THE NONANALYTICITY AT THE SURFACE OF A BODY
IN AN OHD OR MHD STREAM*

By R. C. BOGER anp G. S. S. LUDFORD (Cornell University)

It has long been rccognized that the extreme stretching of vortex lines in OHD
inviscid flow past a stagnation point results in singularities at the surface of an immersed
body. A general discussion of this nonanalyticity was initiated by Hayes [1] and amplified
by the present authors [2], who were temporarily sidetracked from their original purpose
of treating three-dimensional MHD flow [3].

In plane flow there is no stretching, and the nonanalyticity which then occurs in
MHD' (Ludford & Murray [4]) is due entirely to the special way in which vorticity
is generated near a stagnation point (Ludford [5]). In three-dimensional MHD both
effects arise, and it helps to understand the stretching first.

The object of the present note is to derive the form of the nonanalyticity by simple
arguments. For this purpose it is sufficient to treat the front stagnation point, which
is responsible, and an incompressible fluid.

With suitable choice of units the flow on the surface z = 0 of the body may be written

ut:(l—a)x—7yy vu=7x+(1+a)y'
Principal axes of deformation have been chosen and the constant «, which may be
assumed nonnegative, measures the rate of deformation. The constant v is half the
normal vorticity. The rate of dilatation is 2 so that an incoming flow has been assumed;
by continuity,
w= —2 (1)
since it must vanish for z = 0.
The streamline pattern on the surface is characterized by the parameter
A=d -7 @)
and may be classified as follows:
A < 0 spiral, 0 < A <1 nodal
A =1 stagnation-line, A > 1 saddle-point.

For simplicity assume that the vorticity is in fact singular at the surface. The velocity
is bounded near the surface, so that singularities —G’(z) and F’(z) in the z- and y-com-
ponents of vorticity can only arise from the shears —dv/dz and du/dz. [For the same
reason, normal vorticity cannot be singular.] Thus

u=F(@) +u,, v = G +v,, 3)
where F(0) = G(0) = 0. The problem is to determine F and G.
OHD flow is governed by the Helmholtz equation

Vo —0-Vqg =0, where q = (4,0, w) and o =V A q. (4)

*Received June 1, 1967. Supported by the U. S. Army Research Office—Durham.
IWithout the vorticity itself being singular.
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The expressions (1) and (3) give an exact solution when

2:G" + (1 — &)@’ = 0, (5a)
2%F" 4+ (1 4+ «o)F = 0, (5b)
vy = 0. (5¢)
The relevant solution of the first two is
F =Fe" %  G=Gz""""” (F,, @, consts.). (6)

The third is connected with the Proudman-Taylor theorem of rotating fluids. If~y
were nonzero, q would be a solid-body rotation (—vyy, vz, 0) plus a small disturbance
which varied with z, i.e., in the direction of the axis of rotation. The theorem states
that this is not possible.

Equation (2) now reads A = o, so that the spiral streamline pattern does not occur.
For a > 1, the velocity F itself is singular and does not satisfy F(0) = 0 unless F, = 0.
The loss in generality indicates that the saddle point is special and will not occur in
practice. Even if such a flow were realized, the introduction of y-vorticity, however
small, into the incident stream would not yield a neighboring flow. In particular,
Howarth’s irrotational flows [6] with a saddle point are special. The same conclusion
can be made for « = 1,° but it may be wrong: the fuller analysis of [2] is unable to
decide whether the stagnation line is also special.

Both components of velocity (6) are bounded and both components of transverse
vorticity are singular for @« < 1. The higher-order analysis in [2] shows that the nodal
case retains its full generality, so that it will occur in practice.

The result (6) can be obtained more graphically in terms of the convection and
stretching of vortex lines which the Helmholtz equation describes. The z-component
of vorticity thereby varies like w and hence must vanish at the surface, i.e.,, v = 0.
The shear velocities F and G do not contribute to the stretching parallel to z = 0, so
that we may take the ends of an element of a vortex line to move on adjacent stream-

lines

= const.,  y’2'"* = const.

x2zl—

—(l—a)/2 —(1+a)/2

of the flow (u, , v, , w). Hence w, = —G" and w, = F’ vary as z and 2
respectively.

Unfortunately there is no similar argument in MHD and we must rely on the formal
approach used first. The right-hand side of the Helmholtz equation (4) is now replaced

by the generating term

B8 curl L (7
where 8° is the ratio of magnetic and dynamic pressures,
L =R,[(E + q X H) X H] ®)

is the Lorentz force, and R,, is the magnetic Reynolds number.

2,0~ )12 j5 then replaced by log z, giving Lighthill’s result [7] for weakly sheared flow past a cylinder.
However, the coefficient of z in u is not accurately estimated by zero and our whole argument, including
Lighthill’s result, is invalid for « = 1. The axially symmetric case « = 0 yields Lighthill’s correct result
for a sphere.
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In a steady state with finite conductivity the electromagnetic field, with one exception,
cannot change rapidly going away from the wall. The normal electric field can and does
change rapidly, due to charge accumulation,® so as just to balance the velocity-induced
field. Otherwise there would be a rapidly changing normal current, which would require
a similar tangential magnetic field. Hence only the transverse part of the velocity-
induced field is important in Eq. (8), i.e., the significant part of the current is

an(GI —F> O)

where n is the normal component of magnetic intensity; which leads to n°R,.F and »’R,,G
as the transverse components of L. It is the rapid change of these normal to the wall
which gives the leading terms in the expression (7), so that Igs. (5a, b) now become

26" + (1 — )G — ~F' = 206, (92)
2" 4+ G + (1 + &)F' = 290F, (9b)

where 9 = §°R,n” is the interaction parameter based on normal magnetic field. Equa-
tion (5¢) is replaced by one defining v, which is now, in general, nonzero.

It should be stressed that Eqs. (9a, b) only determine the way in which singular
vorticity is created. Only the accompanying singularities in the other state variables
have been taken into account in their derivation. The F and G determined by them
do not provide an exact solution (1, 3) of the full MHD equations (in contrast to OHD
above).

The left-hand sides of Iigs. (9a, b) give the creation of this vorticity by OHD stretch-
ing; the right-hand sides by MHD generation. Note that the latter is proportional
to the vorticity itself. The relevant solution is a linear combination of z** and z°* whose
cocfficients are not important; here

6. = 11 F AV + 9.

The spiral pattern (A < 0) can again be excluded: the velocity would oscillate
infinitely often near z = 0. We may also exclude the saddle-point patterns for which
A is greater than (291 4 1)°. Further investigation [3] shows, however, that the velocity
becomes singular in higher-order terms* whenever A is greater than 1. All saddle points
are therefore excluded. The stagnation line A = 1 may also be special, though only
when n = 0 (magnetic field parallel to the plane).

Although our discussion has been based on singular vorticity, e, and e, in fact always
determine the nonanalytic character of the flow, with 2z the most important such term.
Note that they depend on two parameters only. A characterizes the streamline pattern
on the surface. 9T is the interaction parameter based on normal component of magnetic
field at the stagnation point, and characterizes the MHD production of vorticity.

Hayes has pointed out that the present results hold equally well for a compressible
fluid, when there may also occur entropy gradient effects. What effect these nonanalyt-
icities have on the computation of blunt-body flows has not yet been established.

3The charge density, though singular, is integrable.
“Powers of z appear with exponent m(1 — A2)/2 4 91 and m arbitrarily large. 9 is zero in OHD
and no further restriction arises from these terms.
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