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ON THE EXISTENCE OF NORMAL MODE VIBRATIONS
IN NONLINEAR SYSTEMS*

BY
C. H. PAK anp R. M. ROSENBERG
University of California, Berkeley

Introduction. Certain properties of normal mode vibrations have been studied
fairly extensively in recent times [1]. However, the question of their existence has
largely remained open (except for the case that the normal mode vibrations are “similar”.
This is the name applied to normal mode vibrations z,(f)/z;() = c¢;; = const, (¢, j =
1, 2, ---); i.e. where the wave shapes are similar in the sense of plane geometry). The
first significant advance in establishing existence theorems for cases including nonsimilar
normal mode vibrations was made recently in a paper by Cooke and Struble [2] in which
the motion is, as the authors say, “near to linearized motion”. This statement implies
actually two properties, one referring to the structure of the system, and the other to
its motion. It implies, in fact, that the system is “linearizable” [1] and that the motions
are small. Under these assumptions, one can readily show that the equations of motion
used by Cooke and Struble can always be modelled by a straight, anchored chain of
elastically coupled particles, each possessing a single translational degree of freedom in
the direction of the chain. For instance, a space array of elastically coupled particles
each having three translational degrees of freedom cannot, in general, be a model for
their equations because that system may be nonlinearizable, owing to the so-called
“kinematic” nonlinearities [3]. Also, strongly nonlinear systems do not fall within the
compass of the work by Cooke and Struble. It is probably for this reason that these
authors conclude that the general question of the existence of normal mode vibrations
“remains an unanswered. . . mathematical problem”.

In this paper we demonstrate the existence of normal mode vibrations of elastically
coupled, nonlinear systems where neither the system nor its motion need lie near the
linear case. In fact, the systems admitted here need not have isolated equilibrium posi-
tions; they may be strongly nonlinear or nonlinearizable, and the nonlinearities may be
“elastic” or “kinematic’’; hence, the physically interesting space array of particles is
admitted. The methods used in the existence proof are purely geometrical. They depend
on the construction of a metric Riemann space on which one can utilize all theorems of
Riemannian geometry; in this way, the existence proof is reduced to demonstrating the
existence of certain extremal arcs in a Riemann space.

The system. A Hamiltonian system is called simple if it is conservative, holonomic
and scleronomic. We consider a simple Hamiltonian system having a finite number n
of degrees of freedom. The generalized coordinates are the components ¢; of the vector
qg=(q,9, @), and the velocity vectoris ¢ = (¢, , g2, * -+ , ¢»). Since the system
is simple, the energy integral

T(@ —Ul@=h t20
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exists, where T is the kinetic energy, U is the potential function, and h = const is the
total energy of any given motion of the system. The kinetic energy is positive definite,
quadratic in the ¢; and has a constant matrix called the inertia matrix. When that
matrix is not diagonal, the system is said to be inertia-coupled. But then there always
exists an orthogonal transformation which diagonalizes the inertia matrix. Hence, we
may assume without loss of generality that the system is inertia-decoupled, and we
denote by m; the diagonal elements of the inertia matrix. Then, the energy integral is
of the form

Z; Im.g: — Ulg) = h. (1)
The quantities m; may be regarded as the masses of particles, associated with the g, .
Evidently, the m; need not be distinct; for instance, in a space array of particles, n/3
is an integer, and for each three ¢; , the m; are equal.

The set {q;(t,)} is called the configuration of the system at the time ¢,, and the Euclidean
n-space E" contains the configuration space ®(h) for a motion of energy level h. As the
system moves, it passes through a sequence of configurations, and the locus of the points
in ®, corresponding to this sequence is called the trajectory of this motion.

