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A SINGULAR PERTURBATION METHOD. PART I*

BY
N. D. FOWKES

Harvard Unaversity

Abstract. An approach to singular perturbation problems, introduced by Mahony
[1] which arose out of the consideration of a problem involving a boundary layer is
applicable to other singular perturbation problems. It lends itself particularly well to
problems involving wave propagation, where ‘“‘multiple scales” are involved. In this
paper and the paper to follow, interest is centered around the equation

e3v2¢ - g(X)\b = Os
where ¢ is a small positive parameter and ¢g(x) is a bounded function of x which vanishes
along simple closed curves in the solution domain. The one-dimensional case (the Langer
turning point problem) is considered in this paper and it will be shown that the approach
leads to exactly the same results as obtained by Langer and his associates using a “‘related
equation” method.

As far as the author is aware, this is the only nontrivial case in which it can be dis-
played rigorously (a la Langer and others) that a multiple scaling approach leads to
the correct result. The approach employed here, unlike the ‘“‘related equation’ technique,
is available in nonlinear and partial differential equation applications, and with this
work as background one may be confidently hopeful that the approach will also lead to
the correct results in these more complicated problems, and in particular in the partial
differential equation application of Part II. In the remaining section of this paper tech-
niques which will be used in Part II are developed in the simpler context, again in the
hope that confidence will be gained in the validity of the results obtained using these
techniques.

1. Introduction. If the solution of a differential equation with parametric dependence
on a small number differs significantly from the unperturbed solution (i.e., the solution
obtained by equating the parameter to zero), then the problem is referred to as a singular
perturbation problem. In the particular case in which the small parameter appears as
a coefficient of one of the highly differentiated terms of the equation, the solution may
exhibit oscillatory (eg. sin z/¢) or exponential (boundary layer) type dependence
(eg. exp — |z| /¢) on the small parameter, and entirely different solution procedures
have been developed to cope with these two cases. In both these cases a straightforward
perturbation approach’ fails to yield an interpretable result because the small parameter
plays the role of a second solution scale in the problem—not just a solution perturbation
parameter. The boundary layer case is essentially the degenerate case in which the second
scale is felt only near the boundaries. It will be seen that one approach recently developed
by Mahony enables one to deal with both these cases.
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Yy(z, €) = yo(z) + epr(x) + -+
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The one-dimensional wave propagation problems represented by the equation

€y’ — g, ey = 0, 1.1

where e is a small positive parameter, form a class of oscillatory type problems for which
suitable techniques have been developed. The methods employed, however, have leant
strongly on the linearity and one-dimensionality of this equation—requirements which
are not necessary for the application of the method to be employed here. Sturm-Liouville
theory indicates that the solutions are highly oscillatory in a domain in which g(z, €)
is negative, and exponential in a domain in which g(z, €) is positive. In the W.K.B.J.
approach solutions of the form exp (f(z, ¢)/€*) are sought, and a direct substitution
of this expression into equation (1.1) leads to the W.K.B.J. approximations

Yy~ g_lM exp 6_3/2<:!:f gm dx) (1.2)

Solution difficulties might be expected in the neighborhood of a zero of g(z, €), which
has been referred to as a turning point, because of the radical change in the solution form
across this point. Evidently the solution approximations (1.2) cease to be valid in the
neighborhood of such a point, because of the singularity caused by the g~'/* factor—
Eq. (1.1) is regular at a zero of g(z, €), so the exact solution must be finite there. More
generally, any point at which the W.K.B.J. approximations cease to be valid solution
representations has been referred to as a transition point. Methods have been devised
for obtaining connecting relations between the W.K.B.J. approximations valid on either
side of a transition point. Modern work on Eq. (1.1), however, has been based on a series
of papers by Langer [2], in which he expounded his ‘‘comparison’ or ‘‘related”’ equation
technique. Langer’s approach is rather different from that of earlier authors. Instead
of trying to connect together the W.K.B.J. approximations across transition points, he
sought a single asymptotic expansion valid throughout the solution domain. Transforma-
tions of both dependent and independent variables are sought to convert the given
equation into one differing only a little from a convenient ‘‘comparison” equation whose
solutions are known. If the ‘“‘difference” between these two equations is sufficiently small,
a solution of this transformed equation can be shown to be asymptotically approximated
by a solution of the comparison equation.

