DECAY OF THE KINETIC ENERGY OF MICROPOLAR INCOMPRESSIBLE FLUIDS*

By S. K. LaKSHMANA RAO (Regional Engineering College, Warangal-4 (A. P.), India)

The equations of multipolar continuum mechanics have been the subject matter of study in recent years by Eringen [1] Green [2] and others (vide the references cited in the above two papers). The linear constitutive equation for these fluids leads to an interesting theory in which micro-rotational effects and couple stress are prevalent. Such a linear theory of micropolar incompressible fluids has also been considered by Eringen [3] and Bleustein and Green [4]. In this theory the fluid motion is characterized by two vector fields V and v representing respectively the velocity of flow and the micro-rotation. The field equations of this theory are [3]

$$
\begin{equation*}
\partial \rho / \partial t+\operatorname{div} \rho \mathbf{V}=0 \tag{1}
\end{equation*}
$$

$\rho d \mathbf{V} / d t=\rho \mathbf{f}-\operatorname{grad} \rho+K \operatorname{curl} \boldsymbol{v}-(\mu+k) \operatorname{curl} \operatorname{curl} \mathbf{V}$

$$
\begin{equation*}
+(\lambda+2 \mu+k) \operatorname{grad}(\operatorname{div} \mathrm{V}) \tag{2}
\end{equation*}
$$

$\rho j d v / d t=\rho \iota+k(\operatorname{curl} V-2 v)-\gamma \operatorname{curl} \operatorname{curl} v$

$$
\begin{equation*}
+(\alpha+\beta+\gamma) \operatorname{grad}(\operatorname{div} v) \tag{3}
\end{equation*}
$$

The constants λ, μ, k are viscosity coefficients while α, β, γ and the gyration parameter j are other constants of the fluid. These conform to the inequalities

$$
\begin{equation*}
3 \lambda+2 \mu+k \geq 0, \quad \mu \geq 0, \quad k \geq 0, \quad \gamma \geq 0, \quad|\beta| \leq \gamma, \quad 3 \alpha+\beta+\gamma \geq 0 \tag{4}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
\lambda+2 \mu+k \geq 0, \quad \alpha+\beta+\gamma \geq 0 \tag{5}
\end{equation*}
$$

It has been noticed by Leray, Kampé de Fériet et al. that the kinetic energy of the Navier-Stokes viscous liquid in a domain with rigid walls decays. Kampé de Fériet [5] proved that for the Navier-Stokes fluids, the decay of the kinetic energy is faster than the exponential. In the present note we obtain the corresponding result for micropolar fluids.

Let R be a domain in space bounded by the regular curve Γ and let the vectors V, v possess continuous second order derivatives in R and vanish on Γ. The kinetic energy of the fluid is

$$
\begin{equation*}
T=(\rho / 2) \int \mathrm{V}^{2} d \tau+(\rho j / 2) \int v^{2} d \tau \tag{6}
\end{equation*}
$$

The integrals in Eq. (6) and everywhere else in this note are over the volume of R, the only exception being in Eq. (17). We have the inequalities

[^0]\[

$$
\begin{align*}
& T_{1}=(\rho / 2) \int \mathrm{V}^{2} d \tau \leq(\rho \Lambda / 8 \pi) \int(\operatorname{curl} \mathbf{V})^{2} d \tau \tag{7}\\
& T_{2}=(\rho j / 2) \int v^{2} d \tau<(\rho j \Lambda / 8 \pi) \int\left\{(\operatorname{curl} v)^{2}+(\operatorname{div} v)^{2}\right\} d \tau \tag{8}
\end{align*}
$$
\]

in which the constant Λ depends only on the geometry of the domain and is defined by

$$
\begin{equation*}
\Lambda^{2}=\iint(P Q)^{-2} d \tau_{P} d \tau_{Q} \tag{9}
\end{equation*}
$$

If the domain can be included in a ball of diameter d, the constant coefficients multiplying the integrals on the right side in Eqs. (7), (8) can be replaced by $\rho d^{2} /\left(3+13^{1 / 2}\right) \pi^{2}$ and $\rho j d^{2} / 6 \pi^{2}$ respectively, as pointed out by Serrin [6].

From Eqs. (6), (7), (8) we have

$$
\begin{equation*}
T=T_{1}+T_{2} \leq(\rho \Lambda / 8 \pi) \int\left\{(\operatorname{curl} \mathrm{V})^{2}+j(\operatorname{curl} v)^{2}+j(\operatorname{div} v)^{2}\right\} d \tau \tag{10}
\end{equation*}
$$

Assuming that the body force is derivable from a potential field, we have

$$
\rho(\partial \mathbf{V} / d t-\mathbf{V} \times \operatorname{curl} \mathbf{V})=\operatorname{grad} F+k \operatorname{curl} v-(\mu+k) \text { curl curl } \mathbf{V}
$$

and

$$
\begin{align*}
\frac{d T_{1}}{d t} & =\int \rho \mathrm{V} \cdot \frac{\partial \mathrm{~V}}{\partial t} d \tau \\
& =k \int \mathrm{~V} \cdot \operatorname{curl} v d \tau-(\mu+k) \int \mathrm{V} \cdot \operatorname{curl} \operatorname{curl} \mathrm{~V} d \tau \tag{11}\\
& =k \int \mathrm{~V} \cdot \operatorname{curl} v d \tau-(\mu+k) \int(\operatorname{curl} \mathrm{V})^{2} d \tau
\end{align*}
$$

