the following

(5.5)

z—-
w =
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inequalities must hold:

L[Vrikl¢i.r¢k.l — 0@i.k0;) dv + /‘; ce* o, dS > 0, (5.6

_/;[W:iklﬁoi.r‘!’k.l — on(¥i i — @iV dv + _/:g “rk(e(w)‘Pr - e(w)‘//r)"k as >0 (5.7)

which constitute necessary and sufficient conditions for asymptotic stability of con-
figuration C for the considered loading condition. Similar results can readily be obtained
for other loading conditions that were discussed in Sec. 3. Note that, in inequality
(5.6), ¢; cannot be considered as an arbitrary but compatible, virtual displacement
field, since it must satisfy the boundary value problem defined by Egs. (5.3a, ¢). This
is in contrast to the case of dead loading where a condition similar to (5.7) is trivially
satisfied and (5.6) is replaced by

];[Vrikz¢i,r¢k.z + cuei0ix] dv > 0 (5.8)

in which ¢; may be viewed as a virtual displacement field. Similarly, for pressure loading
(normal tractions) the stability criterion becomes

j; Wrini@i e + oupi i — Peiivie — @i0i.)] dv > 0 (5.9)

which was also considered by Pearson [1] and Masur [18], but in somewhat different forms.
Acknowledgement. The author is indebted to Professors W. Prager and N. C.
Huang for valuable suggestions.
Appendix. When the body B is in the stressed configuration C, the Lagrangian
stress tensor S;; (referred to C,) is, Eq. (2.4),

_ 9z, OF

T day Iy A.D

Sz,‘

Denoting the small change in S;; , due to deformation of the body from configuration
C to C*% , by 8}, , to the first order of accuracy in dv;/da; and dv;/dz: , Eq. (A.1) yields

= a_& _f,_E_ 9; ————62E
ti aak anlk aaa a"?z. a”pa

Ma (A~2)

where 7., = 3[dz./0a, dv,/da, + 9z./da, dv,/da,]. Multiplying both sides of Eq. (A.2)
by (p/po)(8x:/da,) now results in the following equation:

P 9T

d;
00 00, S{i = O 'a—x'k + Yiinen (A‘3)

where

a; _ (g z; oz, _afi> av;
i B po 0G; 0Q, N1/ 0Ty by Eq. @24),

p T dx; OE , _ pdri 0 a"’E_%a_x_,e 3
o 00, 90y Oye Ora T*  po 00, g Onpg ON,, Oa, da, KL T ViR
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and e,; is defined by Eq. (2.52). Now, noting that the left side of Eq. (A.3) defines
the Lagrangian stress tensor referred to the stressed configuration C, (A.3) may be

(d)

written as (2.5b) by adding the “damping stress” 7;; to its right side.
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