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NONLINEAR DISSIPATIVE MATERIALS*

BY
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1. Introduction. In recent years there has been extensive work on wave propagation
in nonlinear dissipative materials. Coleman, Gurtin, and Herrera [1] have studied shock
waves in materials obeying the fading memory hypothesis, while acceleration waves
and higher order discontinuities in such materials have been investigated by Coleman
and Gurtin [1]—[4], Varley [5], Coleman, Greenberg, and Gurtin [6], and Wang and
Bowen [7]. Dunwoody [8] has studied acceleration waves in linear fluent bodies.

Pipkin [9], using a special constitutive equation of the fading memory type, obtained
exact solutions to the one-dimensional steady flow equations which possessed both ac-
celeration and shock waves. Generalizing a portion of Pipkin's work [10], I showed that
for a large class of nonlinear viscoelastic materials satisfying the fading memory hy-
pothesis it is possible to find one-dimensional steady solutions exhibiting shock waves.

In this present paper I assume that the stress a is related to the deformation gradient
F through the following constitutive equation:

«r, = E(F,*)Ft + G(F,a). (1.1)
I show that if E and G satisfy certain hypotheses, there exist steady solutions of the
one-dimensional flow equations which possess both shock and acceleration waves.

2. Steady motions and governing balance laws. In what follows R will be the
real line. Material points in R will be denoted by X and the parameter t in R will rep-
resent time. A function % will be called a motion if it is continuous and has partial deriva-
tives xx > 0 and xt which are piecewise continuous on R X R. The spacial derivative
Xx is called the deformation gradient and the time derivative Xt the velocity.

A motion x is said to be steady if there exist positive-valued, piecewise continuous
functions F and u such that

Xx(X, t) = F(x) and Xt(X, t) = u(x), (2.1)

where z = x(X, t) is the place occupied by the material point X at time t. It is not
difficult to show that x is steady if and only if there exists a -positive number V0 and a
continuous function f having a piecewise continuous derivative f > 0 such that

x(X, t) = m, t = X/V0 + t (2.2)2
for all X and t. For steady motions such that lim{_-„ /'(£) = Va , the parameter F0
may be interpreted as the upstream velocity, that is the velocity at the point in space
x = — oo .

*Received January 19, 1967.
'Noll [11] discusses materials for which (1.1) holds. The constitutive equation used by Dunwoody

| is similar to (1.1) and that used by Pipkin [9] is a special case of (1.1).
2Cf. [10, Thm. 2.1].
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We say that a stress field <j is steady if there exists a function & such that

a(X, t) = &{x) (2.3)

where again x = x(X, t). If the stress field and the motion are both steady, then clearly
the stress <r is a function of the variable £ = X/V0 + t.

If we assume that the density of material points X in R is a constant pK , then in
the absence of body forces the stress a and the motion x are related through balance of
momentum:

d_ rX°

(it
fX' t) dX = a{X2, t) - a(Xu t) (2.4)

Jx,

for all Xi , X2 , and t. Since 0/dX = (l/Vn)(d/dQ and d/dt = d/d£ it is not difficult
to show that for steady motions and steady stress fields (2.4) reduces to

*&) - *&) - mCm) - F&)) = 0 (2.5)
for all £, and in R where

X(X, t) = rn, i = x/v0 + t,
Xx(X, l) = (l/Vo)m = F®, (2.6)

Xt(X, t) = /'($), and »=PrV20.

We note that if lim£__„ /'(£) = V0 , then lim^.^ F(£) = 1.
For steady motions and stress fields (1.1) becomes

da/di = E(F, <r)(dF/dg) + G(F, o). (2.7)
Before discussing the solutions of the system of Eqs. (2.5) and (2.7) we make
Assumption 2.1. (a) The functions E and G are, respectively, C*1{ (0, °°) X

(— oo, oa)} and C2 {(0, c°) x (— 00 , 00 )} and in (0, 1] X (— , 0] they satisfy:

E > 0, Ef < 0, and E, < 0, (2.8a)

Gf > 0 and G, < 0. (2.8b)
(b) There exists a unique, C2 function aE on (0, 1] with the following properties:

<TE( 1) = 0 (2.9a)

G(F, aE{F)) = 0, (2.9b)

t (T?\ 4®* b{P) _ Gf(F, ok{F)) ^ ,
a^F) = ~~dF = ~G.(F, aE(FY) < HF' aE{F))' (2-9c)

»'m = < 0, (2.9d)

lim cr'E{F) = , and (2.9e)
*'->0 +

lim u'e{F) = — oo. (2.9 f)
F-.0+

Remark 2.1. It is possible to show that if E and G satisfy Assumption 2.1, then

8It is a consequence of (2,8b) that <r'B > 0 in (0, 1],
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materials governed by the constitutive Eq. (1.1) exhibit both stress relaxation and
creep effects.