Omitting the body couple in Eq. (3), we get

$$
\rho j \frac{\partial v}{\partial t}+\rho j(\mathrm{~V} \cdot \operatorname{grad}) v=-2 k v+k \operatorname{curl} \mathrm{~V}-\gamma \operatorname{curl} \operatorname{curl} v+(\alpha+\beta+\gamma) \operatorname{grad}(\operatorname{div} v)
$$

From this we can see that

$$
\begin{align*}
& \frac{d T_{2}}{d t}=\rho j \int v \cdot \frac{\partial v}{\partial t} d \tau=-2 k \int v^{2} d \tau \\
& \quad+k \int v \cdot \operatorname{curl} \mathrm{~V} d \tau-\gamma \int(\operatorname{curl} v)^{2} d \tau-(\alpha+\beta+\gamma) \int(\operatorname{div} v)^{2} d \tau \tag{12}
\end{align*}
$$

From Eqs. (11) and (12) we get

$$
\begin{align*}
\frac{d}{d t}\left(T_{1}+T_{2}\right)=\frac{d T}{d t}=-\mu & \int(\operatorname{curl} \mathrm{V})^{2} d \tau-k \int \nu^{2} d \tau-\gamma \int(\operatorname{curl} v)^{2} d \tau \\
& -(\alpha+\beta+\gamma) \int(\operatorname{div} v)^{2} d \tau-k \int(v-\operatorname{curl} \mathrm{V})^{2} d \tau \tag{13}
\end{align*}
$$

from which the decreasing nature of T is evident. Using the bounds given in Eqs. (7) and (8) for T_{1} and T_{2} in Eq. (13), we get

$$
\frac{d T}{d t} \leq-(8 \pi \mu / \rho \Lambda) T_{1}-[(2 k / \rho j)+(8 \pi a / \rho j \Lambda)] T_{2}
$$

in which a is a positive number equal to $\min (\alpha+\beta+\gamma, \gamma)$. If b denotes the positive number equal to minimum $[\mu,\{(a / j)+(k \Lambda / 4 \pi j)\}$, we see that

$$
\begin{equation*}
d T / d t \leq-(8 \pi b / p \Lambda) T \tag{14}
\end{equation*}
$$

and now it follows that

$$
\begin{equation*}
T(t) \leq T\left(t_{0}\right) \exp \left[-(8 \pi b / p \Lambda)\left(t-t_{0}\right)\right] . \tag{15}
\end{equation*}
$$

The decay of the kinetic energy is faster than the exponential rate. It would be of interest to examine if the velocity and micro-rotation also decay in this manner.

The spectral function of the kinetic energy also decreases faster than the exponential. Let $r=(x, y, z)$ and $\omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ denote the position vector in the space of the fluid and in the space Ω of the real variables $\boldsymbol{\omega}_{1}, \omega_{2}, \omega_{3}$. If $\mathbf{V}=(u, v, w)$ and $\boldsymbol{v}=(A, B, C)$ are the velocity and micro-rotation components, we define
$U\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right), \quad V\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right), \quad W\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right)$,

$$
X\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right), \quad Y\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right), \quad Z\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right)
$$

to be their Fourier transforms over the domain R. We have thus

$$
\begin{equation*}
U\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right)=\left(8 \pi^{3}\right)^{-1} \int u(x, y, z, t) \exp [i(\omega \cdot r)] d \tau \tag{16}
\end{equation*}
$$

and the inverse relation is

$$
\begin{equation*}
u(x, y, z, t)=\int U\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right) \exp [-i(\omega \cdot r)] d \omega \tag{17}
\end{equation*}
$$

The integral in Eq. (17) is over the entire space spanned by $\omega_{1}, \omega_{2}, \omega_{3}$. The spectral function $\gamma\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right)$ of the kinetic energy is seen to be

$$
\begin{equation*}
\gamma\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right)=4 \pi^{3} \rho\left\{|U|^{2}+|V|^{2}+|W|^{2}+j\left(|X|^{2}+|Y|^{2}+|Z|^{2}\right)\right\} . \tag{18}
\end{equation*}
$$

From Schwarz's inequality in Eq. (16) we get

$$
\begin{equation*}
\left(8 \pi^{3}|U|\right)^{2} \leq\left(\text { Vol. R) } \int u^{2} d \tau\right. \tag{19}
\end{equation*}
$$

From inequalities of this type for the Fourier transforms we see that

$$
\begin{equation*}
\gamma\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right) \leq\left(8 \pi^{3}\right)^{-1}(\text { Vol. } R) T \tag{20}
\end{equation*}
$$

and now it is clear that

$$
\begin{equation*}
\gamma\left(\omega_{1}, \omega_{2}, \omega_{3}, t\right) \leq\left(8 \pi^{3}\right)^{-1}(\text { Vol. } R) T\left(t_{0}\right) \cdot \exp \left[-(8 \pi b / \rho \Lambda)\left(t-t_{0}\right)\right] \tag{21}
\end{equation*}
$$

on using Eq. (15).

References

[1] A. C. Erigen, Int. J. Engng. Sci. 2, 205 (1964)
[2] A. E. Green, Int. J. Engng. Sci. 3, 533 (1965)
[3] A. C. Eringen, J. Math. Mech. 16, 1 (1966)
[4] J. L. Bleustein and A. E. Green, Int. J. Engng. Sci. 5, 323 (1967)
[5] J. Kampé de Fériet, Ann. Soc. Scientifique Bruxelles 63, 36 (1949)
[6] J. Serrin, Arch. Rational. Mech. Anal. 3, (1959)

[^0]: *Received November 22, 1967.

