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RESTRICTIONS IMPOSED UPON THE TRANSIENT AND
FREQUENCY RESPONSE OF NETWORKS*

PAUL M. CHIRLIAN
Stevens Institute of Technology

Abstract. Readily evaluated upper and lower bounds on the impulse, step, and
frequency response of certain classes of networks are obtained. These bounds are the
best possible and can be applied to integrated RC structures as well as lumped networks.
These procedures can be extended to general networks.

Introduction. One important problem in network analysis is the simple determina-
tion of the transient response from the frequency response and, conversely, the deter-
mination of the frequency response from the transient response. Estimates or bounds
are useful here since they supply considerable information without requiring tedious
calculations. In addition, bounds supply theoretical insight into relations between the
time and frequency domains.

In this paper we shall determine some such bounds for certain classes of networks.
The reader is referred to reference [1] for a discussion of some other bounds.

We shall work with the real part of the frequency response through this paper and
write the transient response in terms of it.

Conversely, these bounds can be used to restrict R (o>). The bounds will be expressed
in terms of easily obtained graphical limits and a catalogue of asymptotic responses.
Figure 1 is an illustration of the parameters that will be used to bound ft(co), the real

catalogued
asymptotic
fall-off

Fig. 1. An illustration of the parameters used to bound R(oj)
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part of the system function. That is we shall consider low-pass structures such that

8M = N < -ff(w) < M for 0 < co < w0 (1)

and assume that R(co) is characterized by a typical asymptotic fall off of either an in-
tegrated RC network or a lumped network for w > w0 •

We shall use the Fourier transform to obtain bounds on the unit impulse and unit
step responses respectively. We shall break each of these integrals into two parts and
consider the contributions of the frequencies 0 < < co0 and « > co0 separately. That
is, we write

and

2 2 r
u>(t) = wx(t) + w2(t) = - / R(u) cos cot du H— / R(a) cos ut dw (2)

7T J 0 J u o

a(t) = o,(0 + a2(0 = - /"" ^(C0) 8m dw + - [ R(co) S1" </». (3)
7T J0 CO 7T JWo O)

Each of these integrals will be considered in turn.
Contributions due to the frequencies 0 < w < co0. Let us consider wx{t) and place

bounds upon it. Let x = cot. Then,
C\ M'o t

Wi(0 = — / R(x/t) cosxdx. (4)
7T£ Jo

If 0 < oj0t < 7r/2, the integral will be maximized if R(x/t) = M and it will be minimized
if R(x/t) — N. We proceed similarly for greater values of time. That is, to maximize
the integral, set R(x/t) = M for those values of x for which cos x > 0 and set R{x/t) — N
when cos x < 0. Thus, we obtain the following upper bounds

Wi(t) < (2M/irt) sin u0t for 0 < w0t < ir/2 (5)

Wi(t) < (2M/irl)[Jc(l - 8) + a sin o>0t] for (21c - l)(ir/2) < o>0t < (2k]+ l)v/2

k = 1,2, 3, ••• (6)
where

a = 1 if /c is even, (7)

a = 5 if A; is odd.
The lower bounds are given by

> (2M/irt) 5 sin co,^ for 0 < u0t < ir/2 (8)

wi(0 > (2M/irO[fc(5 - 1) + (5/«) sin &>„/] for (27c - 1)tt/2 < «„/ < (2ft, + 1)tt/2 (9)
where a is defined in (7).

The previous results were derived on the basis of an infinite number of maxima in
R(u). If the number of such maxima is limited, then we can improve the bounds.

We must consider the fact that the first region where cos x > 0 is only one quarter
cycle. Since the number of maxima of R(u) is limited we should choose R(«) = M for
those values of x where cos x > 0 for a half cycle. However, at first, we shall restrict
ourselves to the case where R (a>) has its first maximum at w = 0. Thus

Wi(t) < [(2ix — 1)(1 — 8) + 5 sin for co0t > —'iir/2 + 2-kh. (10)
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If we do not restrict the first maximum of R(w) to the origin, then we must increase
this bound by

r/\r j 2 M
M cos x dx — —— • (11)

7Vt

The lower bound on u\(t) when the number of maxima of R(w) is limited is given by

M'i(0 ^ (2M/irt)[2n(8 — 1) -f- 5 sin co0/] for w0t > —t/2 + 27171. (12)

Now let us consider the unit step response. The analysis essentially follows that of the
unit impulse response, Hence, we obtain