In the field of hydrodynamics, nonlinear partial differential equations are encountered,
and the solutions exhibit boundary layer dependence on the small parameter. Prandtl
recognized the need for a stretched co-ordinate solution description in the boundary
layer. Kaplun and Lagerstrom [3], Proudman and Pearson [4], first devised a suitable
systematic method for connecting the boundary layer (or inner) expansion to the ex-
pansion valid throughout the remainder of the field (the outer expansion). This they did
by rearranging and comparing the terms of the boundary layer and outer expansions—
a limiting procedure being employed to determine the relative orders of magnitude of
these terms. By removing from the boundary layer expansion the terms in common
with the outer expansion, and adding the resulting expression to this outer expansion,
a ‘‘composite’”’ expansion describing the solution behaviour throughout the solution
domain may be obtained. The fact that the matching technique employs a limiting process
to compare the relative magnitudes of terms, restricts the parameter range for which the
approximations obtained are useful. For example, a term of order exp (—h/e) is judged
small in comparison with a term of order ¢, when the limit as ¢ — 0 is used as a basis



1968] A SINGULAR PERTURBATION METHOD-PART I 59

for comparison. Numerically, this may not be so for values of e for which it is desired
to apply the solution expansion—especially if A is rather small. Since the limiting pro-
cedure must be discarded to overcome this difficulty, the concept of the two expansion
regions must also be discarded, and a single expansion valid throughout the complete
solution domain must be sought. The terms of this expansion will also be required to
decrease for small e—not only decrease in the limit as ¢ — 0 as before. With this in mind
Mahony [1] introduced a general singular perturbation approach which enables one to
obtain an apparently uniformly valid expansion and applied this approach to a problem
arising from the theory of large deflections of an elastic plate. Firstly, the composite
expansion is obtained. An attempt is then made to extend the domain of validity of
this local expansion. This is done by heuristically *‘summing”’ terms of the expansion which
would otherwise grow and thus give rise to trouble if the range of interest were extended.
Considerations of this kind suggest a suitable expansion modification. The expansion
form thus suggested is formally substituted into the equations and, if necessary, the
“summation’ process is repeated and further modifications made in this way until
the complete solution domain is covered. In appropriate cases the summation process
indicates the necessity for the inclusion of further scales in the solution description; in
other cases more subtle changes are indicated. Cochran [13], and Cole and Kevorkian
[14] independently (in a different context) advanced the ‘“‘multiple scale’’ idea and arrived
at essentially the same ‘‘multiple scale””” method as that thrown up by Mahony as a
biproduct of this approach. It will be shown here that this approach leads to useful
solution expansions in oscillatory type problems.

Both the Langer and the Mahony approaches lead to uniformly valid asymptotic
expansions and therefore depend either directly or indirectly on the finding of a suitable
dominating differential equation. In the Langer approach, the dominating equation is
guessed—a sometimes difficult task even in ordinary differential equations, a virtually
impossible task in other cases. In Langer’s works [15] “The formalism must be pursued
inventively, whereas the lines of the concluding rigorous analysis have been pretty well
laid down.” The approach used in this paper enables one to deduce the dominating equa-
tion. Furthermore, this approach is available in nonlinear and partial differential equation
applications. In the simple turning point problem it will be shown, in Sec. 2 of this paper,
that this approach leads to the same dominating equation and subsequently to the
same result, as obtained by Langer’s method. In the remaining section (Sec. 3) the
multiple transition point problem is considered briefly and an approach which is needed
in the extension work of Part II is discussed. Also included in this final section is a brief
discussion of a problem which arose out of a stability question, and which is also in-
teresting here because it is related to the ‘‘helium molecule ion problem”. The main
reason for including a brief discussion of this problem here is to indicate the ease and
quickness with which one can determine the dominating equation using the above ap-
proach.

2. The single, first order turning point problem. Suppose g(z) vanishes at one point,
a, a simple zero, in the solution domain. Also for the present g(x) will be assumed analytic
in the solution domain which will be assumed finite. Both these conditions may be
relaxed considerably in the final result.