3. The existence of compressive loading steady flows which exhibit shock and
acceleration waves. In the sequel we shall assume that Assumption 2.1 holds. Steady
fields (F, a) which satisfy (2.5) and (2.7) are now sought. We say that a pair of functions
(F, a) are compressive loading if they are bounded and monotone decreasing in R and
satisfy the upstream condition

lim F(|) = 1 and lim a(£) = <xE(l) = 0. (3.1)4
{—♦—CO {-+—00

By a compressive loading solution we mean a pair of functions (F, a) which are compressive
loading, obey (2.5) everywhere, and obey (2.7) almost everywhere in R. We note that
the pair (F, «r) = (1, 0) is trivially a compressive loading solution. In the sequel this
pair is called the trivial solution.

Remake 3.1. A pair of compressive loading functions {F, a) define a compressive
loading solution if and only if they satisfy

<r = n(F - 1), for all £ G R (3.2)
and

da/di = E(F, C)(dF/dQ + G(F, a), (3.3)
almost everywhere in R.

Proof. Necessity follows from (2.5), (2.7), and (3.1); sufficiency is immediately
evident.

Remark 3.2. There exists a unique, C2 function a, which satisfies the initial value
problem:

~ = F(F, *,), F E (0, 1),
d (3.4)

<T;(1) = 0-^(1) = 0.

Moreover, <r, has the following additional properties:

OF) < <7e(F), F G (0, 1), (3.5)
E(F, *,(10) > t'e(F), F G (0, 1], (3.6)

and
d2<rI(F)/dF2 = Ef(F, tjQF)) + Ea(F, c(F))E{F, c,(F)) <0, F£ (0, 1]. (3.7)
Proof. The existence and uniqueness of a function <jj satisfying (3.4) follows from

Assumption 2.1 (a) and from classical theorems on the existence and uniqueness of
solutions of ordinary differential equations.

Equations (3.5)-(3.7) follow immediately from equations (2.8a) and (2.9c).
For compressive loading functions we define the upstream equilibrium sound speed

VE and the upstream instantaneous sound speed Vj as follows:

F = (i_ V/2 = /-ic,(i,o)V/2
\pR dF rJ \PR (7,(1,0)/ • (38)

Vi = (-£(1,0)
VPs

1/2

4(3.1) is merely a statement that at — <= an equilibrium situation exists.
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Since m = PrV20 , one has
Fo < VE < o-i(l),

VE < Vo < v,<=> a'E(l) < /x < E{ 1, 0), (3.9)
and < F0 <=>i?(l, 0) < fi.

Remark 3.3. (i) If Va > VE , there exists a unique number Fm £ (0, 1) which
satisfies

<je(F„) = — 1) (3.10)
where <r£ is defined in Assumption 2.1 (b). Moreover,

<j'E(Fa) - M > 0. (3.11)
(ii) If Va > Fj , there exists a unique number F0 £ (0, 1) which satisfies

<r,(Fo) = m(F0 - 1), (3.12)
where <r, is defined in Remark 3.2. In addition,

ai(F0) - n > 0 (3.13)

(iii) If the hypotheses of (ii) hold, then Fa and F0 are ordered in the following way:

0 < Fm < F0 < 1. (3.14)

For a pictorial representation of the implications of Assumption 2.1(b) and Remarks
3.2 and 3.3, the reader is referred to Figure 1.

crT(F) v.s. F-

O /j- (F-1) v.s. F
[when fj. <cr^ (1)]

jj. (F-1) v.s. F
[when cr'E<fJ. < ctj(1)]

cte(F) v.s. F-—_ / // [when a'E(\)<fj.< crj(1)]

fj.[F-1) v.s. F- _
[when jj. > o-j(1)] / // ^ F0(fO

[(when fM > a' (1)]

Figure 1
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The main results of this investigation are contained in the following theorem:

Theorem 3.1. (i) If V0 < VE , there is no nontrivial compressive loading solution.
(ii) If Vb < V0 < Vj , there exists a nontrivial, Cl, compressive loading solution.

