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SOLUTION OF THE STRESS-EQUILIBRIUM AND COMPATIBILITY
EQUATIONS IN THE PRESENCE OF BODY FORCES AND ARBITRARY

TEMPERATURE FIELDS*

BY

DONALD R. CHILDS
General Dynamics Corporation, Quincy, Mass.

Abstract. We have solved the stress-equilibrium and compatibility equations in
three dimensions in terms of a scalar stress function which satisfies a fourth order partial
differential equation. The solution also includes operations on two integrals which
exhibit the longitudinal and shear components explicitly. All possible relationships
involving equilibrium and compatibility conditions result in the same fourth order
differential equation involving time and space coordinates. For the static case this
equation reduces to the biharmonic equation V4 x = 0.

1. Introduction. Up to the present time it has been considered difficult, if not
impossible to solve the three dimensional stress equilibrium and compatibility equations
in terms of a scaler stress function which satisfies a biharmonic equation, except under
very special circumstances. Timoshenko1 has given the static stress components of a
circular cylinder in the absence of body forces and temperature field in terms of a scalar
stress function which satisfies a biharmonic equation.

However, if one starts out with Hooke's Law, the equilibrium condition, and the
compatibility conditions, one can derive the dynamic equilibrium and compatibility
equations in the presence of body forces and temperature field and define a displacement
vector for small displacement theory. The displacement vector enables one to derive
Navier's equation.

It is shown in the text that a solution of Navier's equation guarantees a solution to
the equilibrium and compatibility equations since the stresses are derived from the
Duhamel-Neumann relations. Navier's equation is separated into a homogeneous and
an inhomogeneous part, the inhomogeneous solution being the solution to the d'Alembert
wave equation. The homogeneous solution is obtained in terms of a single scalar stress
function which satisfies a fourth order equation. In the static case, the fourth order
equation reduces to the biharmonic equation.

We use the Lam6 constants v, X, E, and G defined by

E = 2(?(1 + v) = Young's Modulus, (1.1)

= Poisson's Ratio, (1.2)2(A + G)

G being the shear modulus.
It should be noted that our solution reduces to Timoshenko's solution and biharmonic

equation for a cylinder for the static case in the absence of body force and a temperature
field.

*Received February 17, 1967.
>S. Timoshenko and J. N. Goodier, Theory of elasticity, Second Edition, McGraw-Hill, New York,

1951, pp. 343. Also see Sneddon, Handbuch der Physilc, VI, P. 105.
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2. Equilibrium and compatibility equations. We start from the Duhamel-Neumann
relations

°a + (aT - V-^J Si, , (2.1)

where, a is the coefficient of linear expansion
T the temperature,

and where du = 0 if i ^ j and 1 if i = j and S = T^L.- <?,< .
If we take the trace of the strain tensor, we find that

£ «« = c = SaT + ~~b~ S. (2.2)i-i
Solving for S and replacing it in Eq. (2.1) we have

a.. = 2Ge„ + [Xe - (3X + 2G)aT] 5,,- . (2.3)
The compatibility conditions require that

, | d £k-1   d_£ik-   S~6j i   q ^2
dxk dXi dXi dXj Ox,- dXi dx{ dxk

for i, j, k, I = 1, 2, 3. These equations are satisfied exactly if

tu — %(dUi/dXj + dUj/dx,). (2.5)

One can see then that e = V • u and

= G dUi/dXs + G dUi/dXi + [X V-u - (3X + 2G)aT] 5U . (2.6)

The equilibrium condition is

E drjdx, + Ki = 0 (2.7)
i

where it is understood that Zv\ = F{ — p(d2Ui/dt2) where F is the body force. (2.8)

By manipulating the compatibility conditions (Eq. 2.4) and making use of (Eq. 2.7),
one can derive the compatibility equations,

72 ,1 d2S , aE ( d2T , 1 + v
VV,.,. + Sn'V T1 + v dXi dXj 1 + v \dx{ dXj 1 — v

+ StiV-K + ^ = 0. (2.9)1 — V dXj dx,

Making use of the definition of K, we have

F. daij/dXj + F{ = p(d2Ui/dt2), (2.10)
i

and

t—72 , 1 d2S aE ( d2T 1 + v „v + T+~*+1 + „+ i _ „ «,v t

+ T=-v W + g + g = ^ 0 + 2p (2.11)
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It will be convenient to calculate the solutions in Cartesian form. One can obtain the
stress components for another geometry by transforming each of the components, or
one can change the tensor form of the solutions into dyadic form, thus allowing one to
write out the component of any geometry immediately. We shall do this in the appendix
and exhibit the cylindrical and spherical components explicitly.

