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GENERAL SOLUTIONS FOR PLANE EXTENSIBLE ELASTICAE
HAVING NONLINEAR STRESS-STRAIN LAWS*

BY

STUART ANTMAN

Courant Institute of Mathematical Sciences, New York University

Abstract. A general finite deformation solution is obtained for the equilibrium of
hydrostatically loaded elasticae whose underformed shapes are circular arcs. The non-
linear stress-strain relations employed give the bending moment and the axial force
as derivatives of a strain energy function with respect to suitable strain measures.
The representation of the solution involves arbitrary constants of integration which
can accommodate any end conditions consistent with equilibrium. Examples are given.
The constraint of inextensibility is examined and a perturbation procedure for small
extension is developed. In an appendix, the stress-strain laws are derived by an ap-
propriate reduction of the equations for three-dimensional hyperelasticity.

1. Introduction. We define a plane extensible elastica to be a three-dimensional
hyperelastic body subject to the geometric restrictions:

(i) The undeformed body admits a smooth plane reference curve C, the planes
normal to which do not intersect within the body.

(ii) Under the deformation the material curve c (which in its initial configuration
is denoted C) remains planar and the material surfaces which initially were planes
normal to C become planes normal to c and suffer neither rotation about c nor de-
formation.

Let c have arc length s and curvature k and let C have arc length S and curvature K.
We introduce two strain measures, the extension 8 and the bending n, by the relations

5 = ds/dS - 1, n = (1 + S)k - K. (1.1)

In the appendix we show that a plane extensible elastica is characterized by the
constitutive equations

M = dW/dfi, N = dW/88 (1.2)
where M is the bending moment, N the axial force and W = W(ji, 8, S) is a strain
energy function. Had we not chosen n as our strain measure of bending, but rather
employed the more usual k — K, then the resulting constitutive relations would be
in an equivalent but more complicated form (cf. Tadjbakhsh [1]). The simplicity of
(1.2) renders our ensuing work more transparent. To discover the physical significance
of n, we denote the tangent angle to c by <t> and that to C by $. Then d<j>/ds = —k,
d't>/dS = —K, so that

M = - *), or M + K = -fjt. (1 3)
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Moreover, it follows from (1.1) that the strain measure m has the property that for a
uniform extension of a circular arc into another circular arc of different curvature /z
is zero. Because of this insensitivity to pure extension, n is an ideal measure for stability
investigations.

We impose the restriction on W that (1.2) can be inverted to yield and S as func-
tions of M and N. This means that

W^Wis - (W^)2 * 0, (1.4)

where the subscripts on W denote partial differentiation with respect to the indicated
argument. This requirement is analogous to those usually imposed in three-dimensional
elasticity (cf. Truesdell and Toupin [2]).

To obtain a theory for inextensible elasticae, we set 5 = 0, let N be arbitrary (with
respect to constitutive relations), and use the constitutive relation M = W„ , where
ti now equals k — K. Corresponding to (1.4), we require WMlt ̂ 0.

The equilibrium equations for bodies such as the plane extensible elastica can be
found from a free body diagram (Fig. 1), or they may be derived by integrating the
equations of equilibrium for continua across cross-sectional surfaces (cf. A. E. Green
[3]). In terms of the arc length s of c, they are

dQ/ds — kN — q = 0,

dN/ds + kQ = 0, (1.5)

dM/ds — Q = 0,

where Q is the shear resultant and q is the normal load. We have assumed there is neither
tangential load nor distributed moment applied to the body. The sign convention
used is given in Fig. 1. Since ds/dS =1 + 5, we can write (1.5) as

Q' - (1 + S)kN - g(l + S) = 0, (1.6)
N' + (1 + S)kQ = 0, (1.7)

M' - (1 + S)Q = 0, (1.8)

N + dN

M + dM
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where ' = d/dS. We eliminate Q from (1.6), (1.7), (1.8) and use (1.1) to get

(M'/(1 + 5))' - (M + K)N - g(l + 8) = 0, (1.9)
Ox + K)M' + (1 + 8)N' = 0. (1.10)

Thus we have four equations (1.2), (1.9), and (1.10) for the four unknowns n,
M, N. Once p. and <5 are found subject to appropriate boundary conditions, (1.1) can
be used to find k as a function of s; this determines c.