The motion of the system satisfies on any time interval [¢, , {,] Hamilton’s principle

6[ Ldt =0,

where the Lagrangian function is L = T + U, and a necessary condition for satisfying
Hamilton’s principle is that every ¢, satisfy

nl-'gi = a(]/aQa ] (Z = 1) 2) ct 7n)~ (2)

Clearly, the nonlinearities in (2) arise from the structure of the potential function only.
The potential function is subject to all of the following restrictions, and only to them:

(i) U(g) is of class C*, and at the origin U/ + h > 0;
(i) Ulg) = U(—g);
(iii) the set
I' = {¢:Ulg) + h =0}

is a closed, connected hypersurface in " which surrounds the origin,' and the gradient
vector VU does not vanish on T'. These conditions will be called the admissibility
conditions.

The smoothness condition (i) is required in order to apply the theorems of the calculus
of variations [4].

The symmetry condition (ii) holds for any system of particles interconnected by
springs when the spring forces are the only potential forces of the system. It states that
the interacting forces between any two particles depend only on the distance between
these particles, but not on the direction of their relative position vector. The symmetry
condition has the consequence that the origin of E" is always an equilibrium position
because one has

VU(g) = —VU(—g)
1See the definitions of ®(h) and (k) in (3) and (6).
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and, thus, from the smoothness condition
VU(+0) = VU(-0).

In addition to the origin, there may be any number of (including infinitely many) isolated
or neighboring other equilibrium positions. The case of neighboring equilibrium positions
may arise in cases of physical interest—for instance, when an equilibrium position is
“neutral”’.

The stagnation condition (iii) defines the locus of rest points or stagnation configura-
tions because the kinetic energy vanishes on T'. It follows from (1) that the trajectories
of all motions with energy level & are bounded by TI'; therefore, I will also be called the
bounding surface. One observes that, because of the energy integral (i) and because of
(iii), U takes on its largest absolute value on T.

Under the nonsingular transformations

x; = (mi)l/2Qi ’ (7/ = 1’ 2: R n)

the potential function becomes a function of x = (z, , z,, --- , x,) where the x; are
orthogonal coordinates in £, and the directions of the z, and ¢, , and hence the origins
of the z and ¢-systems, coincide. Then, for every motion of fixed energy level h, we define
as the conjfiguration space of the motion the closed subset ®(h) in E™ defined by

®(h) = {2: U(x) + h = 0}. 3)
The line element in ® is the Euclidean arc length ds, defined by
ds’ = dz; dx; 4)

(where the double index summation convention is used, as will be done throughout).
Jacobi’s form of the principle of least action (valid for simple systems) is

5A = 5 fP " QU + W) (dz, de)” = 0, (5)

where P, and P, are distinct points in &.

It is of immediate and practical importance to point here to the meaning of the symbol
8. The principle of least action states that the trajectory is that curve for which the
action integral in (5) is stationary among all curves joining P; and P, which lie in the
open neighborhood of the trajectory. In fact, the existence of such an open neighborhood
is presupposed in the derivation of the Euler equations of (5). Consider, for instance,
the case where P, and P, are both on T, and consider a curve joining P, and P, , also
lying on T. This curve actually makes the action integral an absolute minimum; but it
cannot be a trajectory because no open neighborhood exists around such a curve.

We may now construct a Riemann space R" on the open subset of E* defined by

Q) = {z: Ux) + h > 0} (6)
whose line element is defined by

The subset © is the largest open subset of E” surrounded by T, and it is simply connected
because T is a closed, connected hypersurface enclosing the origin. Moreover, dA* is
positive, definite in the dx; . Hence, the theorems of Riemannian geometry may be
applied in ©.
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Representations of the motion. The integrand in (5) is a first order homogeneous
function of the dz; . One deduces that the functional A depends on the path, but the
path may be parametrized in many ways, and the value of 4 is independent of the choice
of parameter [4]. Let « be a parameter; then, one may write (5) as

a(P3)
) ©QU + @) da = 0, 8)
a(Py)
where primes denote differentiation with respect to «. Different choices of the parameter
result in different representations of the motion.
When « is the time ¢, the Euler equations of (8) are the equations of motion

