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1. Summary. Mittag-Leffler-like fractional decompositions are constructed for
the gamma, Jacobian elliptic and for the quotient of Bessel functions. These results
illustrate a technique herein developed which permits a complete ML decomposition of
a large class of meromorphic functions without resorting to any other previously derived
information or knowledge of the particular function. Typically, the point of departure
of this note stands in contrast to a statement in Knopp [1, p. 44], during his development
of the ML decomposition of ir cot irz, which reads as follows: "The still undetermined
entire function, G(z), cannot be ascertained solely from the nature and position of the
poles."

The new technique specifies conditions under which the "undetermined entire func-
tion" can be ascertained solely from the nature and position of the poles.

2. Theory. Suppose an arbitrary meromorphic function,

F(z) = Rn(z) + 2 BnZn (Rn(z) rational functions),
n=0 n=0

has the following properties.

® "•(') = s*-4y+s7'
(2) (a) is convergent, (b) X)

»=0 n = 0

5^ 0, k = 0, 1, 2, • • ■ , are simple poles of R„(z); then

< 00 >

F(l/z) dz--ill
n = 7T~- [ z"~lF(l/z) dz - X)

Zirt J c i- = 1

Ak
(zky

-1 ;

n = 1, 2, ■ • • ; c is any Jordan curve containing all the poles and the nonisolated essential
singularity of F(l/z) in its interior.

Bn = [ z-'Fil/z) dz - Z
2irl Jc k=i

1 Received January 17, 1966; revised manuscript received April 18, 1968.
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Proof.

J> I * = /,1<Z - {"y:) + <2*rT'(l r-tf') "2 (1)
= i f :AkZ±$' + H f Ak(n\z - (z^r'-zr dz (-2)

* = i Jcz \zk) k=i j = i jc \J'

= t f /***," y-T = 2«E ^ ; » = 0, 1, 2, • • • . (3)*=1 «'c 2 VW A = 1 Zk

This follows, first, from seeing that for n ^ 1, hypothesis 2b implies the absolute con-
vergence of XXi ^a7(z — (2k)"1) and of

£ E (2 - (zrT'-A^r ;
A = 1 j = l

clearly there must exist /"„ sufficiently large so that for each n 5: 1,

i \Akzk"\ = i \Ak\-\zkn\ ^ i \Ak\-\z;l\ = t \j*\ < CO. (4)
k=ko k=ka k=ko k=k0

For n = 0, hypotheses 2a and 2b implies convergence of XXi Ak/(z — (z*)-1); secondly,
uniform convergence on c permits the term-by-term integration. Inasmuch as each inte-
grand of the double sum is an integral function, the double sum vanishes. Finally, for
n = — 1 we have

Turning now to the other part of F(l/z), we have

f z" t ]h dz= t [ -kJ~ = 2« Bn+1 , (6)
* c k = 0 % k*= 0 " c ^

n = — 1, 0, 1, 2, • • • ; combining (3), (5), and (6), we have,

/ ^

2«'( E -4a" + £»+i); n = 0, 1, 2, (7)
k = 1

2«B0 ; n = -1

From (7), the representation follows.
3. Applications. We first develop the ML decomposition of r(z) [2]; consider

T(1 + z), simple poles at z = —Jc, k — 1, 2, • • • ; T(1 + 1 /z) has simple poles at (z*)-1 =
— 1/k, corresponding residues (—1 )k/(k-k\). With Ak = (—1 )k/(Jc-k\), {zk)~l = — l/k,
hypotheses 2a, 2b, are seen to hold. Consequently,

'''+^s£rE hI'M1 +1)- £ (-1)'
27ri Jc \ z) £r[ k"-k\

k)
For c any contour meeting the conditions of the theory,

~ f z-'rtl + i) dz = = (—l)"-n! t2tvi Jc \ z) nl f~!
T ■"(1)
—/c,u; « = o,i,2.-

rjik ^ 1 a * * * j

-r2 • •' rk
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The sum is taken over all positive integers, rx , r2 , ■ ■ ■ rk , which satisfy the unique con-
dition ?*i + r2 + • • • + rt = n, with care being taken that an appointed combination of
k numbers which satisfy the condition rx + r2 + • • • + rk = n should be calculated as
many times as is possible to form different permutations of these fc numbers without re-
peating them [3],

Si = lim 1+| + |+ ••• +l~ logn

S„ 1 + ~ ~ + • • ■ + p for n ^ 2,

r( i + -) = E —— + 1 + E111 + z) ftfcfc!(z + 1/k) + + h fc! fc"fc!
Replacing l/z by z and recalling that T(1 + z) = zT(z),

r(2) = y (-1)* + EK) ftfc!(z + fc) + ft
'/_,y Mx vL-1)"!'
: j ft k\ + ft fc-.*! ■z .