The preliminary discussion of the introduction indicated that the transition point

*Often referred to as the “multiple timing” method.
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is a special point in the solution domain. It seems natural, therefore, to commence by
looking for solutions in the neighborhood of the transition point . Now g(z) is analytic
and vanishes at «, and therefore can be expanded in the form

g(x) = i gilz — )", (2.1

about z = «. For convenience it is assumed here that g, = 1, a condition which can
be arranged by a suitable choice of scales.

A balance is achieved between the two terms of Eq. (1.1) in the neighborhood of
z = a if significant variations of y occur in a range of x of order e. This suggests the
introduction of the stretched co-ordinate n = (x — @)/e, in terms of which the expansion
(2.1) becomes

g(x) = Z €n'g .
Equation (1.1), when expressed in terms of 4 becomes
Yoo = Y =Y i C 2.2)
The expansion form,
Y = Yo(n) + e(m) + -+ -, 2.3

suggested by Eq. (2.2) certainly cannot be expected to be useful for nonsmall values
of (zx — «) because the expansion (2.1) for g(x) is useless for such values, however, such
a solution expansion will have a small range of validity and, therefore, will be an ap-
propriate one to commence an investigation. An examination of this expansion will sug-
gest a modification which will enable an extended domain to be covered.

The first few expansion terms of the ‘“‘exponentially small” solution are given by,

y = [Aodi(n)] + el(g240/5) (" A7’ (n) — 74i(m)) + A1 Ai()] + €[]+ ---  (2.4)

where Ai(n) is the Airy Bessel function which is exponentially small for large positive
n. Higher order terms in the expansion contain still higher powers of 5.% It is clear from
(2.4) that the expansion (2.3) ceases to be useful for values of 5 greater in order than
(1/€*) (corresponding to a range of (x — a) of order ¢'/*). In order to obtain a first term
9o* which would dominate the solution behaviour for values of (x — «) of unit order it
would be necessary to add to the y, above, terms occurring later in the present expansion
for y which, although unimportant for small values of (x — «), assume importance for
values of (x — @) of unit order. To obtain some idea of the type of adjustment required
the sum of the first two terms of the present expansion (2.4) is considered.

Now, because overestimation of the order of a term is not serious whereas under-
estimation is, ”A17'(5) is better represented in the form ¢ *(x — «)®44’(n) over a range
of (x — a) of unit order. Thus for values of (x — «) of unit order, the sum (2.4) is better
represented in the rearranged form

vo + e = Apdi() + T e gy oy 4i) 4 et ain). @)

3y, contains terms like 527 (A7'(5)) + -+« ™71 ( --- ) ete.
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This expression can be written in the ‘‘summed’” form

yo+6y1 ={A0—92—A°(1}—a)+0(x—a)2}

5
{Az[u +aEsd yols "‘)3]} +0©, @6

Yo + ey = A(@)Aiu(z)/e) + 0(9),
where
u@ = @ —a) + gl —a)°/5] + ---
and
A@ = Ao — (9240/5)(x —a) + -+,

as can be seen by expanding the right hand side of the above expression. This suggests
that an extension of the solution domain so far covered by the expansion form (2.3)
may be achieved if a solution of the form y = y(¢, «, €), where { = u(z)/¢, (u(z) being
suitable chosen) is sought. It should be noted that close to a, { ~ (z — «)/¢, and therefore
¢ is expected to differ inessentially from the stretched co-ordinate, 5 there.

Nore. The above argument is purely heuristic but its great advantage lies in the
fact that it offers a method for seeking out solution forms which may lead to more useful
perturbation expansions. The “sum” (2.6) is not the only one suggested by (2.5); how-
ever, since many equivalent useful descriptions of the solution behaviour (corresponding
to different ‘“‘sums’’) are available, and we only seek one of these here, this need not be
of concern.

2.1. The Formal Solution. In the hope that the above argument has suggested a
useful solution modification, solutions of the form,

y =y, ¢, e, .7
where
§ = u(@)/e, (2.8)

a function to be determined in the solution process, are sought. The function u(z) will
be referred to in the work to follow as the ‘‘boundary layer’”’ function, to correspond with
the terminology used by Mahony.