& = aU(z)/dz; , @=12---,n) 9)

where use was made of the energy integral
2(U + h) = &, . (10)
When « is the Euclidean arc length s, defined in (4), the Euler equations of (8) are
2(U + h)z)! + ((0U/oz)xh)xt — aU/dx: = 0, =12 ---,m), (1)

where use was made of
v = 1. (12)

When « is the Riemann arc length 4, defined in (7), the Euler equations of (8)
become

2(U + h)zi’ + 2((8U/dx)xpxi — (xfx))(@U/ox) =0, (1 =1,2,---,n), 13)
where use was made of
2(U + h)zix! = 1. (14)

One may regard (9) as the Newtonian equations of motion of a particle having unit
mass, moving in the n-dimensional configuration space under the force

VU = (0U/ox, , 3Udz,, - -+ , 8U/dx,).

This system of the unit particle in n-space is called the pseudo-system. When it moves
in the configuration space it traces out a trajectory, and (11) are the differential equa-
tions of that trajectory. Finally, (13) are the differential equations of this trajectory in
the n-dimensional Riemann space 0, expressed in terms of the Riemannian arc length A.

It is evident that choices of a parameter other than {, s, or A are admitted. For
instance, in the two-dimensional problem it was found convenient to choose one of the
z; as a parameter [5].

The central theorem. We shall demonstrate the existence of equiperiodic x;(f)
satisfying (9) which are such that, at some instant ¢, , every z;({,) = 0, and at some
other instant ¢, , every &;(t,) = 0. These are well-known properties of the normal mode
vibrations of linear systems, and they have been called vibrations-in-unison [1]. It is
clear that, at ¢ = #, , the trajectory of a vibration-in-unison passes through the origin
of E", and at ¢t = ¢, , it reaches the bounding surface. Then, one can show easily that,
in consequence of the symmetry condition on U, this trajectory will reach the bounding
surface again. Therefore, the trajectory of a vibration-in-unison is of the type called by
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Cooke and Struble BOB, and which has been called elsewhere [6] a simple trajectory.
The essential steps in the proof of the existence theorem are outlined below:

(a) We shall define, in the open set ®, a family of surfaces, called constant action
surfaces, denoted by T'(4); these will be regarded as the images of the bounding surface
under maps Z* : T'— I'(4). For any fixed A, these maps are of class C*, everywhere onto,
and almost everywhere one-to-one.

(b) Every constant action surface is connected, symmetric with respect to the origin,
and smooth everywhere except at those points for which the maps Z“ are not one-to-one.

(c) All trajectories starting from T intersect every I'(4) orthogonally for all A > 0.

(d) We shall show that there exists an a > 0 such that I'(4) is smooth everywhere
if 0 < A < a. One of these smooth constant action surfaces I'(4,), 0 < 4, < a will
be called the S-surface.

(e) Our problem will be formulated as a variational problem with variable endpoint
by regarding the S-surface as the end-surface. It will be shown that, for the functional
(5), the transversality condition is identical with orthogonality, and that the Weierstrass
and Legendre conditions are satisfied everywhere except on T'.

(f) Finally, a Riemann metric is defined on the closed region surrounded by the
S-surface. It will be shown that this region is compact in the sense of this metric, and
that any point in this region may be joined to the S-surface by a shortest join which is
at least as short in terms of the Riemann length as any other curve joining that point to
the S-surface. Therefore, this shortest arc satisfies the Euler equations and the trans-
versality condition. Since the origin is one of the points of the region surrounded by S,
the proof is complete.

Constant action surfaces. Consider the unit mass of the pseudo-system starting
from an initial point X on T'. Since the gradient vector ¥V U does not vanish on I' (admis-
sibility condition (iii)) the unit mass moves into the open region ® defined by (6).
But on T the velocity vector & = (&, , 5, -+ + , £,) vanishes; in consequence, the initial
conditions on the equations of motion are completely determined by X. Now, the equa-
tions of motion satisfy easily the conditions for existence and uniqueness of solutions;
i.e. their right-hand sides satisfy a uniform Lipschitz condition throughout & (the
Lipschitz condition follows from the smoothness condition on U, and the uniformity is
a consequence of the existence of the energy integral for all £ > 0). Hence, there exists
a unique solution of (9) for all £ > 0 which will be denoted by

o(t, X) £ 0,(X).