We can rewrite the equilibrium and compatibility equations in terms of the displace-
ments. They both are equivalent and are made up of a homogeneous part and an inhomo-
geneous part. The inhomogenous portion of the equation comes from the contribution
of the body forces and temperature field. The inhomogeneous part leads to a particular
integral which can be obtained by solving the wave equation.

The homogeneous portion has as its solution arbitrary functions which can be
determined by the boundary conditions imposed on the displacements and/or the
stresses. Since the displacements and stress components are derived from the same
stress function, they can be used in any combination as boundary conditions which
are consistent with the equilibrium and compatibility conditions.

3. Solution to equations. Let us write the equilibrium equation (2.10) in terms of
the displacements. We obtain

(A + (?) £ (V -u) + (7VV - (3X + 2G)a ~ + F< - P ̂  = 0. (3.1)

Making use of the definition of the Lam6 constants, we obtain

1 d <-? <-,2 2(1 + v) dT 1 „ __pdjui== /o
1 on * 1 0^3 ' C* 1 C* .a/2 \y1 — 2v dXi 1 — 2v dXi G (j at

If we rewrite the compatibility equation (2.11) in terms of the displacement and manip-
ulate, we obtain

d
dXj

„_2 , G d _ „ (1 + v) dT „ d2UGV Ui + - — V-u — 2aG - ~ - V Fi — p ——1 — 2v dXj 1 — 2v dXi dt

2 vGi d i G d v-7 o n (1 "I" v) dT „ 32M,-~1 .
+ ^X VUi + r^2^ V'M ~~ 2aGY^Y,d^ + Fi -p w\ +1 -2,

• ■«['■'■* - f^«v'T+m^v) v"-> ^0^ J? v-«] - °- (3-3)
The terms in the first two brackets of Eq. (3.3) are the same as the terms in Eq. (3.2),

and the terms in the third bracket represent the divergence of Eq. (3.2). Thus a solution
to Eq. (3.2) is automatically a solution to Eq. (3.3).

Let us rewrite Eq. (3.2) in the form

1 T-7T—7 | p d U 2(1 ~j- v) rr-rm ^ 1? /Q 1 \ITiVV-«+V«-g? = Tr¥aVT-^. (3.4)

The homogeneous portion of the equation is

1 - VV-u +Vtt-S = 0. (3.5)I _ 2v G dt'

The static equivalent of Eq. (3.5) is

(1/(1 - 2j>))VV- Mi + Vm, = 0. (3.6)
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In order for V V -u and V2w to be of the same form, we should choose

«! = a(n-V)Vxi + bnV2Xi . (3.7)

The operator (fi-V) is understood to be (d/dx + d/dy + d/dz) and n is the vector
(1, 1, 1). We can choose a and b so that all terms of the form (n-V)V x cancel.

If b = — 2(1 — v) a, then from Eq. (3.6) V4Xi = 0. (3.8)

In the time dependent case, we should choose u in the form

u = a(A-V)Vx + MV'x + cn(d2x/dt2). (3.9)

Again we wish to choose a, b, and c such that all terms containing (n-V)Vx or
(n- V) V(d2x/d<2) cancel. If b = — 2(1 — v)a and c = (1 — 2v)(p/G)a, then Eq. (3.5)
leads to the equation

(1 - f)V4x - ^ (3 - 4.) Jp V2x + ^3 (1 - 2.) 5 = 0. (3.10)

Rather than choose the axis of symmetry to be along the vector (1, 1, 1) we could just
as easily have chosen this axis to be one of the coordinate axis, say (0.0.1). The z axis is
usually chosen by convention to be the axis of symmetry of a body of revolution. Thus
we can choose u in the form

u = a £ Vx + bkV2x + ctz § ; (3.11)

i.e.,

M* = air1r. w» = a/f-> u, = bV2x + c^S- (3.12)dzdx dz dy dz dt

with the same relations between a, b, and c as given above. Because the axis of symmetry
and the derivative with respect to the axis of symmetry commutes with the gradient
and the Laplacian, Eq. (3.11) is a valid definition of u and it will satisfy Eq. (3.5) provided
that the scalar stress function obeys Eq. (3.10).