<3,(0 < (1 — 8) £ (—1)*+1 Si (vir) + a Si (w0t) for kir < w0t < (k + l)7r,
7T L v =»0 J

k = 0, 1, 2, ••• (13)
where a is defined in (7) and Si (w0t) is defined by

iw-PV*.Si y
This function is tabulated [2]. The lower bound is given by

o-M > —
TT

(.8 - 1) £(-l)*+1 SiM + - Si (w0t)
o=n 01

for kir < w0t < (k + l)rr,

k = 0,1,2, •••. (14)
We now assume that there are only h maxima in R (w) f or 0 < w < o>0. Then if a>0t < (2/j — 1) t
the results of (13) apply. For w0t > (2y. — l)7r we have

om r
«.(0 < — (1 - 8) £ (-1)' + 1 Si (vt) + 8 Si (w0t) . (15)

TT L_ 5=0 J

The results of (14) apply for the lower bound if w0t < 27171. For w0t > 2th, we have

aM > ™ [(5 - 1) £ (-1)' + 1 Si (vt) + 8 Si (»„*)]■ (16)

Thus bounds have been imposed upon wx(t) and a,(/). These are the best possible bounds
since for any value of t an R(w) can be found that will make w, (t) or a, (t) equal to its
bound.

Contributions due to the frequencies w > w0. Now let us consider w2(t) and a2(t).
In this case, we shall assume that R(w) actually equals one of a catalogue of asymptotic
responses. In the subsequent section we shall discuss the error that results when the
actual asymptote is not the same as the catalogued ones and discuss a technique for
minimizing the error.

One type of fall off that is commonly encountered is

R(w) = K(w o/w)v/'. (17)

Substituting and making a change of variable, we obtain

W2(t) = ^ (u>0/)("/2-„ f « dy. (18)
t Ja,t y
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The integral cannot be evaluated directly. However, tabulated results can be used.
If n = 1, the tables of Fresnel integral [2] are applicable. If n = 2, we make use of the
tabulated integral [2]

ci (*)=-/" dx. (19)J, x

For values of n > 2, the integral of Eq. (18) can be reduced to tabulated forms by
successive application of the following integrals [3]:

/' cos x , — 1 cos x 1 f sin x , ,
/  (/a- =     —   /    da:, p > 1 (20)

rp P — 1 r"~ p — 1 J V

and

[ dx , —L HLJ + _L f S2LS dz, , > ,. (21)■' p 1 i'-' p - 1 J

Another type of high frequency asymptotic response that occurs quite commonly
in integrated networks is the exponential fall off.

R(a) = (A'n/cosn) exp [—n(to/to0)1/2] cosn(co/co0)1/2. (22)

Substituting and manipulating, we have

. A 4conKn f° -x co0tx2 ,wAi) = —2  / xe cos x cos —r~ dx. {2.5)
7m cos w J „ n

These integrals are not tabulated in the literature. However, they have been evaluated
using a computer and are given in Table I.

Now let us consider some values for a2{t). We shall use the same asymptotic responses
as before. Then, if R(u>) is given by (17), we obtain

a2(t) = — Mn/2 P -^£7 dx (24)
7r n

This can be reduced to tabulated forms by the successive application of (20) and (21).
In the case of the exponential fall off where R(a>) is given by (22)

a2(t) = ^f e" C0*XS'm [(cj°fa2)/w2] dx. (25)
7r cos n x

Again, this integral is not tabulated in the literature but it has been evaluated by a
computer. The value of

n r% cc

— \cos n J„
e * cos x sin bx , dx

is given in Table II. Again note that the magnitude of this value falls off as n increases.
Calculation of the bounds on R{to). The value of R{co) is a function of w{t) and is

given by

R(w) = Ri(to) + R2(w) = f w(t) costot dt + f w(t) cos o>t dt. (26)
*'0 J10

Thus the previous procedures can be used to bound R(to). Logical bounds on v>(t) for
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Table I

 e
n2 cos

/.re 1 cos x cos bx2 d.r

1

0.01
0.02
0.03
0.04
0 05
0.06
0.07
0.08
0.09

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100 00

-1.058 1.070 0.157 -0.110
-1.058 0.955 -0.162 0.080
-1.058 0.555 -0.186 -0.046
-1.011 0.012 -0.054 0.018
-1.051 -0.020 0.064 0.004
-1.032 -0.039 0.102 0 019
-0.990 -0.484 0.067 0.026
-0.922 -0.516 0.001 -0.024
-0.831 -0.506 -0.053 0.016