If we call z(t, X) and £(¢, X) the first-half and the second-half components of ¢,(X),
respectively, then z(¢, X) is the configuration at ¢, and &(f, X) is the velocity vector at
that configuration.

Along the trajectory, Hamilton’s form of the action integral is

a= [ lss, 0l as )

where the symbol ||:|| denotes the Euclidean norm. The integrand in (15) is twice the
kinetic energy and, thus, positive everywhere in 0. Since the trajectory moves into that
region, the action is a nonnegative, increasing function of time, or

A /ot = ||&|}* > 0. (16)
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It follows that, for any preassigned, fixed value of the action 4 > 0, one can always
find a unique time ¢, such that (15) is satisfied. Expressed differently, for every trajectory
starting at X on T when ¢ = 0, there exists a unique configuration x(t4, X) such that
the action has the preassigned value A. We shall call z(t,, X) the extremity of the tra-
jectory.

Now, the action 4 is of class C* in X and C* in ¢, and it is an increasing function of ¢
by (16). Therefore, one may apply the implicit function theorem to obtain the time
at which the action along the trajectory has the value A. We denote the time at which
the trajectory reaches the extremity x(f, , X) by

ts & Wa(X). an

This function is of class €% in X, and C* in A everywhere in ©, and everywhere in &
except on I'. We now define a map

7' T -0 C I

given by
Z4(X) = 2ty , X). (18)

Thus, Z* maps the initial point X onto the extremity when the action is A. This map
is of class C*in X and C* in 4, except on the bounding surface. It is interesting to observe
that the map Z* is, in fact, the solution to the Riemann trajectory equations (13) be-
cause A is the independent variable in these equations.

Finally, we define the constant action surface as

r) = 2z%(r) = {Z'X): X € 1}. (19)

Expressed in words, I'(4) is the set of extremities of all trajectories starting from T
such that the action integral has the same value A along all of them. Thus, a constant
action surface is the image of ' under the map Z“. Since T is a closed hypersurface,
I'(4) is also a closed hypersurface. Moreover, T' is smooth; hence, I'(4) is smooth in
the neighborhood of every point for which the map Z* is one-to-one. We now state

LEMMA 1. There exists a small A, > 0 such that, for every positive A < A, , the
surfaces T'(A) are locally (n — 1)-dimensional everywhere. Hence the map Z* s locally
one-to-one for all positive A < A, .

In the proof we make use of the following result from matrix theory: In a Euclidean
space E", the null space of an (n X n) matrix B is a linear subspace of E", generated by
all vectors a for which Ba = 0. The dimension of the null space is the maximum number
of linearly independent vectors in the null space, and it is equal to n minus the rank
of B. If B has the rank e, and if @, , a;, -+ , @, are linearly independent vectors for
which @e41, @4z, -+, @, are in the null space of B, then the vectors Ba; , (j=1,2,---, &)
are linearly independent; thus, they span the range space of B, that space being an
a-dimensional subspace of E".

