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LINEAR TIME-DEPENDENT FLUID FLOW PROBLEMS*

BY

Y. D. WADHWA and T. W. WINEINGER

Iowa State University, Ames

Summary. A general method for solving the linear unsteady fluid flow problems
through closed conduits has been given. The method is suitable for problems with or
without initial conditions. The cases of flow through a circular pipe and a circular an-
nular channel with arbitrary time-dependent pressure gradient have been solved to
illustrate the method.

Introduction. In problems of unsteady flow in closed conduits one distinguishes
between two general types—one with prescribed initial conditions and the other without.
Both types have been solved previously by assuming specific forms for the pressure
gradient. Thus the flow through a circular pipe due to an impulsively applied pressure
gradient was considered by Szymanski [1], Later M tiller [2] considered the flow through
a circular pipe and through an annular channel when the prescribed pressure gradient
is an arbitrary function of time. An example of the flow problem without initial conditions
was given by Sanyal [3] who considered the flow through a circular pipe with the pressure
gradient an exponential function of time.

Recently Ojalvo [4] outlined a method of dealing with boundary value problems
with initial conditions. His method is applicable to more general space differentiation
and time differentiation operators than are involved in the fluid flow problems mentioned
above.

The aim of this paper is to extend Ojalvo's method to boundary value problems
without initial conditions, and to indicate application to fluid flow problems both with
and without initial conditions when the pressure gradient is an arbitrary function of time.

Ojalvo's method—with initial conditions. Consider the following problem.

Mu(x, t) = TNu(x, t) + F(x, t) in R, (2.1)

a0u + ctiDiU ■ • • = G(x, t) on B, t > 0, (2.2)

u(x, 0) = H^x), du(x,0)/dt = H2(x), (2.3)
where

R is a continuum domain with boundaries B,
x is space variable vector,
t is time variable,
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M, N are linear differential space operators such that M is of order greater than N,
I), is linear differential homogeneous space operator of the zth order,
T = ad2/dt2 + bd/dt is the time operator with a and b as some given constants,
F(x, t), G(x, t), Hiix), II2(x) are prescribed functions.

Assume that F(x, t), G(x, t) can be expressed as

F(x,t) = E 1<(x)F<(t), (2.4)
1 = 1

G(x, t) = ± gi(x)G,(t), (2.5)
j-i

where r and s may be finite or infinite.
We look for a solution of the given boundary value problem in the separable form

such as

u(x, t) = <j}k(x)^k(t) + J2vi(x)F{(t) + E w,(x)Gj(t). (2.6)
k = 1 i = 1 i = 1

Substituting (2.6) into (2.1) and (2.2) one obtains

E *k(i)M<t>t(x) + E Fi(t)[Mvi{x) - /,(.t)] + i G,(t)Mwj(x)
k = 1 i = l j =1

= E 1^k(t)N4>k(x) + E TFi(t)Nvi(x) + E TGj(t)Nw,(x), (2.7)
&=1 t = 1 7=1

and
<» r

yi ^k{t){a„uk + axDiUk + • ■ •) + E Fi(f)(a0Vi + + • • •)
k=1 t=l

+ E Gj(J)(pi0Wj + a1DlWj + • • • — gi) = 0. (2.8)
7=1

The separation of variables can be achieved by assuming that

Mi'i(x) = fi(x) in R, (2.9a)

oi0Vi + ajDjWj • • • = 0 on B; (2.9b)

and

Mwj(x) =0 in It, (2.10a)

auWj + axD xWj + • • • = <Jj(x) on B. (2.10b)

Thus (2.9) and (2.10) constitute boundary value problems from which v{{x), Wj(x) can
be determined. If \<t>k{x)} is a complete set of orthogonal functions, we may assume that
Vi(x) and wf(x) can be expressed in terms of {<t>k(x)}. Thus, let

CO

Vitx) = J^aik<f>,t(x), (2.11)
k = 1

w,(-c) = E bjk<l>k(x). (2.12)
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Equation (2.7) can now be written as

Z = Z [T*k{t) + £ aihTFt(t) + Z bikTG,it)WMx). (2.13)
A; = 1 A: = 1 i' = l j = 1

This equation can be separated for each k into the form

+ Z o-ikTFi(t) + Z bikTGj(t)
  = \k , (2.14)il/<fe(%)  i ,-i

N<t>k(x) Vk(t)

where \k is a separation constant. Thus <t>k(x) are the eigenfunctions and \k the eigenvalues
of the problem

M<f>(x) = \N<j>(x) in R, (2.15a)

ocq(I) -f- otiDicf) • • • =0 on B. (2.15b)

Also, the functions SPk(t) are the solutions of the problem

T*k{t) + Z aikTFi{t) + Z bikTGj(l) - = 0. (2.16)
i = 1 J=1

The conditions that the functions ^k(t) ought to satisfy are obtained by substituting
(2.6) into (2.3). Thus, if

Hi(x) = Z hikMx) (i = 1, 2) (2.17)
A: = 1

then we require that

^*(0) = hlk - Z aikFM - Z bikGM,
i_1 1=1 (2.18)