This representation of r(z) specifies explicitly the poles, residues and additive integral
function as a power series. It may be compared with Prym's integral representation

r(z) = [ dt + f t'-'e" dt.
J o J I

We may now represent /" t'~1e~' dt as a Taylor series,

E or(z — l)r, |z 11 < 1 ■
r=0

From the series representation we see that
00 / 1 \fc + »" I 00

re>(1) = y (-*) r! + rl E
W ft (fc + 1) ! (fc + l)r ^ t"r

\_iyyT^+y(-jri( ' ft fc! t\ fc"fc! . r ^ 1;

hence
r(r)(i)

ra„ = 1; ar = —-— r ;> 1.

We now derive the ML representation for the Jacobian elliptic function, sn (2) =
sn (z, fc), for which, "except in a certain special case" [4], the additive entire function
is unknown. This function is doubly periodic with periods 4K and 2iK'; its poles are
simple and located at the points z,., = 2mK + (2n + 1 )iK'. The residue at z = zm,n is

(-l)-fc-1.

Here m and n assume, independently, all integral values including m = n = 0. K and K'
are elliptic complete normal integrals expressible by theta null series or as hypergeometric
series in terms of the modulus fc, fc 5^ ±1. The only property used in the following is that
the imaginary part of iK'/K is positive.

The ML theorem applied to sn (2) now gives

sn <0 = E (-]FtzrV- + z~ + or?} + £ ^ ■ (i)m, n lX/ v& "m ,n &m,n v^ra.n/ J r = 0
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The cr can now be determined by the following variation of the new technique. We
adopt the following ordering of the poles to meet hypotheses 2a, 2b (see graph below).

(a) The first pole z„,o lies inside all parallelograms;
(b) all other poles lie on parallelograms such that \m\ + \n\ = p for the pth paral-

lelogram, p = I, 2, •• • ;
(c) the ordering on any parallelogram is counterclockwise;
(d) when going from one pole to the next on any parallelogram m and n change by ± 1

producing alternating signs for the residues within any parallelogram; this is also true
when going from the last pole on one to the first pole of the next. There are an even num-
ber, 4p, poles on the pth parallelogram.

0-3

THE ORDERING

Consider now the function sn (I/«). It has poles at z = with corresponding
residues (—1 )m+lk~1(zrn,n)~2. With in and n defined as before, and restricting the order of
summation to that of the parallelogram spiral, we have to prove the convergence of the
sum of residues. Simple geometric considerations show the existence of a fixed positive
number d such that

\Zm,n\ > dp, \m\ + \n\ = p, p > pa .

Next, two consecutive terms of the series give

±k~x[(2m,„)"2 - (zh„y2]

where |m — h\ = 1, |?i — j\ = 1. The bracket equals

{zh,i — zm.n){zh,i + zm.n)(zm.n)~2(zh.i)~2 ■
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Here

Zh.i — Zm.n = 2 (ft - m)K + 2(j - n)iK',

Zh.i + zm,n = 2 (ft + m)k + 2 (j + n + l)i'JT.

The absolute value of the differences does not exceed

2(|K\ + |/v'|) - C

and the sum does not exceed (2p + 1 )C. Hence

1(2*.;)-2 - («.»,„)-2| ^ C2d"\2p + 1 )p~\ p > Po .

On the pth parallelogram there are 2p such differences so their total contribution to the
sum of the series does not exceed a constant times p~2. This proves the convergence of
the series

k'1 z (-lrco-* - r
m ,»

when summed in the manner indicated. This shows that condition 2a is satisfied.
Condition 2b requires the absolute convergence of the series

E (2»,n)"3.
TO ,»

That this holds is well known [5].
Applying the technique, we have

sn
lX) = y (-1)"""1 . 1   + y B'- (2)
■ z) k (Zm,nY[z — (zm,n) '] r-0 2'

where the series is summed in the "spiral" order. Replacing \/z by z we have

sn ft) - E ^  I + J_
2 - Zm n Zm.,

Z Brz' (3)

So = 2hfchm{i> dt>

- = 2?„(-irrl(z-»r"

where

B

Here c is any circle of radius greater than the reciprocal of the distance of the set 2m,„
from the origin. In the formula for Br the series is absolutely convergent if r > 1 while for
r — 1 it converges to the sum R if summed in the spiral manner.

Set

sn (2) = Z (— l)'a,22'+I-
1-0

Here a0 = 1 and the a,- with j > 0 are polynomials in k' with positive coefficients. This
gives

B0 = 0, B, = 1 - R, B2a = 0, s = 1,2, ■■■
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where we have used the fact that if r = 2s then the integral is zero as well as the series,
the latter since 2_m,-„_1 = 2m,„ for all m, n. Actually Br = 0 for all r > 1. To prove this
we return to the expansion (3) above.