To prove Lemma 1, we consider two trajectories starting, respectively, from neighbor-
ing points X and X 4 6X on T'. The extremities of these trajectories, for a fixed 4,
are Z*(X) and Z*(X 4+ 6X). If we denote by 6Z; the ith component of the difference
vector

8Z = Z*(X + 8X) — Z*(X), (20)
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that component is

6.1: (tA 2 X)

aX, 6X., , (21)

6Z.‘ = Li:;(tA y X) 6[,{
where ¢, is defined implicitly by the line integral along the trajectory

A = j-u [l&Gs, X)||* ds = fu 2[h + Ula(s, X))] ds. (22)

But, since the action is the same along both trajectories, one has from the first equality
(22)

A, (s

litta , X o, +f is, X) 228X g0 5x, = 0 (23)
and from the second,
léta , DI ol +f 2¢.(s, X) %% (SYX)d 6X, = 0, (24)

where use was made in (26) of the equation of motion dU/dz; = &, . If one integrates
the integral in (24) by parts and adds the resulting equation to (23), there results

ox(ta , X) X)

(s , X1 6ta + £:(ta , X)

Then, comparing (21) and (25) one has the important result

or the inner product of velocity vector and difference vector vanish. This means that
the velocity vector % is orthogonal to T'(4) for every trajectory originating at any point
X on T. In other words, the constant action surfaces are the geodesic parallels of the
trajectories. This remarkable result is due to Thomson and Tait [7]. Since 2(U + h) =
l||]* > 0, one has from (25)

_ _Cl.?,'(t,; y X) Bxi(tA y X)
S P
and the substitution of this quantity in (21) gives
T.L; 0x; oz,
87, = e ” X, X, + ax, 80X,
T; x,_ 9z,

where 3;; is Kronecker’s delta, and #; , ||2||* and dz,/6X, are all evaluated at ¢ = ¢,
The matrix form of (27) is

67, 80X,
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where B, (X) is the (n X n) matrix

[ E _md . ad [en | ]
l&||* TEIS l£]]* || 0X, oX,
.« o «2 " =
A T Tok, || 0% 0z,
= _ i — 2 L. — (¢
Ba(X) IR a1 || 2, ax,|
_Ed by @ 103, 0z,
L 1E2NN [&]]* [l2||°JLeX, X,

and this matrix is of class C' in X and C® in 4.

But 6X and 4Z are vectors of infinitesimal length. The first lies in the tangent plane
of T at X, and the second in the tangent plane of I'(4) at Z*(X). Hence, the matrix
B.(X) is a map which assigns a small neighborhood of the tangent plane of T at X,
to a small neighborhood of the tangent plane of T'(4) at Z*(X). Now, the matrix is the
product of two (n X n) matrices. The first of these is symmetric, and its eigenvalues
are all unity except for one which is zero. Therefore, its null space is one-dimensional
and it is, in fact, in the direction tangent to the trajectory. The second matrix of (28)
isan (n X n) identity matrix when ¢ = 0;i.e. when 4 = 0. Therefore, for A = 0, B,(X)
is of rank » — 1, and its null space is orthogonal to I" because any trajectory originating
on T is orthogonal to it [1]. But B,(X) is of class C* in A. Therefore, for A sufficiently
small, B,(X) remains of rank n — 1, and its null space is in the neighborhood of the
gradient VU at X on T, and therefore not in the tangent plane of T' at X. This implies
that, for sufficiently small A, the tangent plane of I'(4) at Z*(X) is also (n — 1)-dimen-
sional, thus proving Lemma 1. As a consequence of Lemma 1, we prove

LemMA 2. There exists a positive number o such that, if 0 < A < a, the map Z* is
one-to-one, which implies that T(A < «) is a smooth closed hypersurface.

To prove this lemma, we shall show that there exists a small positive A such that
Z*(X) is globally one-to-one. Consider two trajectories issuing, respectively, from non-
neighboring points X’ and X"’ on T, and let us suppose that they have the same extremity
when A = 4, , or

z = Z"(X) = Z*(X").

In other terms, Z**(X) is not one-to-one at z. Then it follows from the smoothness of T,
and from the fact that the trajectories are orthogonal to I' at X’ and X", respectively,
that z is not near the bounding surface. Hence, there exists a least upper bound 4 = A"
such that Z*'" is globally one-to-one, and we have shown that there exists also a least
upper bound A’ such that Z*' is locally one-to-one. Then one chooses a to be the lesser
of A’ and A", which proves Lemma 2.