2. Integrable cases. Problem 1. K is constant, q is constant, and the elastica
is homogeneous, i.e. W does not depend explicitly on S. (These restrictions prevent
the appearance of the independent variable S in the governing equations.) This is the
most general problem we discuss. We seek a general representation for the solution.

Solution. Multiply the equilibrium equation (1.9) by M'/(l + 8) and use (1.10)
to obtain

1 d ( M' V , 1 d Ar2 n
2 dS Vl + J + 2 dS q ( )

This equation can be integrated to yield

M'2 + (1 + 8)2N2 - 2qM(l + 5)2 = a(l + 5)2 (2.2)

where a is an arbitrary constant of integration. Note that (2.2) is valid for any con-
stitutive hypothesis. The substitution of the stress-strain laws (1.2) into (2.2) yields

W; + (1 + 8)2Wl - 2q(l + 5)X = o(l + S)2, (2.3)
and the substitution of (1.2) into (1.10) gives

+ K)Wl + (1 + S)W's = 0. (2.4)
Since K is a constant, (2.4) can be written as

[Ou + K)W,Y + [(1 + S)Wsy - wy - Ws S' = 0. (2.5)
Since W does not depend explicitly on S,

w = ivy + wy.
Hence (2.5) may be integrated to yield

Gu + K)JVM + (1 + S)Ws ~W = b, (2.6)
where b is an arbitrary constant of integration. Equation (2.6) is just an algebraic
relation between S and n. We assume that (2.6) can be solved for 8 = <5*On) or for n =
n*(d). Then (2.3) can be written as

S = ±J rU2 dW„ + c, (2.7)

where c is an arbitrary constant of integration and

f = a( 1 + 8)2 + 2q(l + 8)2W> - (1 + S)2W2s .

In particular, when (2.6) yields 8 = 8*(n), i.e. when the implicit function condition
for (2.6)

Gu + K)W„S + (1 + 5)TF8S ̂ 0 (2.8)
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is satisfied, then

and

ds = (m + K)WUU + fl + S*(m)]I^„
dn (m + K)W„g + [1 + 5* (yu.) ] s

[1 + 8%u)][W^W5S - W2uSl
dW" = ( j- inrar a- nxww d»- (2-9)(m + A) 14% J + [1 + 6*(iu)]TFaj

In (2.9) the arguments of the derivatives of W are {n, 5*(/u)). Similarly, when we know
n = n*(8),

dW = (l + ~ ,/* (om)
W(8) + K]W„ + (1 + 8)WllS dS- (2"10)

Here the arguments of the derivatives of W are (/x*(5), 5).
Note that by virtue of (1.4), the numerators of (2.9) and (2.10) do not vanish.

Thus (2.6) and (2.7) implicitly give the general solution fi(S), S(S) of Problem 1 in
terms of three arbitrary constants a, b, c. To find the shape of the elastica, we introduce
Cartesian coordinates x and y by the relations

dx/ds = cos 4>, dy/ds = sin 0, (2.11)

where <f> is the tangent angle to the curve. Equations (2.11) and (1.3) imply

4>(S) - <K£o) = -J* us,) + K] dSl ,

x(S) - x(S0) = f [1 + S(/S,)] cos 0(50 dS, , (2.12)
J So

y(S) - y(S0) = f [1 + «(50] sin <p(S0 dS, ,
J So

where <t>(S0), x(S0), y(S0) are arbitrary integration constants and S0 is any convenient
value of S.

Thus our sixth-order system of ordinary differential equations, (1.9), (1.10), (1.3),
(2.11) has a general representation for its solution given by (2.6), (2.7), and (2.12).
This representation involves the six arbitrary integration constants a, b, c, 4>(S0), x(S0),
y(S0), which accommodate any set of boundary conditions consistent with equilibrium.
The constants are then determined by the solution of transcendental equations involving
functions generated by the quadratures (2.6), (2.7), (2.12).1 (If an end of the rod is
fixed, then the constants x(S0) and y(S0) merely locate the origin of coordinates and
may be assigned in any convenient way. The constant <j>(S0) plays an analogous role
if an end has a fixed slope.)

Such representations seem to afford tractable numerical approaches to a number
of problems of stability. Moreover, an equation such as (2.7) is a fruitful source of
qualitative information on the nature of solutions.