Now, in terms of the assumed form

y'(x, ) = € 'y (=, §, Qu. + yalx, &€
and
Y, & = ¢y, &, ous + € 'Quale, & Ou. + v, &) Oter) + voalz, £, (2.9)

where / denotes total differentiation with respect to z, and the derivatives on the right
hand side are partial derivatives. On substituting (2.9) in Eq. (1.1) the following equation
for y(z, ¢, €) is obtained;

Yer — le <g§)y = —{eYur/U + Ysthea/us) + €Yo/l (2.10)

Uz
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The “boundary layer” function was introduced to account for the solution behavior in
e neighborhood of 2 = «. In this neighborhood g(x) is of order ¢, and therefore (¢ 'g(z) /u2)
is of unit order. An equivalent (see (2.8)) though better representation (in terms of
magnitude) of this term is therefore given by ((¢/u)g(z)/uZ). Equation (2.10) now be-
comes

Yer — kx(x) fy = - {6(21/3;/“: + y{uzz/ui) + €2Z/zz/ui} ’ (2'1 1)
where
) = g/uul). (2.12)

An asymptotic expansion for y(z, {, € of the form

y = ; Yz, 0, (2.13)

suggests itself. On substituting this expression for y in Eq. (2.11), and equating to zero
the coefficients of the various powers of ¢, the following equations are obtained;

Yorr — k'¢yo = 0 (2.14a)
Yust — E5Yn = —{(Ynoret/Ue + YnorgUea/UZ) + Yuoowo/uz}  (for n>1)  (2.14b)

where y, is interpreted to be zero for negative n.

Equation (2.14a) has as independent solutions, A,(z)A47(k¢) and B,(x)Bi(kt), where
Ao(x) and By(z) are, as yet, undetermined functions of z. Because the equations (2.14b)
are linear in y, , Y»-1 , and ¥, , these independent leading terms in the expansion for
y give rise to independent higher order terms in the expansion for y. The solutions,
exponentially small for large positive {, corresponding to a first expansion term of the form

Yo = Ao(x) A7(ks) (2.15)

will be sought. The other independent solutions based on Bi(k{) can be found in the
same way. On substituting (2.15) into Eq. (2.14b) with » = 1, the equation for y, be-
comes

Yiee — Bty = — {F(Ak) A’ (k) + F(AkY) " Ai(kD)}, (2.16)
where F(y) denotes
2 d £23
v dz () + %:— Y. (2.17)

Equation (2.16) is effectively an ordinary differential equation in ¢, with 2 as an in-
dependent parameter. Its solution is the sum of a complementary function and an
independent particular integral. This particular integral contains terms of the form
A7 (k¢) and Ai(kt), arising out of the {*A7(k¢) portion of this equation, and a term
of the form {Ai(k{) arising out of the As'(k{) portion of this equation. Thus, in the
solution for ¥, , terms in {*A4’(k¢) and fA4(k¢) arise, which correspond to the objection-
able* terms, 1°A'(n) and 44(n), which arose in the heuristic development of Sec. (2.1)
(see Eq. (2.4)). In the present development, a considerable amount of freedom is present

4Objectionable because the expansion, y = yo + € 31 ete., is not asymptotic for nonsmall values of
(z — ) because of the presence of these terms.
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in the solution form, for neither u(z) nor A,(z) are yet determined. This freedom is now
utilized to remove these objectionable terms.

By equating k, to zero, the {*44(k¢) term of Eq. (2.16) is removed and the boundary
layer function u(x) is defined. For if k, = 0 i.e. k = constant, 1 (say);’ then from (2.12),

uul = g. (2.18)

Now, if u is to behave like ¢ close to = «, (and this is suggested by the heuristic develop-
ment of the previous section) then u must be the real solution of this equation. Clearly,
for real solutions of Eq. (2.18), u(z) and g(z) have the same sign throughout the solution
domain, and therefore u(x) vanishes at £ = a, the zero of g(x). This, together with Eq.
(2.18) and the requirement that u(z) have a continuous first derivative’ determines
the boundary layer function u(z), as
2/3
} . (2.19)

Now that the {?A4(k¢) term has been removed from Eq. (2.16) the only objectionable
term remaining is the A7’(k¢) term and this can be removed by simply requiring that
its coefficient F(4,) vanish identically.” Thus,

2 dA,

0 = F(4y) = = +1‘%A0 (from (2.17)).