Properties of trajectories. In order to demonstrate the existence of normal mode
vibrations, it is necessary to make use of certain properties of trajectories. Some of these
are given here.

One of the propertics, demonstrated elsewhere [5] is

ProrerTY 1. Every trajectory which intercepts the bounding surface T, intercepts
it orthogonally.
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ProrErTY 2. When a trajectory, starting from a configuration z in ©, intercepts
the bounding surface T, it will return to z along the same path on which it reached T.

It is clear that such a property, if it exists, is a consequence of uniqueness theorems.
We shall make the demonstration of Property 2 in some detail because, in proving it,
we deduce certain results, needed later on.

It is convenient to write the equations of motion (9) in the form

dy/dt = {(y), (29)
where f is a 2n-dimensional vector having components
f.‘ = j:c‘ y fn+i = aU(x)/ax. ) (Z = 1» 2) R n) (30)

and y(z, £) is a 2n-dimensional vector whose first » components are the configurations z,
and the second n components are the components of the velocity vector & at z; hence
the y-space is the phase space.

As stated earlier, the right-hand sides of (29) satisfy a uniform Lipschitz condition.
Thus, there exists a unique solution of (29)

y@O) = oY), | < = (31)
satisfying
y(0) = ¢o(Y) = Y

where ¥ = (X, X), and X is in ®.

The quantity ¢ in (31) plays the role of a parameter of the transformation ¢, which
maps the initial point at ¢ = 0 into a terminal point (z, &) at .

Because of the smoothness condition (z) on U, f(y) is of class C?; i.e. the transforma-
tion ¢, is of class C* in Y and C® in ¢ [8]. Moreover, since (29) is autonomous, ¢, is a
one-parameter group of transformations satisfying

Prrs = Py O(p' (32)

where the small circle denotes the composition of two transformations. Expressed dif-
ferently, a terminal point y(s + ¢) is, on the one hand, the image of an initial point Y
at { = 0 mapped by ¢, , and on the other, it is the image of ¢,(Y) mapped by ¢, ,
where ¢,(Y) is the image of ¥ mapped by ¢, .

From the uniqueness of solutions of (29) and from (32), it follows that no two distinct
trajectories of the same energy level can have a common tangent in the configuration
space.

It is a property of the one-parameter group of transformations that the inverse
transform exists and is given by

e = o (33)
Suppose we write (29) in the two forms
dx;/dt = %, , di./dt = oU/ox;
with z(0) = X, £(0) = X, and
dr;/d(—t) = —&;, d(—2;)/dt = oU/dx;
with z(0) = X, #(0) = —X. Then, if the solution of the first set is
(@, ) = oi(X, X),
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that of the second is
(x, —i) = o_, (X, —X).
In particular, if X is on T, one has X =0, so that
(x, #) = ¢(X,0); (v, —3) = ¢_(X.0).
In consequence, when #(0) = 0,
(z, 2) = o, —2),

which proves Property 2.
As a corollary of Property 2, one also has

PropreErTY 3. If a trajectory which issues from a point X’ on T intersects I' at
some other point X" ¢ X’ on T, it is a closed trajectory.

Clearly, this property holds for systems whether they satisfy the symmetry condi-
tion (ii) on U, or not. When that condition is satisfied as well, trajectories also have

ProrerTY 4. If a trajectory, starting from X on T, passes through the origin of
the configuration space, it also intercepts the point —X on T.
This is a consequence of

PropErTY 5. Every trajectory which passes through the origin of the configuration
space is symmetric with respect to it.

This property was first given by Mawhin [9]. One of the properties which is central
to our proof of the existence of simple trajectories is

PropERTY 6. All trajectories starting from the bounding surface T intersect
every constant action surface orthogonally.

This property was demonstrated in (26). It is a general property of all families of
trajectories, whether they issue from points on a fixed surface, or from a fixed point
in different directions.