JThe question of the existence and number of solutions of these transcendental equations depends
on the nature of W and will be considered in subsequent work. We tacitly assume here that it is
meaningful to talk about solutions.
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Example. W = (1/2)EI/x2 + (1/2)EA82. EI and EA are constants. (E is Young's
modulus, A is the cross-sectional area, and I is the moment of inertia of the cross-
section about the axis that is normal to the plane of bending and passes through the
centroid of the rod.) For this especially simple form of W, we have M = EIn and
N = EA <5.

Since 1 + 8 > 0, (2.6) can be written in the form

1 + S = [B- (I/A)(ji + K)2]U2 (2.13)

where B is an arbitrary constant. Then

/ = [B - (I/A)(n + K)2\{a + 2Elqn - (EA)*[(B - (I/A)fa + A')2)1/2 - l]2j (2.14)

and dW^ — EI dy.. The change of variables n + K = (AB/I) sin 6, w = tan 6/2 reduces
(2.7) to an elliptic integral in Weierstrass form. For the solution of a given boundary
value problem, however, it is doubtful that the use of Weierstrass elliptic functions
would be more expeditious than either the use of Jacobi elliptic functions or the direct
numerical integration of (2.7) with / given by (2.14).

To indicate the structure of a typical boundary value problem, we examine the
concrete example of a hinged circular arch of angle 2a subject to a hydrostatic pressure
(Fig. 2). The boundary conditions are

M{±a/K) = EIn(±a/K) = 0,

x(a/K) - x(-a/K) = (2/K) sin a, (2.15)

y(a/K) — y(—a/K) = 0.

We introduce the new variables

f = a(ji + K)/K, S = at/It, /32 = K2I/a A, V = a3q/K3EI. (2.16)
Equations (1.9), (2.3), and (2.4) then become

A
dt <> + I - ~ {8 - p(l + 8) = 0, (2.17)

% +(1 +5) § = "■ <2-i8>

(S)' -»+ a0 + 2p(X — a) — 52 (2.19)

Fig. 2.
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and (2.7), (2.13), (2.12), (2.14), (2.15) reduce to the following system for f(£):

± (t + 1) = ["" d?, (2.20)
J a

1 + 5 = (y2 - ftr//#, (2-21)

0(0 — <t>(— 1) = — [ f(T) dr, (2.22)

f(l) = a, (2.23)

/" [1 + 5(0] cos 0(0 dt = , (2.24)
J-i a.

J [1 + 5(0] sin 0(0 dt = 0, (2.25)

where

htt) = (t2 - /S2r2){«0 + 2p(r - a) - ± [(t2 - /frT/2 - l]2}. (2.26)

Here a0 , 72, and 0( — 1) are constants to be evaluated by the subsidiary conditions
(2.23), (2.24), (2.25). Equation (2.19) is an integral of (2.17) and (2.18). Equation
(2.20) is the integral of (2.19) subject to the boundary condition f(— 1) = a and (2.21)
is the integral of (2.18). In (2.20), the upper limit f(0 is presumed to be in an interval
of the f-axis containing f = a for which there is a single-valued representation for t
as a function of f. Equation (2.21) and the boundary conditions i"(±l) = a imply
that the extension at each end of the rod is the same. Denoting this extension by 50 ,
we observe that

7 = (1 + 5„)2 + 0V. (2.27)
Since the load is hydrostatic, the vertical reactions at each end of the arch can be

found to be (q sin a)/K. From Fig. 1, we then obtain the conditions

iV(±l) sin 0(±1) ~j~ Q(il) cos0(±l) = _L^ ̂  (2.28)

Using the equilibrium equation (1.7), the constitutive equation N = EA8, and the
change of variables (2.16), we ultimately obtain the alternate set of subsidiary conditions:

(/3*a0 — 5o) cos20(—1) = [ /32p ^ g;nL a

(J3ia0 — 52£) cos2 0(1) = P~p " — 50 sin 0(1)L a

(2.29)

The original differential equations (2.17) and (2.18) admit constant solutions. But
by means of these equations one can easily show that the constant solution f = a
satisfying the boundary conditions f(±l) = a, is trivial because it can satisfy the
remaining conditions (2.24) and (2.25) only if k = K, 5 = 0, and q = 0. (For some other
systems of boundary conditions, however, there are nontrivial constant solutions.)