@) = sign @2 | [ Qo@D ae

This is a first order, linear, differential equation from which A,(z) can be determined as

Ao(a) = K (2.20)
o |

where K, is an arbitrary constant of integration. As far as the particular solution of
Eq. (1.1) is concerned, K, is nothing more than the usual arbitrary multiplicative con-
stant associated with the solution of a linear homogeneous differential equation. The
evaluation of K, is therefore to be achieved when suitable complete boundary conditions
are imposed on the solution, y. Now since g(a) has a simple zero at z = a, u.(a) (from
(2.19)) is bounded from zero. Also, u(x) is strictly monotonic as is seen from its integral
representation (2.19) so that (from Eq. (2.18)) u.(x) is bounded from zero. Thus, 44(x)
and its derivatives are certainly bounded for the analytic functions, g(z), considered in

this development.
Now that A,(z) and u(z) have been determined in the manner described above, all
terms on the right hand side of Eq. (2.16) vanish identically so that this equation now

integrates to give

v = A:(2) A4(5), 2.21)

where A,(z) is, as yet, an arbitrary function of z. This expression for y, fits into the
asymptotic scheme for values of z of unit order and indeed for all values of x in the solution
domain® provided that 4,(z), when determined, is bounded.

#There is no loss in generality in choosing this constant unity.

¢It is convenient, though not necessary, to remain on the one solution branch of (2.18) in this way.
"The reader will recall that 4(z) is as yet undetermined.

8Which may be infinite.
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The equation for y, now reduces to

Yarr — §Y2 = —{AVQF(A) + Ai(9)AY (@) /uz}. (2.22)

The particular integral associated with AZ(¢) is 4¢'(¢). Thus the particular integral
associated with A7(¢) term of Eq. (2.22) fits into the asymptotic scheme. Again the
A7'(¢) term is required to vanish identically which requires F'(4,) = 0. This determines
A,(x) as

4,(@) = Ky/|uw|"?, (2.23)
which is bounded as required. The constant of integration K, , again is determined when

suitable boundary conditions are imposed on the solution, y. With A,(z) determined
by (2.23), the equation for ¥, can be integrated to give

Yo = A:(2)Ai(5) — Av(5) (AY () /). (229
The equation for y; now becomes
Yorr — $Ys = —AT(OF(As) — Ad(D(A1/u2) + A" (OF(AY /). (2.25)

The particular integral associated with A7/ (¢) is (2 — ¢)A7'(¢), which, for values of z
of unit order, is better represented in magnitude in the form (247'(¢) — € 'u(z) A7 (7).
The particular integral arising out of the 47"/(¢) term of Eq. (2.25), therefore, does not
fit into the asymptotic scheme. Thus, both the A¢’(¢) term and the A7/ (¢) term give rise
to unsuitable particular integrals. The particular integral terms corresponding to these
cannot cancel one another in other than a very restricted region because their functional
forms are different. Thus the two terms must be coped with independently. As before
the 47/(¢) term can be removed by requiring that its coefficient vanish identically which
determines A,(x) as

A,) = Ko/ (2.26)

The A7”(¢) term in Eq. (2.25) cannot be dealt with so simply however. The coefficient
of A7'(¢) in this equation is completely determined, and in general does not vanish
identically. Now,

Ai"(Q) = cAi(Q)° = (u(x)/e) Ai(D),

and herein the trouble lies; for it is now clear that the A¢'/(¢) term on the right-hand side
of Eq. (2.25) for ys is of order ¢ ' and, therefore, should have appeared one stage earlier
in the solution proceedings (i.e. in the Eq. (2.22) for y,). It is thus apparent that the
formal solution process, as described by (2.14b), has led to an unsatisfactory arrangement
of terms and that an alternative arrangement must be sought. Now, since the difficult
term (47" ()F(4'/4l)) in Eq. (2.25) for y; can be rewritten in the equivalent form
(e 'u(x)AL(F)F(As /ul)) this suggests the rearrangement based on simply including
this term as an additional term in the Eq. (2.22) for y,—thereby modifying the schematic
solution process as described by Eq. (2.14b). Now the particular integral associated with
Ai(f) is A7'(¢) so that the extra term included in the equation for y, will give rise to
an extra A7'(¢) term ([F(4§/ul)u(x)]A7'(¢)) in the solution for y, . This, in turn, will
give rise to an extra Az"/(¢) term (f,(x)4¢"”(¢) (say)) in the Eq. (2.25) for y; , which, as
before, is rewritten in its equivalent (e 'u(x)f,(x)A%(¢)) form and is included in the

9For this equation defines the Airy function.
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equation for y, to give rise to still another A7'({) term ([f;(z)u(x)]A7'(¢)) in the solution
for y, , and so on. Thus extra A7'(¢) terms in y, are generated successively and an ex-
pression for y,(z, {) of the form, .