Set

 1 + J_
Z - Zm_n 2,„.,

sP(z) = E E ^

and

Iim Sp(z) = S(z).
p-»co

We shall prove that S(z) is doubly periodic with the same periods, 4K and 2iK', as sn (2).
To this end, take P odd and form

Sp(z + 4 K) - Sp(z) = IE (-^    1 1-
|m|Tl»T% fc LZ ~ Zm-2,» Z - zm,„ J

In this finite sum the majority of terms cancel and we are left with (j> + 1) terms from
each of the parallelograms numbered p — 1, p, p + 1, p + 2. These terms have alternat-
ing residues and form 2(p + 1) pairs of the form

t - r 1 _ 1
k [z — zm,n z — zhii_

where, as above, |m — h\ = 1, \n — j\ = 1. For ztD, a compact set of positive distance
from the poles, the absolute value of this difference is 0(p~a). There are 2(p + 1) such
differences. Hence

Sp(z + 4K) — S„(z) = 0{p~1) —> 0
so that

<S(« + 4K) = 5(2).
In the same manner one shows that

S(z + 2iK') = S(z).

Thus S(z) and sn (2) have the same poles, the same residues and the same periods.
It follows that sn (2) — S(z) is a doubly periodic function without poles and hence a
constant. This constant must be zero since sn (0) = <S(0) = 0.

We have thus proved that

sn (2) = S(z)

and this shows that

Br = 0, all r.

In particular,

72=1.

Since the ML expansion for sn (2) differs from S(z) by Hz = z we get, finally,

m » " E ^ + r~ + sn'J"m ,n **m,n y*m , nj _l
(3)
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Incidentally, the formulas for Br show that

Iv m,n

The technique will apply equally well to all the explicit variations of the elliptic
family such as quotients of theta functions, etc.

Finally, we use the technique to decompose the quotient of Bessel functions into a
ML representation, as well-known result derived first by Watson [6], using classical res-
idue theory. The technique will then be brought into play in conjunction with Watson's
result to evaluate in closed form sums of negative powers of the zeros of J„(z) [7].

Consider

F(z) = J"+;^ for n ^ 0,

(-i)\2,
Jn{-z) = r? r! (n + r) ! ' ^ = 0, i, 2, -

Zk = ±jn,t = (r + f + n/2)tt, r = 0 ± 1 ± 2, • • • ; for large n [6]. /(z) = (l/z)F(1/z) =
J„+i(l/z)/z./„(l/z) has simple poles at z = , corresponding residues 1/±jn,t ;

Hypotheses 2a, 2b in section 2 are now met if we order the poles by sign and magnitude.

(7- Y~) + \T~ ~ Jj + ''' conver§es
V». 1 Jn,\' \jn,2 jn,2'

(2a)

2 £ jrr* < ® • (2b)
\jn,k)

We have immediately by the technique that

" 5 j., [.- - ~ 1 + (/.J-1]+ ti~f•

«■-&I.^ «
*• - SS1 >-1® * - [(c)' + te> + (i)'+ fe;)' +' • ■ ] r =1

"2z § (j..o' - «■+ S<3)
Watson finds that

'Jjd' = & £ Hn.kf - Z2' ^

In view of (3) and (4) we see that Br = 0. The formal series expansion for /(z) turns out
to be
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m = 7h- j (i + 1 ■ 1(2n + 2)z2 \ 1 (2n + 2)(2n + 4)z2 ' (n + 1)(2n + 2)(2n + 4)(2n + 6)z4

It follows that, B0 = Bi = Z?2*+i = 0,

A * - 2 ̂  (f)' - 0 ~ 2z i-1 V,,l' t-1

iV = l 
2n + 2 " ^ f=i \jn.J ~ 2(2n + 2) '

B* = 7o„ ̂ nil/n„ ̂ „ - 2 t P-) =0 ^ ' 1 V 1(2n + 2) (2n + 4) a=i Vin,*/ *-i v*,*/ 2(2n + 2)2(2n + 4)

Clearly, J-1 (l/i„.t)2r = 3 (coefficient of zr) in the series expansion of (l/z')F(l/z);
these results were derived a number of years ago using M. Riesz's typical means.

4. Extensions and observations. 1. Multiple poled meromorphic functions and
functions with mixed poles and finitely many isolated essential singularities, assuming
proper convergence restrictions, may be represented in this way.

2. Functions with a finite set of nonisolated essential singularities may be represented
in this way.

3. Functions with divergent "principal parts" become increasingly difficult for the
technique to manage as the number of terms of the "convergence factors" increase.

4. Many times, a convenient ordering of the Bk , zk (as shown for sn (z) and JJz))
will induce convergence.

5. The technique suggests a new area of divergent series theory: the theory of diver-
gent series of complex rational functions.

6. The technique is powerful in evaluating closed form sums of constants and func-
tions. It would have summed many series of the like that occupied Watson, Hardy,
Ramanujan, etc. early in the century.

7. The new representations have proven to be very well adapted to computer ap-
plications.
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