We now examine the restrictions that the boundary conditions f(±l) = a impose
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on the nature of solutions of our system by studying hfj). From (2.26) we have that

h(a) = (1 + 50)2(ao - W). (2.30)

Equation (2.19) or (2.29) then implies that h(a) > 0 for a nontrivial solution. Equation
(2.26) also shows that /i(f) has zeros at f = ±7/16. Now since f must have the same
value a at each end of the rod, Rolle's theorem implies that there is a value t = T in
the open interval (—1, 1) for which d£/dt = 0 but d2t;/dt2 5^ 0. If the requirement
1 + 5 > 0 is not to be violated, these conditions imply that A(f) has a simple zero
at £(T) with |f(7')l < y/P- If we let ^ be the greatest zero of h(t;) less than a at which
h(J) changes sign and f2 be the least zero of h(J) greater than a at which h(£) changes
sign, then at least one of the zeros and f2 lies in the open interval (—y/P, y/P) of
the f-axis and h(J) has the form shown in Fig. 3.

.1 "* S, a &-''r
B £

Fig. 3.

When A(f) has this form the qualitative nature of the solution function f (/) given
by (2.19) is well known (cf. Synge and Griffith [4]). In particular, lit) is periodic with
half-period w = /[> h(£)~1/2 d'{, is bounded in the strip < f (t) < , and is symmetric
about its points of tangency to the lines f = £1 and £ = £2 . These properties are il-
lustrated in Fig. 4.

kU-

Fig. 4.

We therefore deduce that for each value of n, n = 0, 1, 2, • • • , there can be one
symmetric solution with 2/ (2n + 1) < « < 1/n, one symmetric solution with l/(n + 1) <
co < 2/(2n + 1), and two asymmetric solutions (mirror images of each other) with
« = l/(n + 1), each such solution satisfying the boundary conditions £(±1) = a.
If one of the zeros fx and £2 , say £2 , should have absolute value greater than y/P,
then any solution £ = £(g) that touches the line £ = £2 must be discarded because it
violates the restriction that 1 + 8 > 0. (We have already shown that both zeros cannot
simultaneously exceed y/P in absolute value.) The additional subsidiary conditions
(2.24) and (2.25) determine the shape and size of the solution curve in Fig. 4 and restrict
the values of parameters for which such solutions may arise.
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Problem 2. To the specifications of Problem 1 we add the restriction that the
elastica is inextensible.

Solution. Substitute the constitutive relation M = TF„ into (2.2) and (1.10) to get

Wf + N2 - 2qW, = a, (2.31)
(jt + K)W: + N' = 0. (2.32)

Since K is constant and the elastica is homogeneous, (2.32) can be integrated to yield
the solution for N:

N + Cu + K)W„ - W = b. (2.33)
When this is substituted into (2.31), the latter can be written in the form

5 = ±f K»rW2W^dv, (2.34)

where

/(,a) = a + 2qW„ - [b - (ix + K)W, + IF]2.

When IF is in the classical form, W = (1/2)EIfx\ then

/GO = a + 2Elqv -[b- EIn(n + K) +
Equation (2.34) then gives jiasa function of S in terms of Weierstrass or Jacobi elliptic
functions. The analysis of the qualitative behavior of solutions is simplified by the
absence of the thickness parameter (3 that was used in the example of Problem 1.

Problem 3. To the specifications of Problem 1 we add the restriction that q = 0.
This condition enables us to find the resultants N and Q as functions of the tangent
angle 4> from a free body diagram.

Solution. We introduce a spatial Cartesian coordinate system (x, y) in the plane
of bending and measure <t> in a counter-clockwise sense (cf. Fig. 5).

Let 1\ and P-2 be the components of the force and M0 the applied moment at one
end of the elastica. Since 5 = 0, the force and moment are known at the other end.
(If the relative displacements or angles rather than the forces or moments were pre-
scribed at the ends, then Pi , P2 or M0 would be unknowns, which could be expressed
in terms of the given displacements or angles by means of the solution.)