-0.721 -0.471 -0.062 -0.006
-0.394 0.032 0.012 -0.007

0.765 0.119 0.016 -0.006
0.747 -0.021 -0.013 -0.005
0.612 -0.065 -0.005 -0.003
0.459 0.015 0.010 -0.002
0.317 0.044 -0.011 0.000
0.195 -0.013 -0.007 -0.004
0.095 -0.034 0.004 0 013

0.121 0.011 0.004 -0.009
-0.226 -0.009 0.004 -0.013
-0.082 0.007 0.352 -0.001
-0 063 0.002 -0.004 0.005

0.098 -0.002 0.034 0.016
0.039 -0.025 0.084 -0.004

-0.036 0.043 -0.011 0.009
-0.062 -0.026 0.006 0.016
-0.030 -0.060 0.031 0.023

0.021 0.062 0.023 0.009
-0.026 -0.048 0.032 0.015
-0.044 -0.012 -0.028 -0.025
-0.036 0.061 0.014 0.011

0.013 -0.054 -0.005 -0.030
0.107 -0.135 0.030 -0.000
0.160 -0.075 0.011 -0.009

-0.090 -0.074 0.013 0.005
-0.003 0.195 -0.183 0.019
-0.034 -0.055 -0.012 0.029

t > <0 will be exponential decays. Thus, we shall add these responses to our catalogue.
If

w(t) = Ke~t/l° for t > tn (27)
then

Rj(u) = (Kt0/e(l + a)2/o))Mo sin cit0 — cosaj/0] (28)
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cosn i:

Table II

e'x cos x sin bx2 dx

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

-0.011 0.171 0.163 0 053
-0.021 0.337 0.150 -0.039
-0.032 0.460 -0.009 0.043
-0.042 0.513 -0.109 -0.043
-0.053 0.505 -0.101 0.037
-0.063 0.457 - 0.028 - 0.024
-0.073 0.386 0.044 0.009
-0.083 0.306 0.073 0.005
-0.092 0.224 0.051 -0.015

-0.100 0.146 0.002 0.019
-0.111 -0.175 -0.029 0.007
-0.048 0.001 0.012 0.002

0.029 0.084 0.009 -0.001
0.098 -0.009 -0.011 -0.003
0.151 -0.054 -0.001 -0.003
0.190 0.009 0.009 -0.003
0.215 0.039 -0.003 -0 003
0.230 -0.009 -0.006 0 001

0.235 -0.030 0.005 0 001
0.064 0.013 0.001 0 015

-0.099 -0.007 0.005 0.006
-0.101 0.002 0.003 0 008
-0.011 -0.002 0.011 0 Oil

0.063 -0.014 0.010 -0.011
0.062 -0.016 0 004 -0.005
0.007 0.038 0.008 -0.026

-0.042 0.002 -0,000 -0.002

-0.045 -0.042 -0.006 0.020
0.013 -0.097 -0.005 0.006
0.002 -0.045 -0.013 0.016

-0.016 -0.027 -0.011 0.012
0.015 0.009 -0.007 -0.012
0.011 -0.033 -0.004 -0.011
0.008 -0.020 0.033 -0.016
0.030 0.025 - 0.024 - 0.009
0.027 0.009 0.009 -0.014

-0.025 -0.003 -0.040 0.001

Accuracy of asymptotic response calculations. In the previous sections, we have
assumed that R(u) [or w(t)] was exactly equal to one of a catalogued values of asymptotic
responses. In general, they will deviate from these values, which will cause an error in
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w2{t) or a2(0 [or i?(a>)]. The procedure of [5] can be used to bound the magnitude of this
error.

One procedure that can be used to reduce the error is to split the range for 0 < w < co0
into two (or more) ranges each with its own bound on fi(co). In this way the accuracy
of the asymptotic calculations can be increased as desired while there is no sacrifice
in the accuracy of Wi(t) and adt). Often, this not required. Additional values of R(w)
can be added to the catalogue, also.

Conclusion. A set of readily evaluated bounds on the unit impulse and unit step
responses have been obtained. These bounds are best possible since the responses specified
by them can actually be obtained. A catalogue of asymptotic responses has been given
so that these results can be applied to both integrated and lumped networks.

Acknowledgment. The author wishes to express his thanks to Mr. Bipin Parikh
and the staff of the Stevens Institute of Technology computer facility for the evaluation
of the integrals of Tables I and II.
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