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DECAY OF THE KINETIC ENERGY OF MICROPOLAR
INCOMPRESSIBLE FLUIDS*

Ry S. K. LAKSHMANA RAO (Regional Engineering College, WarangalA (.1. P. ), India)

The equations of multipolar continuum mechanics have been the subject matter of
study in recent years by Eringen [1] Green [2] and others (vide the references cited in the
above two papers). The linear constitutive equation for these fluids leads to an interesting
theory in which micro-rotational effects and couple stress are prevalent. Such a linear
theory of micropolar incompressible fluids has also been considered by Eringen [3] and
Bleustein and Green [4]. In this theory the fluid motion is characterized by two vector
fields V and v representing respectively the velocity of flow and the micro-rotation. The
field equations of this theory are [3]

dp/dt + div pV = 0, (1)

p(N/dt = pf — grad p + K curl v — (p + k) curl curl V

+ (X + 2p + k) grad (div V), (2)

pjdv/dt = pi + k (curl V — 2v) — y curl curl v

+ (a + P + 7) grad (div v). (3)

The constants X, p, k are viscosity coefficients while a, 7 and the gyration parameter
j are other constants of the fluid. These conform to the inequalities

3X + 2p + k > 0, p > 0, k > 0, 7 > 0, |/3| < 7, 3a + /3 + 7 > 0 (4)

and it follows that

X + 2p + k > 0, a + j3 + 7 > 0. (5)

It has been noticed by Leray, Kampe de Feriet et al. that the kinetic energy of the
Navier-Stokes viscous liquid in a domain with rigid walls decays. Kampe de Feriet
[5] proved that for the Navier-Stokes fluids, the decay of the kinetic energy is faster
than the exponential. In the present note we obtain the corresponding result for micro-
polar fluids.

Let R be a domain in space bounded by the regular curve F and let the vectors V,
v possess continuous second order derivatives in R and vanish on I\ The kinetic energy of
the fluid is

T = (p/2) j V2 dr + (pi/2) J V2 dr. (6)

The integrals in Eq. (6) and everywhere else in this note are over the volume of R, the
only exception being in Eq. (17). We have the inequalities
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7\ = (p/2) J V2dr < (pA/8tt) J (curl V)2 rfr (7)

T2 = (pi/2) J y2dr < (PjA/8t) f {(curl v)2 + (diw)2} dr (8)

in which the constant A depends only on the geometry of the domain and is defined by

A2 = // (PQY2 drP drQ . (9)

If the domain can be included in a ball of diameter d, the constant coefficients multiplying
the integrals on the right side in Eqs. (7), (8) can be replaced by pd2/(3 + 131/2)ir2 and
pjd2/Cw2 respectively, as pointed out by Serrin [6].

From Eqs. (6), (7), (8) we have

T = Tl + T2 < (pA/8tt) J {(curl V)2 + i(curl v)2 + ;(div v)2} dx. (10)

Assuming that the body force is derivable from a potential field, we have

p(dV/dt — V X curl V) = grad F + k curl v — (^ + k) curl curl V

and

f -!»■%«
= k J V- curl v dr - (M + k) J V- curl curl V dr (11)

= k J V-curl v dr — (n + k) J (curl V)2 dr.

Omitting the body couple in Eq. (3), we get

dvPJ X, + pj(V ■ grad)v = — 2fcv + k curl V — y curl curl v + (a + (3 + 7) grad (div v).
at

From this we can see that

■ f dv 1 f 2hT = PJ J vTt dT = _2A J v dT

+ k j v curl V dr — 7 j (curl v)2 dr — (a + /3 + 7) J (div v)2 dr. (12)

From Eqs. (11) and (12) we get

Jt (T, + T2) = ~ = -H f (curl V)2 dr - k J V2 dr - 7 / (curl v)2 dr

— (a + + 7) J (div v)2 dr — k J (v — curl V)2 dr (13)

from which the decreasing nature of T is evident. Using the bounds given in Eqs. (7)
and (8) for Tv and T2 in Eq. (13), we get
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~ < -(SWpA)^ - [(2k/pj) + (8ira/p;A)]T2

in which a is a positive number equal to min (a + /3 + 7, 7). If b denotes the positive
number equal to minimum [p., {(a/j) + (/cA/4?r;)}], we see that

diT/dt < - (S7rb/pA)T (14)
and now it follows that

Tit) < T(t0) exp [ — (8irb/pA)(t — *„)]■ (15)

The decay of the kinetic energy is faster than the exponential rate. It would be of interest
to examine if the velocity and micro-rotation also decay in this manner.

The spectral function of the kinetic energy also decreases faster than the exponential.
Let r = (x, y, z) and 0) = (o>j , o>2, u3) denote the position vector in the space of the fluid
and in the space £2 of the real variables oh , oj2 , o>3. If V = (u, v, w) and v = (A, B, C) are
the velocity and micro-rotation components, we define

U(o> 1, <o2 j , i), \ (0)1 , w2 , (03 , t), II (col , b>2 , (>>3 , £),

1 , (02 , (d3 , t), } (a)! , 0)2 , 0J3 , t), Z((Oi , U2 , (t>3 , t)

to be their Fourier transforms over the domain R. We have thus

LT(w! , co2 , o>3 , t) = (87t3)-1 J u(x, y, z, t) exp [f(o>-r)] dr (16)

and the inverse relation is

u(x, y, z, t) = J Ufa , (o2 , g>3 , t) exp [—f(wr)J dw (17)

The integral in Eq. (17) is over the entire space spanned by wj, u2, <•>,. The spectral func-
tion y(wj , <o2 , w3 , t) of the kinetic energy is seen to be

7(0, , <o2 , 0,3 , 0 = 4?r3p{ |C7|2 + |V|2 + \W\2 + K\X\* + | F|2 + \Z\2)}. (18)

From Schwarz's inequality in Eq. (16) we get

(8?r3 |L'!)2 < (Vol. R) J u2 dr. (19)

From inequalities of this type for the Fourier transforms we see that

7(0,! , <o2 , (03 , t) < (Sir3)-1 (Vol. R)T (20)

and now it is clear that

7(0)! , 0)2 , <o3 ,t) < (8ir3)~'(Vol. R)T(t0)-exp [—(8irb/pA)(t — i0)] (21)

on using Eq. (15).
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