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DECAY OF THE KINETIC ENERGY OF MICROPOLAR
INCOMPRESSIBLE FLUIDS*

By S. K. LAKSHMANA RAO (Regional Engineering College, Warangal-4 (A. P. ), India)

The equations of multipolar continuum mechanics have been the subject matter of
study in recent years by Eringen [1] Green [2] and others (vide the references cited in the
above two papers). The linear constitutive equation for these fluids leads to an interesting
theory in which micro-rotational effects and couple stress are prevalent. Such a linear
theory of micropolar incompressible fluids has also been considered by Eringen [3] and
Bleustein and Green [4]. In this theory the fluid motion is characterized by two vector
fields V and v representing respectively the velocity of flow and the micro-rotation. The
field equations of this theory are [3]

8p/dt + div pV = 0, (1)
pdV/dt = pof — grad p + K curlv — (u + k) curl curl V
+ AN+ 2p + k) grad (divV), (2
pjdv/dt = p. + k (curl V. — 2v) — 4 curl curl v
+ (e + 8 + 7) grad (div v). (3)

The constants \, g, k are viscosity coefficients while «, 8, v and the gyration parameter
7 are other constants of the fluid. These conform to the inequalities

BN+ 2u4+k>0 w20 k>0, v>0, [6/<v, 3a+8+7v>0 (4
and 1t follows that
N+ 2u+k >0, a+pg+vy20. )]

It has been noticed by Leray, Kampé de Fériet et al. that the kinetic energy of the
Navier—Stokes viscous liquid in a domain with rigid walls decays. Kampé de Fériet
[56] proved that for the Navier-Stokes fluids, the decay of the kinetic energy is faster
than the exponential. In the present note we obtain the corresponding result for micro-

polar fluids.
Let R be a domain in space bounded by the regular curve T and let the vectors V,

v possess continuous second order derivatives in B and vanish on T. The kinetic energy of
the fluid is

T = (o/2) [ Vdr + (i) [ ¥ dr. ©)

The integrals in Eq. (6) and everywhere else in this note are over the volume of R, the
only exception being in Eq. (17). We have the inequalities
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T, = (p/2) f V2 dr < (pA/87) f (curl V)? dr )

T, = Gif2) [ v dr < (pin/sm) [ {(curl o + @iv o) dr ®

in which the constant A depends only on the geometry of the domain and is defined by

= [ @y drp dra . ©

If the domain can be included in a ball of diameter d, the constant coefficients multiplying
the integrals on the right side in Egs. (7), (8) can be replaced by pd’/(3 + 13'*)z* and
pjd’/6x” respectively, as pointed out by Serrin [6].

From Eqgs. (6), (7), (8) we have

T =T, + T, < (pA/87) f {(curl V)? + j(curl v)® + j(div v)?} d=. (10)

Assuming that the body force is derivable from a potential field, we have
p(dV/dt — V X curl V) = grad F + k curl v — (u + k) curl curl V

and

=k f V-curlvdr — (u + k) f V-curl curl Vdr (63))

=k f Veeurlvdr — (u + k) f (curl V)’ dr.

Omitting the body couple in Eq. (3), we get

pjg—: + pi(V-grad)y = —2kv + k curl V — v curl curl v + (o« + 8 + v) grad @div v).

From this we can see that

(—igf = pj v'g:t'd‘r = —2kfv2 dr

+k [vem Var — v [ (el dr — @+ 8 +7) [ @vwrar. a2
From Eqgs. (11) and (12) we get

d aT
Lo, +1m)=4 - —nf(cuer)zdr—kfvzdr—yf(cwlv)zdr

- (a—l—B—i-‘y)f(din)zdr—kf(v— curl V) dr  (13)

from which the decreasing nature of T is evident. Using the bounds given in Eqs. (7)
and (8) for T, and T, in Eq. (13), we get
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L < —mu/pA)T, — (2K i) + (Sra/ piM]IT,
in which a is a positive number equal to min (¢ + 8 + v, ). If b denotes the positive
number equal to minimum [y, {(a/j) + (kA/47j)}], we see that
dT/dt < — (8xb/pA)T (14)
and now it follows that
T@®) < T(t) exp [—(87b/pA)(t — t)]. (15)

The decay of the kinetic energy is faster than the exponential rate. It would be of interest
to examine if the velocity and micro-rotation also decay in this manner.

The spectral function of the kinetic energy also decreases faster than the exponential.
Letr = (z,9,2) ande = (0, , @, 03) denote the position vector in the space of the fluid
and in the space @ of the real variables o, , , , 03 . If V.= (u,v,w) and v = (4, B, C) are
the velocity and micro-rotation components, we define

U(“)l) 2, O3, t)y V(")l )y W2, O3, t)y W(“’l y W2, W3, t)y
X(‘l’ly("2;("3;t)y Y(")I}O)Z)"’Syt): Z(“’ly"’2r“’3:t)

to be their Fourier transforms over the domain R. We have thus

Uor yon 00, ) = 8297 [ ule, 3,2, 1) exp liwn)] dr (16)
and the inverse relation is
u(.’l?, Y,z t) = f U(“’l y W2 , W3, t) exp [—z((.)r)] do (17)

The integral in Eq. (17) is over the entire space spanned by o, , ©. , s . The spectral func-
tion y(w; , @2 , 3 , ) of the kinetic energy is seen to be

Y1, 00505, ) = 4xp{|[UP + [V + [WI" + (X" + [Y]" + |2])}. (8)
From Schwarz’s inequality in Eq. (16) we get
8= |U])* < (Vol. R) / u’ dr. (19)
From inequalities of this type for the Fourier transforms we see that
Yo, 0, 05,1) < (8a°)7(Vol. R)T (20)
and now it is clear that
Y(O1, 05,05, 1) < (") (Vol. R)T(t) -exp [— (8xb/pA) (¢ — 1)) (1)

on using Eq. (15).
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