(e, §) = Au(x) A1) + AT F(AY fudu@) + fi@u@) + f.(Du@) + ---)  (2.26a)

results. The process of simply transferring large terms (the A7”({) = ¢ 'u(x)4i(t)
terms) in the equation for y; back into the equation for y, as described above, therefore,
does not lead to a useful result (the successive coefficients of A7'(¢) in (2.26a) do not
decrease). The form of this expression (2.26a) for y, , however, suggests that the ap-
propriate ‘“sum’’ is of the form,

Yoz, §) = Ay(@)Ai() + ax(x) A7'(S), 2.27)

where clearly a,(x) must be determined in such a way that the successive generation
of extra terms in the equation for y, is avoided. With y, so defined (where a,(z) as yet
undetermined) the equation for y,; becomes,

Ysro — $Ys = — AU A @) /uz — AT (DF (o), (2.28)

(where F(4,) has been required to vanish as before) and the term now to be transferred
back into the equation for y, is — A7 ({)F(az). When this term is written in the form
e 'u(x)A7(¢)F(az) and is included in the equation for y, this equation becomes,

Yorr — §yo = — AU AY fu — Ai(§) w(@)F ()

— A4() (AL fuz + u(@)F(as)

Now 7. as given by (2.27) satisfies this equation if a,(x) is defined to satisfy,
uF(as) + ar + A Jul = 0 (2.30)

By defining a,(z) in this way the successive generation is automatically avoided. Thus
by simply modifying the schematic process as described by (2.14b) in the way indicated
above the 47" (¢) difficulty is overcome.

Equation (2.30) is a linear first order differential equation in «,(x) whose general
solution

(2.29)

ay(x) = exp (— f p() dx) f q(x) exp ( f p(z) dx) dz,
where p(x) = (u,./ul + 1/w)u./2, and

@) = —w./2) Ay (x)/9(x),

and z, is arbitrary. An examination of this expression shows that a;(z) has bounded
derivatives of all order throughout the solution domain if, and only if, a,(x) vanishes
at r = a. This property is required to ensure the higher terms on the expansion for
y are bounded. Thus a,(z) is uniquely determined as

ax(x) = exp (— f p(x) dx) j; ’ q(x) exp ( f p(z) d:c) dz. (2.31)

The uniqueness of a,(z) is to be expected because only one arbitrary constant can arise
in the expression, (2.27), for ¥, , and this has already arisen in the Az(¢) term.
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With a.(z) determined as above, the equation for y; now becomes

Yser — $UYs = —(A{I(x)/uZ)Ai(f).

which, in essence, is the same as the equation for y, as it appeared in (2.22). The process
as it has been described above can therefore be repeated formally ad infinitum since
no new type of dependence on ¢ will appear on any right hand side. In the application
of this method to less tractable equations new types of { dependence will appear at each
stage of the solution process so that the problem of determining the higher order solution
terms will become successively more complicated, but in the present example since the
particular integrals will involve ¢ only through A#'(¢) it is convenient to take advantage
of this simplicity of form and derive the successive terms by formal substitution of the
expression

y = Q) A + AVW) 3 Cala), 2.32)

in the differential Eq. (2.11) and equating the coefficients of A7(¢) and A+'({) to zero.
This leads to the following ordinary linear differential equations for A4,, and «, which
can be solved successively;

F(A,) + al(x)/u; = 0
and
a,(x) + uF(a,) + AlLy(x)/ui = 0 (2.33)

with a,(a) = 0 forn > 3.
The exponentially large solution is simply obtained by replacing A4(¢{) by Bi(¢) and
A’s and o’s in the above expressions by B’s and 8’s.