This solution has the property that

lim /<'© = F„ , (3.15a)

lim c(£) = n(F„ — 1), (3.15b)

where Fa satisfies (3.10).
(iii) If Vi < V0 , there is no nontrivial, C1, compressive loading solution, but there

does exist a nontrivial compressive loading solution with the following properties'.
(a) The functions F and a are continuous and have continuous first derivatives on S0

where

S0 = R=W, (3.16)
(b) F{k) = 1 and <r({) = 0 for all £ £ (— °°, 0),
(c) F(0+) = lim{_0+ F(£) = F0 and o-(0+) = lim£_0+ c(£) = n(F0 — 1) where F0

satisfies (3.12), and
(d) lim^ F(£) = F„ and lim£^„ o-(£) = n(F«, — 1) where < F0 satisfies (3.10).
(iv) If V0 = Vi , there exists a nontrivial compressive loading solution with the

following properties:
(a) The function F and a are continuous on R and have continuous first derivatives

on S0 where S0 is defined in (3.16),
(b) F(^) = 1 and <j(£) = 0 for all £ £ (— °°, 0),
(c)

lim ^ = -Gf(1, 0) 1 ~ y1' rm < 0£_0+ dt {Ef{\ , 0) + E,(l, 0)£(l, 0))

and

i;m _ _ 7T/i mfi/i n\ 1 -^(1 j Q)/°"k(1)
? ™ (1' °)G(1' 0) Ef{l, 0) + E.( 1, 0)E(1, 0) '

(d) lim£_„ F(£) = Fa and lim£^„ <t(£) = E( 1, 0)(Fa — 1) where again Fa satisfies
(3.10).

The nontrivial solutions of (ii) are commonly referred to as structured shock waves,
those of (iii) as shock waves, and those of (iv) as acceleration waves.

Proof of (i). We assume that assertion (i) is false; i.e. we assume there exists a pair
of functions (/'', a) ^ (1, 0) which are bounded, monotone decreasing, and satisfy (3.1)-
(3.3). It then follows that there exists a point £0 G R such that

Fft,o) < 1, ff(fn) = KF&) - 1) < 0, (3.17)
and

- Emo), Km - i))] dF&OM = G(F(to), KF(to) -1». (3.18)
The inequalities F(%0) < 1 and V0 < VE and Eqs. (2.8) and (3.9), imply that

E{F{Q, nm0) - 1)) > E(X, 0) > (3.19)
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G(F(Q,n(F(Zo) - 1)) < o. (3.20)
Equations (3.18)-(3.20) then yield

> 0 (3.21)

which contradicts the assumption that F is compressive loading.

Proof of (ii). It suffices to show that for VE < V0 < Vj there exists a C\— «>),
monotone decreasing function F which satisfies

[M - E(F, n(F - 1))] ̂  = G(F, m(F - 1)), {G(—,»), (3.22)

lim F(£) = 1, (3.23)

lim FQ) = Fa (3.24)

where Fa is defined by (3.10).
70 < Vi and Eq. (2.8a) imply that

- co < „ - i?(F„ , M(f\. - 1)) < m - E(F, h(F - 1))

< M - ^(1, 0) < 0, FG^-,1],

and < T0 and Eqs. (2.8b), (2.9b), (3.2), and (3.10) imply that

G(F, n(F — 1)) > 0, FG[f.,l], (3.26)

with equality holding only if F = or F = 1. It now follows from (3.25) and (3.26) and
from the smoothness of E and G that for any S £ (F„ , 1) and £0 G (~ 00, 03) there
exists a unique function F(-; £0 , 8) which is C\— <*>), satisfies (3.22), and is such
that F(£o ; £o , 5) = 5. Moreover, (3.25) and (3.26) imply that F( ■; |0 , 5) is monotone
decreasing and satisfies (3.23) and (3.24), and therefore the proof of (ii) is complete.

Proof of (iii). The proof that there is no nontrivial, C"(— 00 , 00), compressive
loading solution is analogous to the proof of assertion (i).

We now prove the second part of (iii). Since the pair of functions (F(£), a(£)) =
(1) 0), £ G (— °°, 0), meets (3.1) and satisfies (3.2) and (3.3) in (— °°, 0), it suffices to
show that the function F(tf) = 1, £ £ (— co, 0), has an extension to (— °°) with the
following properties:

(a) The restriction of F to (0, oo) is C1 and monotone decreasing,
(b) F satisfies (3.22) on (0, oo); and
(c) F(0+) = F0 , lim£_„ F(0 = .