^(0) = h2h - Z aikF'M - Z bikG'M,
1=1 7=1

where primes mean differentiation.
The coefficients in (2.11), (2.12) and (2.17) can be obtained as follows:

Define M*, the adjoint of M by the relation

m, v) = ft,
where the inner product (£, -q) is defined as

(I. v) = (v, £) = f h dR.J R

Consider the adjoint problem of (2.15) viz

(M* - aN*)£ = 0 hi R, (2.19a)

-f- • = 0 on B. (2.19b)
Let <j}n and be the eigenfunctions of the problems (2.15) and (2.19) respectively.
Forming the inner product of (2.15a) by and of (2.19a) by 4>n and subtracting one
obtains

(f„ , M<t>n) — (4>n , M*£m) — Xn(£„ , N<t>n) — , N*£m),
or

0 = (\„ - , A'</>»)• Hence
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[ £mN<t>n dR = f <j>nN*£m dR = 0, if m ^ n.
J R J R

It follows that the coefficients in (2.11), (2.12) and (2.17) are given by

= I* v,N%. dR Js WiN*jk dR fB H<N% dR
u J* *kN*Zt dR ' °'k fK 4>,N%Z dR ' n'k fR 4>kN*tk dR '

Extension—without initial conditions. In this section we consider the boundary
value problem (2.1) and (2.2) but without the initial condition (2.3). The following two
cases are considered.

I. F(x, t) and G(x, t) are periodic in t of period 2p and 2q respectively and are defined
over — p<t<p and —q<t<q. Assume that F and G satisfy Dirichlet's conditions
and are equal to the mean of their right and left limits at the points of discontinuity.

II. F{x, t) and G(x, t) are not periodic but satisfy Dirichlet's conditions and are
absolutely integrable.

In the first case, it is possible to write

F(x, t) = J2 1n(x) exp , (3.1a)
n = —oo P

G(x, t) = J2 gn(x) exp , (3.2a)

where /„(x), g„(x) are Fourier coefficients given by

U{x) = ~ £ F(x, s) exp ™TS ds, (3.1b)

Qn(x) = w~ [ F(x,s) exp l"TS ds. (3.2b)
z,q j~q q

Assume a solution to (2.1) and (2.2) in the form

u(x, /) = v„(x) exp^-^4- ^ u\(x) exp ■ (3.3)
n= — oo P 7i = — co Q

Inserting into the equation (2.1) and the condition (2.2) one obtains

,. inirt . , T inirt
Mvn exp + M wn exp 

V 1 -

= z inirt . irnrl . , inirt
£Avn exp h vNwn exp h ]n exp •—-

V Q V J
where

and

(nir\ , ibnir (nir\ , ibrnr£ = —o,\ — I +   , -q = -aI—J + \p/ p \q / q

(3.4)

F. (a0vn + ctiDiV,, + • • •) exp - + 2 (tt«®» + ot,D,iv„ + ■ • •) exp
n = — oo P n = - co Q

= 1L gn(x) exp^^ on B. (3.5)
71=-CO Q
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Equating termwise in n and splitting the differential equation and the boundary con-
ditions into two parts each, the following two boundary value problems are obtained:

Mvn(x) = £Nvn(x) + jn{x) in R, ^

a0vn + + • • • = 0 on B;
and

Mwn(x) = vNwn(x) in R, ^ ^

a0w„ + a1D1w„ + • • • = gn(x) on B.

Solving these two, the solution of the original problem (2.1) and (2.2) is given by
(3.3).

In the second case F(x, t), G(x, t) are expressible in the form of Fourier integrals

F(x, t) = J f(x, f) exp (i£t) d£, G(x, t) = J g(x, f) exp (i£t) d£,

where

1(x, f) = ^ / Fix, s) exp (-its) ds, g(x, t) = ^ f G(x, s) exp (-t» ds.

By a process very similar to the one outlined above it is not difficult to see that the
solution in the present case may be expected in the form

u(x, t) = J v(x, f) exp (i$i) d{ + J u>(x, f) exp (i£t) d£, (3.8)

where v(x, f) and iv(x, f) are determinable from the boundary value problems

Mv(x, f) - rNv(x, f) = i(x, f) in R, ^

a0v + a^D^v + ■ • • = 0 on B]
and

Mw(x, f) - rNw{x, t) = 0 in R, ^ ^

a0w + a1D1w + • • • = g(x, f) on B.

where r — aa + iba.
Applications: Flow through a circular tube:
I. With Initial Conditions. Assume that the fluid is contained in a circular pipe of

radius r0 and is at rest. At the initial instant let the time dependent pressure gradient
become operative. One then has to solve the boundary value problem

+•(£+££). (*■«

u* = 0 at r* = r0 , for t* > 0, (4.1b)

u* = 0 at I* = 0, 0 < r* < r0 . (4.1c)

The starred dimensional quantities are nondimensionalized by writing:

,.'4, T*T-
r0 U r0 Uv
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where U is a constant of the dimensions of velocity. Thus problem (4.1) reads

T® + ~T ~ S = T®> 0<r<l, (4.3)dr r dr dt

u( 1,0 = 0, u(r, 0) = 0.