This is exactly the same result as that obtained by Olver [5] who used a ‘“‘related
equation” technique. Olver [5], Langer [2], and others have shown that under fairly
general conditions, this is indeed an asymptotic representation of the solution of Eq.
(1.1) which is exponentially small for large positive x. Thus here is a nontrivial case (i.e.
not, constant coefficients) where an answer derived by a multiple scaling method has been
shown (by an independent indirect investigation) to be a genuine asymptotic representation
of the exact solution over a significant range in both scales. As far as the author is aware,
this is the only nontrivial case in which one has been able to illustrate that ‘“‘multiple
scaling”’ does lead to the correct result. Thus, with some justification, one may be confidently
hopeful that the results detained in further ‘‘multiple scale’” applications, and in particular
the partial differential equation application of Part IT will be correct.

The important thing to note about the approach presented here is that it enables
one to deduce the correct “dominating’”’ or ‘‘related”’ equation. In the ‘‘related equation”
approach the “related” equation is guessed. In Langer’s own words [15] “The formalism
must be pursued tnventively whereas the lines of the econcluding rigorous analysis have
been pretty well laid down.” The fact that

Yer — Sy = 0.

with ¢ defined by Eq. (2.19), is the appropriate dominating or ‘‘related equation’ follows
immediately from Eq. (2.11) since none of the ‘leftover’” terms in this equation

Yer — g‘y = 6(2'!/:;/“: + y{urz/ui + f?/n/ui),
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are greater in order than e. If one wished, one could at this stage pursue the problem
using the Langer integral equation approach [2], however, if one wishes to obtain an
asymptotic expansion, then the formal expansion procedure above indicates clearly
the stage in the asymptotic expansion at which care must be taken (e.g. the necessity
of the A7'(¢) term is clearly indicated). The approach indicated in this paper also leads
to the dominating equation and asymptotic solution expansions in partial differential
equations and nonlinear differential equations.

Since the aim here is to illustrate a method rather than establish a result, it suffices
here to state that (although rigorous proofs of this result are not yet available) (2.33)
appears to be correct for physically interesting functions g(z) in the infinite domain
except in very special cases and point out that the Mathieu equation is one such special
case. Mahony [12] in a recent paper discusses this point and in particular he considers
the Mathieu equation.

3. Further problems. Two problems which are primarily of interest in association
with the partial differential equation extension work of Part II are now considered
briefly.

3.1. Multiple Transition Point Problems. Uniformly valid asymptotic expansions
have been obtained by Langer [7] and Kazarinoff 8] using a “related equation” technique
in the two turning points case. Clearly such expansions will be useless if they are not in
terms of functions with known properties and which are also well tabulated. The limit
of usefulness thus defined is reached at the two transition points cases.'” The Airy func-
tion expansions of the previous section are valid representations of the solutions of
Eq. (1.1) in a domain containing a single turning point so that the possibility of describing
the solution behaviour in terms of expansions valid in overlapping domains about each
of the turning points is worth investigating. Olver [9] has considered this possibility
and has derived connecting relations between the two expansions by tracing particular
solutions around in the complex plane. However, this technique is not available in the
partial differential equation application of Part II. An alternative simple minded ap-
proach which leads to the correct results in this case and which is available in the partial
differential equation application will be discussed here. With this work as background,
one may be confidently hopeful that the approach will lead to the correct results in the
later application. Here the question ‘“Under what conditions will patching (matching
the solution and its derivative at a point) lead to a useful result’”’ will be answered. Since
different solutions may have exactly the same asymptotic expansion in certain regions
in the solution domain, it is reasonable to inquire whether there is anything to be gained
by being selective in one’s choice of the point of patching.