Local minimization. By Lemma 2, there is a constant action surface I'(4,), 0 <
A, < a, given by

r@,) =z = {Z"X): X er)

on which the map Z** is one-to-one everywhere; we call this surface the S-surface.
It lies near to, and resembles in every way, the bounding surface T i.e. it is a closed,
connected, smooth surface which is symmetric with respect to the origin of E*. Let M
be the closed region surrounded by the S-surface, and let /° be the interior of M. Then,
the open set M° is also connected, and the origin is one of the points of M°. It is evident
that each pair of points in M can be connected by a curve of finite Euclidean length
lying entirely in M. In particular, every point of M° can be connected to all points of
S by such a curve.

Let (., be a curve connecting two points x and y in A/. Then, the Riemann length
of C,, , denoted by A(C.,), is the action integral evaluated along C,, . Since M is closed
and bounded, and since the potential function U is continuous, there exists a maximum
value 7 of (2(U + h))"* on M. Consequently, any pair of points in M can also be con-
nected by a curve of finite Riemann length.
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Consider a curve Cy, joining * € M to a point X € S and a small open neighborhood
9 around Cyx, . While we do not insist that 9T lie necessarily entirely in M, we do require
that U(y) + h > 0 for all points y in 9t; this is done in order that the variational problem
(5) be meaningful. We seek a curve Cy, such that

A(CXz) < A(CYz) (34)

for any curve Cy, C 9 different from Cx, , where Y € 91 M 8. A curve Cy, satisfying
(34) will be called a locally minimizing arc. The word “local” implies that all curves
neighboring on Cx, are admitted to the competition.

This is a problem in the calculus of variations with movable endpoint; hence, the
locally minimizing are must satisfy all necessary conditions; i.e.

(I) the Euler equations,
(IT) the transversality condition,
(I1I) the Weierstrass and Legendre conditions,
(IV) Jacobi’s focal point condition.

It was already shown in the section “Representations of the motion” that whenever
a curve satisfies condition (I), it is a trajectory. We shall now show that the transversality
condition is identical with orthogonality in the sense of E". In fact, after some calculation,
the transversality condition for the functional (5) reduces to

@ + h)*z! dx: = 0, (35)

where 2’ = (z/, z,, -+, x!) is the unit tangent vector of the trajectory, and dz =
(dz, , dzx, , --- , dz,) is an arbitrary vector in the tangent plane of the S-surface. Since
U 4+ h > 0on S, (35) implies that every locally minimizing arc is orthogonal to S; hence,
by Property 6, it is an arc of a trajectory starting from a point on T

The Weierstrass and Legendre conditions may be readily verified for the functional
(5). In fact, the Weierstrass E-function may be written in the form

E(z, o', X') = U + m)"*(IX'| [l2'l] — /X9

and, by the Schwarz inequality, E > 0 whenever two vectors X’ and 2’ are linearly
independent and U + h > 0. Thus, the Weierstrass condition is satisfied everywhere
except on the bounding surface I'. In a similar manner, Legendre’s condition is easily
verified. The focal point condition (IV) will not be needed in the existence proof of a
simple trajectory; hence it is not examined.

The shortest join. In this section, we restrict our treatment to the closed region
M surrounded by the S-surface; our interest centers on a shortest join (not necessarily
a trajectory) between any pair of points in /. We shall define the Riemann distance
between any pair of points z and y in A by the distance function

d(z, y) = inf A(C.,), (36)

where inf refers to all curves lying in M and connecting z and y. A curve C,, is said to
be a shortest join between z and y if

d(z, y) = A(CL,)-

One can readily demonstrate
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LemMa 3. The Riemann distance d(x, y) satisfies all the axioms of a metric; i.e.,
() d(xy) = 0; (ii) d(z, y) = 0 only when = = y; (iii) d(z, y) = d(y, 2); (iv) d(z, y) <
d(z, 2) + d(z, v).

and

LEMMA 4. Let {x"}z (¢=1,2, - - ) be a sequence of points in M. Then lim ||z—z'||=0
if and only if lim d(z, ') = 0. Hence, the Riemann metric space M is compact.