The solution may be assumed in the form

u(r, t) = E &(r)¥*(0 + y(r)7X0, (4.4)
k = 1

where <£*(r) are eigenfunctions of the problem

(£+ r l)0 = ° < r < 11 0(1) = °; (4"5)
and y(r) satisfies the problem

X? + = 1, f(l) = 0. (4.6)\dr r dr.

If, now, v(r) from (4.6) is expressible as
CO

v(r) = J2 ah<t>k(f),
k = 1

then Sfk(t) should be determined from

~ - XA(i) = -ak^ , ^(0) = —ahT(0). (4.7)

Hence
4>*(r) = JoiPhr), X* = -jSt ,

u(r) = i(r2 — 1),

= fn rv(f)Jn(&kr) dr _ 2
J" J rJl(f3kr) dr PlJi(0k)

"dm/"ds
ds e . (4.8)

Hence the solution to the problem is

u(r, /) = Kr2 ~ + 2 ± r(0) + £

II. Without Initial Conditions. Let T(£) be periodic, and let

T(t) = ak exp (~), where ak = f T(s) exp (—~) ds. (4.9)
fr — _ co \ T) / £1) J — v \ u /\ p / ^p

Assuming the solution as

/ ffcx/u(r, t) = X Mr) exp
k = — o

one obtains the boundary value problem

\ P

^+7^ + at=p^' ^!) = 0- ^4-10)
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Hence the solution to (4.1) without initial condition (4.1c) is

"JMikWp)1/2r)
u(r(r, t) = £ vl/2\ 1 ^ exp (ikir//p). (4.11)Uoimwpr)

If T(t) is expressible in the form of Fourier integral

T(l) = J Fjat da, where F„ = ~ / T(s)e-'°" ds, (4.12)

then the solution to (4.1), without the initial condition, is

«•«-£[ Tiis?-1] ^—9L eiai da. (4.13)

Flow in channels of circular annular cross-section.

I. With Initial Conditions. Here one has to solve the non-dimensional equation

du rn/A d2U , 1 du . _ /r 1 \57 = -nO + -p + -^. l<r<c (5.1a)

subject to the conditions

u( 1, t) = u(c, t) = 0, (5.1b)

u(r, 0) = 0, (5.1c)

where
c = Ti/r0 , and r{ and r0 are the inner and outer radii of the annulus. The solution

to the problem is
CO

u(r, t) = Yj + v(r)T(t), (5.2)
k = 1

where <f>k(r) are eigenfunctions of the problem

d* + r = x0' 1 < r (5-3)
and v(r) is obtained by solving

{d?+\ £)v =v(i) = y(c) = °" (5'4)

Thus,

<j>k(r) = Z0(\r), y(r) = 1 ~r2 + C1^7l0gr]'

where

7 Ar\ _ ^o(Xr) _ Fn(Xr)Zo(Xr) J„(X) F0(X) '

and Xt are roots of the equation

Za(\c) = 0. (5.5)
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Also, when v(r) is expressed as XX i c,k<t>k(r), the functions ^k(t) are to be obtained from

(5.6)

dVk 2 (IT
~dt + ~ ~a" It'

MO) + akT( 0) = 0.

Thus
" dT(v)

*t(t) = -ak T(0) + J" ~L exp (XIrj) dr, exp
dr,

Hence the solution to the initial condition problem through an annulus in

" dT(y)
dr,i(r, t) = X) ~ ak exp T{0) + f exp (\lv) dr, ■Z0(\kr)

2 t C 1 11 — r + —: log rlog c . no. (5.7)
The coefficients ak in the expansion of v(r) in {<j>k(r) j are obtained from making use of
the relations

rc
k.

Thus

J Z0(\tr)Z0(\kr) dr = 0, i ^

f Zl{\kr) dr = ic2Z2M - \Z\(\k).

ft rv(r)Z„(\kr) dr _ 2
fi rZ„(\tr) dr Xk[cZt(\kc) + Zi(Xt)]

II. Without Initial Conditions. If T(t) is periodic and expressible as (4.9), then
the solution to the annular problem without initial conditions is

u(r, t) = it, Ek(r) exp —■ , (5.8)
*--» V

where Ek{r) satisfies

ilbTT -v—j . LI Ju u . X 1111/ j, n /i\ t~t / \ r\
— Ek = ak + , Ek( 1) = £t(c) = 0.

Hence

/? fr) _ lakP
Mr) ~ for

M(r, 1, for/p) — M(r,c, kw/p) _
M(c, 1, /c7r/p)

where

M(z, 7/, (8) = Ja(i(ifte)w*)K0Wy)w2) - J a{i{ipy)U2)K0{iipx)U2).

If T(<) is not periodic but is expressible by the Fourier integral formula (4.12) then,
the solution to the annular problem without initial conditions is

u(r. t) = J Ea(r) exp (■iat) c?a, (5.9)
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where Ea (r) satisfies

ioEa = Fa + ^ , Ea( 1) = Ea(c) = 0.

Hence

M(r, 1, a) — M(r, c, a)'(r'i)'iLd"L ds M(c, 1, a) \
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