If there are body forces and temperature fields present, we need to find the particular
integral for Eq. (3.4). Since every vector is the sum of a gradient of a scalar and the
curl of another vector, we can write

Up = \7<p + Vxt and F = - VF + Vx/. (3.13)

Equation (3.4) takes the form

*——7 p(1 - 2e) d2 1 + v . 1 — 2v ,n ,
v Vv ~ 2(7(1 - „) a? = r^;aVT + 2G(i - „)VF (3-14)

and

V2(V.ti) (V#) = Vxf. (3.15)

Equation (3.14) has the solution
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Y7 11+"
1 -4- r v'3{r'' 1 ~ ~—~)
\±JL<*  ^ rr^dV1 — v Jv r — r

l — 2v " V'FIr v /
4.2(7(1 - ,) L \r-r'\ ~^16)

where a\ = 2G(1 — v)/p{ 1 — 2v) and Eq. (3.15) has the solution

V'x/(r', t - l1" ~ r/|)

where = G'/p.
The solutions for W and Vx\p are the standard solutions for the wave equation with
sources V T, VF, and Vxf located at the position r'.

If we choose

u = a[<l Vx ~ 2(1 ~ "^v2x + (1 ~ 2vYs g a?] + v<p + Vx* (318)

such that tp is represented by Eq. (3.16) and satisfies Eq. (3.14), * is represented by
Eq. (3.17) and satisfies Eq. (3.15), F is represented by VF + Vi/, and substitute into
Eq. (3.4), we obtain

r»-r^r(\ (1 ~ 2") ^ (1 _ ") ^ v-72 . P2 ,, <34xl-2oS|_(l - „) V x p ^ V X g~ ^Vx + ^(l-2,)¥j

r2(1 - v) P a2 „ 2(1 + v) 1 „ 1+ LT^Tv - 0 je v* - T^27aVT - G VFJ

+ IV\Vxi) (Vx*) + | V.t/ = 0 (3.19)

The terms in the second and third brackets are identically zero, since they are identical
to Eq. (3.14) and (3.15). Equation (3.19) then reduces to Eq. (3.10) which is the fourth
order equation for x- We have arbitrarily chosen the constant a to be (— 1/2G).

4. Displacements, strains, and stresses. The displacements are now defined to be

The strains become

1 d_ d2X , 1 — V J _d_ „2 , 1 — V J d 2
e" 2G ds dx< dxf + 2G '■* dx,- X + 2G dx< X

+1£ (t)+1 te)+1 £ <w)<+1 £ (v*»' ■ <4 2)
The stresses are found from the Duhamel-Neumann relations to be
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„ 3 d d\ | /I I W 3 rr2«r„ = , 5,-,.-Vx-+ (1 + ") 5,., ^ V x

i /i   \ s JL Y72 _ IP s d d2X p_/, _9l , d d2X
+ ( ^ a.Ti x G ds dt2 2G( a*, dt2

p (i o w 5 32x , 2i/(? 2 r a /a<?
~ 2G (1 " 2"} 5'" ax,, a? + l - 2,5i' v * + c a.r,. U,

G t (£;)+ G £ (w)< + ai (v'*h - *><*■ <4-3>
The s axis is chosen to be the axis of symmetry. In the case of bodies of revolution

the axis of symmetry is generally chosen to be the z axis. In the absence of symmetry,
we shall choose the s axis to be the z axis. The quantities dp/dx,- and (V#),- are given by
Eqs. (3.16) and (3.17) respectively.

No boundary conditions have been specified in the solution to the equilibrium and
compatibility equations. Any combination of boundary conditions on the displacements
and stress components can be specified since they are derived from the same scalar
stress function. The boundary conditions must, of course, be consistent with the equili-
brium and compatibility conditions.

The only assumptions made are that the displacements are small, i.e., the quadratic
terms in the strain can be neglected, and that the surfaces are simply connected. For
bodies which have holes, double surfaces, etc., it will be necessary to break up these
bodies into simple geometries and apply connecting boundary conditions where connec-
tions exist.

5. Appendix. Stress Components in Curvilinear Coordinates. It would be instructive
to see how the stresses and displacements appear in an other than Cartesian coordinate
system. To do this let us write Eqs. (4.1) and (4.3) in dyadic form. Thus

<ai>

* - A | V'x - vv I + (i - ,)«vV-*) + (i - .)(VVW -VjA

~ w(1 - 2">s fe (v*> - w(1 -2"> £(Vx)'
+ 2v0o Iv2$ + G(Vw + wV) - 2(?(1 ~t v) laT (A.2)

1 — Zv 1 — Iv

where 1 is the dyadic li + jj + kk and w = V3> + V.rip.
For the cylinder the symmetric axis is the z axis and the unit dyadic is I = rf + 69 +

Hie. The displacements are as follows:

_ _ J_ d'x ,
r 2G dr dz + Wr '

1 ] d2x , / * o\= "2g1-J¥Jz + w°' (A-3)

_ _L _L 1 ~ v v72 JL. r^ \ d2X ,
2G dz2 + G X 2G2 ( ^ dt2 + 1 "
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The stresses are as follows:

= I ("
1749 = I (:

v2x - ft - ^ft) + ~ v2$ + 20%*- 2G(+^Aar,6r G 61 / 1 — 2v dr 1 — 2v

Y7 _ 1 dx 1 d2x rp 32x
X r dr r2 <902 (7 a/2.