These lemmas follow from the definition (36) of d(x, ) and from the inequality in M:
m |z — yl| < d,y) < @z — yl

where 7 is the largest value of (2(U + k))'? and m is the smallest value of this quantity
in M.
As a consequence of Lemma 4, one has

LeEMMA 5. Any pair of points in M can be connected by a shortest join.
The proof of this lemma rests on the following

Lemma ([10]). If in a finitely compact set H, the points x and y can be connected by a
rectifiable curve, then there is a shortest join in H.

Here, the term “finitely compact set” means a set in which every infinite bounded
subset has an accumulation point in the set, and a “rectifiable curve’ is a parameterized
curve C: z(t) = (z,(f), z.(t), -+, z,(t)) in which the range of the parameter ¢ is 0 <
t < B where 8 is bounded.

Evidently, a compact set is finitely compact. In particular, the Riemann space M
is finitely compact, and any pair of points in M can be connected by a curve of finite
Riemann length; thus Lemma 5 is true.

It is noted that a shortest join is not necessarily a trajectory because the existence
of an open neighborhood about that curve is not assured. For instance, if X and YV
are points on the S-surface, and if the shortest join Cxy lies on S (because the function
U(z) + h may take on lesser values on S than on the interior 3°), no open neighborhood
exists about Cyy ; in consequence, the variational problem (5) may, then, not be mean-
ingful.

Existence proof. Here we prove

THEOREM 1. Every point in the configuration space can be connected to the bounding
surface T by a trajectory whose Riemann length is at least as short as that of any other curve
conmecting that point to T'.

The Riemann distance between a point x & M and the S-surface is defined as
ds(z) = inf {d(z, X): X € S}.

Let z be an interior point of M. Then, a curve Cx, connecting r € M° to X € S is
said to be an S-min-arc if

ds(z) = A(Cx.).

Since S is a closed subset of M, S is compact; therefore, for any point x & M° there
is a point X & S such that

ds(z) = d(z, X).
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But, by Lemma 4, there is a shortest join Cx, between z and X, so that dy(x) = 4(Cy,).
Hence, an S-min-arc exists for any point z € M°.

Now, it is evident that every S-min-arc lies entirely in M° except for its endpoint
on S. Hence, there does exist an open neighborhood 9 around each S-min-arc for which
(5) is meaningful. It follows that an S-min-arc satisfies all conditions necessary for it
to be a locally minimizing arc as well. In particular, it satisfies the Euler equations and
the transversality condition. Thus, it is a trajectory originating from the bounding
surface T, which proves Theorem 1.

As a corollary of Theorem 1, one has

THEOREM 2. In every admissible system having many degrees of freedom, there exists
at least one stmple trajectory.

A simple trajectory connects the origin of E® with T'. Since the origin is an interior
point of M, Theorem 1 is applicable and Theorem 2 follows.

The simple trajectory whose existence has been demonstrated is the curve of shortest
Riemann length between the origin and the bounding surface T'. In the linear problem,
this particular simple trajectory corresponds to the normal mode vibration for which the
natural frequency is the highest. To show this, let =, , 2, , -+ , z, be the normal co-
ordinates, and let w; be the natural frequency corresponding to z; . For this problem,
the bounding surface is

P={XEE“:%Zw?X?—h=O}

i=]1
and the motion starting from a point X = (X, , X,, -+, X,) € I'is
z; = X, cos w;t, =12 ---,n).

Along the trajectory corresponding to this motion, the action is

A= % ;«:?Xf (t - 2}0'_ sin 2wit)
The ¢th normal mode vibration is that for which X; = 0 for all j = ¢. The time ¢
required for the trajectory to reach the origin is ¢; = =/2w; . Hence, the corresponding
action is 4; = (w/2w;)h. Therefore, the action is least for the largest w; .
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