Vi < V0 and Eqs. (3.13) and (2.8a) imply that

- CO < M - E(Fa , n(F„ -1)) <H- E(F, n(F - 1))

< /X - E(FQ , »(F0 - 1)) < 0, F G [F. , F„],

and < F0 and Eqs. (2.8b), (2.9b), (3.2), and (3.10) imply that

G(F, n(F - 1)) > 0, F G [F. , F0] (3.28)
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with equality holding only if F = F„ . Equations (3.27) and (3.28) and the smoothness
of E and G guarantee the existence of unique function F(-; 0+, F0) which is C'(0, »),
satisfies (3.22) on (0, <»), and is such that lim£_0+ F(%; 0+, F0) = F0 . Moreover, (3.27)
and (3.28) imply that F(- ; 0+, F0) is monotone decreasing on (0, oo) and that lim^ F(£-,
0+, F0) = F„ . Using F( •; 0+, F0) we may now extend the function F(£) = 1, £ G (— , 0),
to (— oo, oo) in such a way that (a), (b), and (c) hold and therefore the proof of (iii)
is complete.

Proof of (iv). Since the pair of functions (F(£), <r(£)) = (1, 0), £ G (— 00, 0), meets
(3.1) and satisfies (3.2) and (3.3) in (— oo, 0), it suffices to show that the function F(!j) =
1, £ G (— 00, 0), has an extension to (— 03, oo) with the following properties:

(a) the restriction of F to (0, oo) is C1 and monotone decreasing,
(b) F satisfies (3.22) on (0, oo), and
(c)

P(()+\ = 1 lim — = (GV(1. 0) + G„( 1, 0)i?(l, 0))
f ™ df (Ef( 1, 0) + EX 1, 0)£'(1, 0)) '

and lim{_„ F(£) — Fa .
We define the function 3C: (0, 1] —> (— 00, 0] as follows:

3C(F) = G(F,E(1,0)(F - 1)) , . ,( } E{ 1, 0) - E(F, E{ 1, 0){F - 1)) • G (0' 1)' (3'29a)

vm - (Gf(1' 0) + G'(1' 0)F(1' 0)) <r n n 9QKi3C(1) ~ (E,( 1, 0) + E,( 1, 0)E(1, 0)) < (d"29b)

and note that part (a) of Assumption 2.1 implies that

(i) 3C is continuous on [F„ , 1], and
(ii) 3C(F) < 0 for all F G , 1] with equality holding only if F = .
It now follows from standard theorems in ordinary differential equations that there

exists at least one C'fO, oo); monotone decreasing function F( ■; 0+, 1) satisfying

^ = X(F), t; > 0, (3.30)

F(0+;0\ 1) = 1 (3.31)

and having the following additional properties:

i • dF(g) (Gf( 1, 0) + G>(1, 0)E(1, 0)) „ .
" 0+ d{ (Ef{ 1, 0) + EX 1, 0)£'(1, 0)) • 1,3^

lim F(f; 0+,l) = Fm . (3.33)
{-♦co

Using F{-\ 0+, 1) we may extend the function F(f) = 1, £ G (— 00, 0), to (— oo} oo) in
such a way that (a), (b), and (c) hold, and therefore the proof of (iv) is complete.

Acknowledgements. The author wishes to thank Dr. Bernard D. Coleman and
Professor Morton E. Gurtin for valuable discussions.

This research was supported by the Air Force Office of Scientific Research under
Grant No. AF-AFOSR 728-66.



34 JAMES M. GREENBERG [Vol. XXVI, No. 1

References
1. B. D. Coleman, M. E. Gurtin, and I. Herrera R., Arch. Rational Meeh. Anal. 19, 1-18 (1965)
2. B. D. Coleman and M. E. Gurtin, Arch. Rational Mech. Anal. 19, 239-265 (1965)
3. B. D. Coleman and M. E. Gurtin, Arch. Rational Mech. Anal. 19, 266-298 (1965)
4. B. D. Coleman and M. E. Gurtin, Arch. Rational Mech. Anal. 19, 317-338 (1965)
5. E. Varley, Arch. Rational Mech. Anal. 19, 215-225 (1965)
6. B. D. Coleman, J. M. Greenberg and M. E. Gurtin, Arch. Rational Mech. Anal. 22, 333-354 (1966)
7. C. -C. Wang and R. M. Bowen, Arch. Rational Mech. Anal. 22, 79-99 (1966)
8. J. Dunwoody, Intl. J. Engng. Sci. 4, 277-287, (1966)
9. A. C. Pipkin, Quart. Appl. Math. XXIII, No. 4, 297-303 (1966)

10. J. M. Greenberg, Arch. Rational Mech. Anal. 24, 1-21 (1967)
11. W. Noll, J. Rational Mech. Anal. 4, 3-81 (1955)