.M_ ^ ^ _ 0„ g + ,)+ v$ + 7r + Ho) ~ 20 Y^2vaT'

d_
dz

/9 \ ^72 dX n X P d'X

+ + 2(? ^ - 2(? aT7;1 — zy cte 1 —

6we
dr '

(A .4)
5 /l d X 1 dx\ , 2G (dwr \ r

c,e = ~r r t ~ 27; t " I r we) + AGdz \r dr 66 r 69/ r \6d /

. i [(1 _ „)v-* _ § _ ^ a _ 2, §] + 2G(to + &),

. i ± [tl _ „)v-x - § - £ a - » §] + +1 £).
In the absence of body forces and temperature fields, the displacements and stress

depend only on the stress function. Further, if there is no angular and time dependence,
Eq. (A.4) reduces to Timoshenko's result and the equation the stress function must
satisfy is the biharinonic Eq. V"x = 0.

For the sphere the unit dyadic is I — rf + 66 + <M>. The symmetric axis is the z
axis and is represented by k = r cos 6 — 6 sin 6. Furthermore 6/6s = cos 6{6/6r) —
(1/r) sin 6(6/66). The displacements become

1 9 (   a dX 1 • a dx
- ~2Gdr \COS dr ~ r Sm d0.

^ cos , V'x - c„ „ ix

11 6 ( dx 1. a6xu« = ~ oT; ~ 12 \ cos e  sm d T22G r 66 \ dr r 66,

^ g ~ sin 6 V2x + — 2G^P sin 0 + We - (A-5)

I ^ / (3 1
= — TTFi " sin 6 — I cos 6 — sin 6 ■—) + w* .2G r 3$ \ dr r 66/

The stresses are

„ d= cos 6 —dr (2 - ,)V2X - £ (1 - v)P \ d'X
G ~df

1 " a 6- sm 6 —r 66
V72 'pv 6jc

G 6t

dr2
cos 6 ~ — - sin 6 ~6r r 66_ + t~2~ V2$ + 2G~ - 2G 7-^ aT,1 — Zv or 1 — Zv
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(2 - „)v2x - £ (1 - v) „2p n \ d x
G ~df

(l d 1 d2 \f ndx 1 . ndx 1 . 2vG 2~ [ ~ ~ + ~2 ) cos 0 - sin 0 — + , 0 V\r dr r dd JL dr f d0J 1+2*/

I ^^0 "1 o/^y + ^)_w' + l>e] ~2GY^aT'

3 f 2 pv d2xl 1 ■
)7r[vVx- Ga?J ~7S1

-(;! + ?

+ —r

<7tl, = cos 0 -r- I pV'x — 7^ T3 I — ~ sin 0 -f- vyz P" d2xvVx~gW39

d I 1 „_a „ d"2 V 3x 1 ■ „ dx
f ? cot ^ + r"5 csc 0m?AC0S - rsin - ee.

IG (Wr ,JL fl ... , „„„ fl W\ ^ (1 + v)H I wr + cot e we + csc e J — 2G   — aT,r \ d$ / 1 — 2v

<rre = —sin
_d
dr

a2
2 P /, o \ O X(1 - v'x - 5 <1 - 2.) s(

+ i co9 ,ft [a - ,)Vx -1 (1 - 2,) |i_
32

dr 36

crr$ = —csc

1
Gq$ 2 CSC

T1 . <?X 1 ■ q dx , J[ 1 dwr .
l~r C0S °Tr ~ ?Sm 6d~e\ + 2GLr ~dd + r

6 3^ [r C°S 6fr ~ ?9'm df^\ + H) CSC2 0

(A.6)

A [
3r\r J

3wr 3_ (
3$ 1 dr\ r /

r dd d$

 i (csc 9 cot 6 "Jr)(cos 9 ^ — - sin 9 ^r \ d<£/\ dr r 36.

, 1 dwe , sin 6 d , „ N~|
+ 2G\ ■—:—- — +     — (csc 9 w,t) .Lr sin 6 <9$ r 36 J