If the expansions are to be patched in the oscillatory portion of the solution domain
(which must be accomplished in the case in which ¢ < 0 for @, < z < a,;) where both
Ai(¢) and - Bi(¢) are of unit order, then errors which are algebraically small in e will be
picked up in the coefficients of A7(¢) and Bi(¢) due to patching.’ The Bi({) error thus
introduced will swamp the solution in the exponential solution domain if the solution
itself is exponentially small.’> In all other cases the patching error can be shown to be
relatively unimportant [6]. The potential well problem is a difficult case in point. In this
case, since any portion of a B#({) solution (however small) cannot be allowed, one can

10Weber functions arise in the above treatment of the two turning points case.
10ne can only hope to patch the expansions together up to terms of finite order.
12]n the exponential region Ai(¢) is of order exp —(%¢3/2) while Bi(¢) is of order exp (4 5¢3/2).
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sidestep the above difficulty by ensuring the correct expansion behavior at the two end
points = . The eigencondition requirement,

Ai(fl)Ai,(fz) - Ai(fg)Ail(fl) = O(e)

where {, = {,{, = {, is the patching point, then results from the patching conditions.
The independence of this eigencondition on the actual position of the point of patching
follows directly from the fact that the left-hand side of the above expression is the
Wronskian of a second order ordinary differential equation. Thus, in the potential well
problem the eigenconditions can be established by patching the Ai(¢) expansions at any
convenient point between the two turning points.'®> The most convenient point to patch
the expansions together is the point given by { = {, = {, . The analysis is then simplified
because in this case u,(z) and wu,(z) are continuous across the patching point. If the
expansions are to be patched in the exponential portion of the solution domain (so that
g > Ofor a; < z < a,) then clearly no hope can be held out if the solution is exponentially
large because a very large error will be picked up in the A%#(¢) (exponentially small)
component, and in the oscillatory domain where AZ(¢) is of unit order this error will
swamp the solution itself. If, however, the solution is exponentially smalil then patching
results in a correct answer if and only if the “centre” §, = {, = { (say) is chosen as the
patching point. To see this it is necessary to notice first of all that only an exponentially
small Bi(¢) term is allowed and errors introduced in this term are important nowhere,
and secondly that exponentially large A7(¢) errors will be introduced if patching is
undertaken either to the left or to the right of ‘“‘centre’.'*

3.2. The Dominating Equation. It was pointed out at the end of Sec. 2, that after
one has obtained the appropriate expansion form, by either guessing or using the heuristic
approach suggested in section 1, one can quickly derive the ‘‘related” (or dominating)
equation by simply assessing the various terms of the differential equation. To illustrate
this the equation

€Yer — gz, y = 0, (3.1)

where g(z, ¢) = f(x) — e(h(x)/z), where f(x) and g(x) are analytic and positive in the
domain of interest, is considered. This problem arose out of a stability context but is of
interest here because its two dimensional analogue is closely related to a problem that
arises when one tries to extract the high energy states of the helium molecule ion.'* Now
a heuristic discussion similar to that used in section 1 leads to the suggestion that a
solution representation of the form y = y(¢, z, €) where ¢ = u(x)/¢, an as yet unknown
function of , be sought. In terms of { the equation for y becomes,

u.—v:
S A

where @ = 2f'/*/u, and v = uh/(axu?). Now one has to assess the various terms of this
equation. The terms that are apparently of order ¢ do not, in fact, give rise to large

13Excluding small neighborhoods of both turning points—the Airy function expansion about a
turning point ceases to be valid in the immediate neighborhood of a second turning point.

Yat &1 = {1, Ai(¢1) is of order exp (—2/3 £1%/2) so that an expansion of the form [{A(z, ¢) exp (2/3
£ — 2/3731) Ai (£2)} + B (z, €) exp —(2/3 722 + 2/3 £18/2) Bi (£2)}] is needed to patch on to the
left hand expansion. The result follows from this and patching symmetry.

5If one extracts out the ¢ dependence one has to face up to an equation in which poles and zeros
are closely separated.
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particular integral terms compared with the first order solution if the boundary layer
function is given by
i (

where S is defined by &S = u(w) where w is the zero of g(z, ¢), and although the ¢ term
in fact gives rise to particular integrals of order e such terms are too small to influence
the dominating equation. With S and ¢ defined as above the equation for y becomes,

Yoo — (1 = S/OY = —€[20ur/the + Ystar/the — €Yu/tl] (3.3)

thus y;; — (1 — S/¢)y = 0, with ¢ defined by (3.2) is the required related or dominating
equation'® and one can use any one of a number of techniques to estimate the error term.
One could, of course, proceed as in Sec. 2 and obtain an asymptotic expansion; however,
in this case the process would be extremely laborious.

u — eS
u

1/2 z
) du = f lg(z, '"* dx (3.2)
o
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