From a free-body diagram we obtain

Q = —P2 cos <j> + Pi sin 0, (2.35)

N = —(Pi cos 4> + P2 sin <t>). (2.36)

777777
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Equation (2.6) and the relation N = Ws yield the governing equations for this problem:

Gt + K)W„ + (1 + 8)WS - W = b, (2.37)

Ws = —(Pi cos<f> + P2sin$). (2.38)

We recall that

H + K = —<f>'. (2.39)
Equation (2.37) is just an implicit algebraic relation between u and 5. To solve (2.37)
for 8 = 5*(/i), we must have the following implicit function condition satisfied:

(.K + v)Wft + (1 + 8)WSS * 0. (2.40)

If this condition is not met we must revert to the more general formulation of Problem 1.
If (2.40) is satisfied then the left-hand side of (2.38) can be written as 6*(ji))
and the condition that (2.38) be solvable for yu in terms of <p then reduces to

(K + n)(Wjrss - TO * 0. (2.41)
By virtue of (1.4), this is valid except where the curvature k = (K + ju)/(l + 8) vanishes.
At such inflection points solutions can be pieced together (cf. Love [5]). Thus (2.38)
can be written in the form

<#>' = — (ju + K) = F(P1 cos <{> + P2 sin <£) (2.42)

so that <j> is representable by the quadrature

S - ff (2-43)
When W = (l/2)£'/Ju2 + (1/2)EA 82, (2.37) reduces to (2.13) and the function F

defined in (2.42) has form

(.A/I)1/2{B - [1 - (P1 cos 4 + P2 sin fi/EA]*}1'2 (2.44)

Equation (2.43) then leads to a representation for 0 directly in terms of Jacobian elliptic
functions. For this choice of W, the solution for an initially straight two hinged bar
is given by Pfltiger [6].

Problem 4. We add to the specifications of Problem 3 the restriction that the
elastica be inextensible.

Solution. Equations (2.33) and (2.36) are still valid and can be combined to yield

(m + K)W„ — W = b + P1 cos <t> + P2 sin <j>. (2.45)

This can be solved for /j. as a function of 4> if

(n + K)W„„ 9^ 0. (2.46)

Since we require W„ ^ 0, (2.46) fails only at inflection points.
For W = (1/2)EI/i2, the solution can be represented in terms of Jacobi elliptic

functions. The solution for initially straight hinged elasticae is given by Love [5] and
a compendium of other solutions is given by Frisch-Fay [7].

3. Perturbation theory for small extensions. In many elastica problems of practical
interest the extension is small and the solution to the inextensible problem closely
approximates experimental results. To exploit the relative simplicity of the form of
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solution for the inextensible elastica, we now formulate a perturbation technique to
treat the case of small extension.2 Our formalism is somewhat more direct than that
used by Spencer [8] for the treatment of small compressibility in three dimensional
theory.

Let e be a small dimensionless parameter characterizing the extension. Let

6 = te. (3.1)

Assume that /*, e, M, N depend smoothly on e:

M = n(e), e = e(e), M = M(e), N = N(«). (3.2)

Here we suppress explicit dependence on S. Assume that W can be written in the form

W(n, S) = U(is) + eV(ti, e), (3.3)

where U and V are smooth functions of their arguments in a neighborhood of n(0), e(0).
Then

71/ = w„ = UM + eVM e), (3.4)

N = Ws = F6(m, e). (3.5)

By repeatedly differentiating (3.4) and (3.5) with respect to t and then setting e = 0,
we obtain the sequence of equations

M(0) =: UMO)), (3.6)

,V(0) = F«(m(0) , e(0)), (3.7)

MM = UMOVuXO) + VM0),e(0)), (3.8)
iV.(0) = V.M0),emvM + V.,(n(0), e(0))e,(0), (3.9)

Doing the same with the equilibrium equations (1.9) and (1.10), we obtain

M"(0) - (K + M(0))Ar(0) - q = 0, (3.10)

(.K + m(0))M'(0) + JV'(0) = 0, (3.11)

M','(0) - (K + ^(0))A'«(0) - M.(0)iV(0) - qe(0) = il/"(0)e(0) + l/'(0)e'(0), (3.12)

(K + m(0))M;(0) + m,(0)M'(0) + N'X 0) = —iV'(0)e(0). (3.13)

Equations (3.6), (3.10), (3.11) are just the field equations for the inextensional theory
in terms of the three unknowns M (0), N(0), m(0). When these equations are solved,
we can find e(0) from (3.7). This process can be continued: (3.8), (3.12), and (3.13)
can be solved for Mt(0). Nf(0). and /u«(0). Then e((0) can be found from (3.9). The
final representations are of the form jn = ju(0) + m.(0)« + (l/2)juee(0)e2 + ■ ■ • , etc.

Example. W = (1/2+ (1/2)^452. Then U = (1/2)EIn\ V = (1/2)tEAe\
Equation (3.7) then implies ee(0) = N(0)/EA, a physically reasonable result.

Appendix: Derivation of constitutive laws. We now derive the stress-strain laws for

'The method used here was proposed by Professor J. B. Keller.
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elasticae by employing our definition of an elastiea as a certain three-dimensional
body and specializing the three-dimensional stress-strain laws to this model.3

We begin by obtaining an analytic characterization for the definition of a plane
extensible elastiea given in Sec. 1.

Let t be the plane to which c is restricted. Let X1 = X, X2 = Y, and X3 = S be
convected coordinates assigned in the undeformed body with S measuring arc length
of C, X measuring distance of points from ir, and Y measuring distance of points from
the cylinder generated by normals to ir through C. Let r* be the position vector to any
point on c. Let a, be a constant unit vector normal to x, a2(S) be the unit vector normal
to c lying in ir and let a3(S) = dr*/dS be the vector tangent to c whose magnitude in
the undeformed configuration is unitj^. a1 , a2 and a3 are to form a right-handed system
(cf. Fig. 6).

The restrictions (i) and (ii) defining an elastiea can now be incorporated in the
following representation for the position vector r to any point in the deformed body:

r = r* + Xa, + Ya2 . (A.l)

(For an unconstrained rod, r would have a formal representation as an infinite series
in X and Y with no such restrictions on the a, . Cf. Antman and Warner [9], A. E.
(Sreen [3]).

We introduce the base vectors g,- for the deformed configuration by the relations

dr dr dr . „ 0,
gi = ^ = a, , g, = — = a2 , g3 = — = a;) + KI a3 , (A.2)

where k is the curvature of the deformed rod. The material strain tensor EKL has the form

2Erl = gA-gL - Gk Gl = 2 83k S3L[Em + EWY + EmY2], (A.3)

where GA- is the base vector for the undeformed configuration and where

22?(o) = &3'&3 1 = ^33 1> 2-fc(i) — 2(a33K K), 2E(2) ~ K ̂ 33 X . (A.4)

Here K is the curvature of C. Note that ds/dS = (a33)1/2 =1 + 5.
We define the stress residtant vector n and the couple resultant vector m:

Fig. 6.

3An alternative variational approach in which the elastiea was treated as a one-dimensional body was
carried out by Tadjbakhsh [1], Equivalent constitutive relations were obtained.
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n = f gU2t3 dX dY, m = f (r - r*) X g1/2t3 dX dY (A.5)
•'a J a

where g = det (g/rgz.), A is the cross-sectional area and t3 = t3'gwhere t" is the stress
tensor and the summation convention holds (cf. A. E. Green [3]).

In convected coordinates, the stress-strain laws for unconstrained hyperelastic
bodies can be written in the form

g/2ikl = G1/2 dh/dEki

where G is the value of g in the undeformed configuration and 2 is the strain energy
function. For the elastica with constraints characterized by (A.l) or (A.3), the stress-
strain laws become

g1/2t33 = G"2 62/dE33 (A.6)

and all other t" are arbitrary (cf. Truesdell and Toupin [10] or Ericksen and Rivlin [11])-
From (A.3) we observe (Naghdi and Nordgren [12])

dZ/6EM = Y" d2/dE33, n = 0,1, 2. (A.7)

We define the strain energy per unit length of C by

W = f G1/2ZdXdY. (A.8)
J A

Then the physical component of n in the direction a3 , which we call the axial force N,
is given by

N ~ = -^rdXiY

= f gU2t33(a33y/2(l + kY) dXdY
A (A.9)

= (a33)1/2 f G1/2 ~ (1 + kY) dX dY
J A dJi33

, 1/2f _dW_ MV
(3a) LdEim+K dEmA

where we have used (A.5), (A.2), (A.6), (A.7) and (A.8). Similarly the bending moment
M = m-at has the form

M = (a33)W2[dW/dEa) + k dW/dEm). (A.10)

Other stress resultants are arbitrary as a result of (A.6).
We can put the constitutive relations (A.9) and (A. 10) into a far more elegant form

by introducing the two strain measures of (1.1). From (A.4) we then have

Em = M(1 + 5)2 - 1], Ew = (1 + <5)Cu + K) - K, Em = |[(M + K)2 - K»].
(A.11)

By the chain rule of partial differentiation, we have
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dW dW dW . ,+ + +

dW dW ,,,,,, sir . , „
W - (' + 5) + W~ <" + *>■

Comparing these results with (A.9) and (A.10) we obtain

M " = f' (A-12^
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