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ON HALF-SPACE SOLUTIONS OF A MODIFIED HEAT EQUATION*

BY

D. E. AMOS

Sandia Laboratory, Albuquerque, New Mexico

In a recent paper on the foundations of thermodynamics, Gurtin and Williams [8]
showed that under certain physically reasonable hypotheses the first and second laws of
thermodynamics (for rigid heat conductors) are

~~ f e dv = — f q n da + f r dv,
dt JR J

~- [ t) dv > — [ da + f
dt J r JdR <P J R

L„dv,
JdR <P

where e is the internal energy (per unit volume), q the heat flux vector, r the heat supply
(per unit volume), v the entropy (per unit volume), <p the conductive temperature, and
6 the thermodynamic temperature. They [8] also proved that in general the two tempera-
tures <p and 6 are equal. Subsequently, Chen and Gurtin [2] formulated a theory of
materials in which the two temperatures were unequal. They showed that for an isotropic
material the linearized version of the energy equation takes the form

c<p = kA<p -f- ctA<p r (1)

where c, k, and e are constants, c being the specific heat, k the conductivity and t the
temperature discrepancy factor since the thermodynamic temperature is related to the
conductive temperature by the formula 6 = <p — eA<p. Furthermore, they showed that
if k is positive, then e > 0.

Eq. (1) also arises in the theory developed by Barenblatt, Zheltov, and Kochina [1]
for flow through fissured rock. Its one-dimensional counterpart was derived by Coleman
and Noll [4] as governing the simple shearing motion of a fluid of second grade.

The purpose of the analysis below is to contrast the one-dimensional case r — 0,
t > 0 with the classical case, r = t = 0, for the half plane x > 0 with boundary conditions
related to

<p(x, 0) = 0 x > 0,
<5(0, <) = i t > o.

The boundary value problem. The boundary value problem (Eq. (1) rescaled)

= uxx + tuxx, x > 0, t > 0, e > 0,

u(x, 0) = 0 x > 0, ^

m(0, 0 = 1 t > 0,

u bounded,
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has a formal solution by separation of variables given by

u,{x, t) = 1 - - f dv_ (3)
TT J0 V

This function formally satisfies the conditions of the problem, but a change of variables
w = xv, x > 0 gives

u1(x, 0 = 1 - - I e—(4)
IT J o w

which shows that the solution is discontinuous at £ = 0:

lim u^x, t) — 1 — e~'/l ^ 1 t > 0
i—»0 +

(justification of the limiting process is given below). This result is in agreement with fl]
where, according to singular surface theory, the jump in the discontinuity decays accord-
ing to the right side of this relation.

If one attempts the construction of a generalized solution by introducing the initial
condition

u{x, 0) = e~ax a > 0, x > 0

in place of

u(x, 0) = 0,

the resultant solution as a —» also goes to (3) or (4). On the other hand, specification
of analytic data in the form

u(0, 0 = 1- e~at a > 0, t > 0

gives for a —> «>

u2(x, t) = 1 - - f *-"«♦»■> dv (5)
IT J a v(l ev )

or

2x2 r sin w
TV Iu2(x, 0 = 1-—/ e~" inx ' -t-2 , 2\dw (6)

w(x + ew )

which does not satisfy u(x, 0) = 0 for x > 0, but

lim u2(x, 0 = e~x/tl/'.
t-> 0 +

The result in applying the Laplace transform to (2) under the assumptions that u(x, t)
and uXI(x, t) are continuous at t = 0 is (5); on the other hand, the formal Fourier sine
transform solution with the assumptions that the u and ux —> 0 as x —> » gives (3). These
two results have important implications for a numerical solution. In a physical applica-
tion one may choose the results of one of these solutions because of experimental corre-
lation with theory for longer times and distances even though a detailed knowledge of
the mechanism at x = 0 and t = 0 may be lacking.

Each of the functions listed in (3) and (5) is continuous in e for fixed x and t. In partic-
ular, for e = 0 we have
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/ a , 2 r sin vx ,u0{x, t) = l / e  rfy
T Jo v

= erfc

which is the solution of the classical heat conduction problem. The uniform convergence
on [0, e] can be seen by applying the Dirichlet test [11, p. 23]1 for conditionally convergent
integrals in the form

[ <#>(", «)/(»> «)
*> o

dv

where
-•al/(z° + <r") 2 -•>(/(»•+«>*)

4>(v, e) = 6 , or X
1 + » (x2 + ey2)(l + v) '

j/ \ (1 +1)) .1(v, €) =  sm v.v

Here d<t>/dv < 0 is continuous in v for fixed e, F(v) = f'a f(w, t)dw is bounded independent
of v and e, and e) —> 0 monotonically in v and uniformly on [0, «] as v —» since
d<f>/dv < 0 and 0 < <j> < 1/(1 + v).

Notice that this same analysis applies for t or x on [0, I], [0, j] or [0, x] X [0, I].
Series representations of (4) and (6). In this section we develop two series for (4)

and (6) which tend to complement each other in numerical evaluation. These series
consist of positive terms involving functions for which good numerical techniques are
available for computation. We start with (4) and write the exponential in the integral in
the form

sinv M _ 7r , ^ (-1)"?'" v2"'1 sinv dv, ran,dv _ * + j, <-in: r«
J 0 V 2 n=i 7ll Jn UI o v {J ni Jo (X + V y

where X = x/e1/2, T = t/e. The Fourier transform is available from tables [5, p. 68],

f <*> 2 m +1 • / -i\m + n—1 /c% jn-1

I Ji+Tyrdv - („>_ jjpr r,-'") 0 < 2m < 2n - 2, (7)

and we apply this with m = n — 1. The Leibnitz rule for differentiation of a product
7 (n)

:u) M = Z) (,ju(k)v
V 7 fo W

will expand the right side into a sum in terms of

(2--!)= (n - l)(n - 2) • • • (k + 1)2" k = 0,1,

= z"-1 fc = n — 1,

and the derivatives of e~*

'Continuity of dip/dv can be relaxed to continuity in v for fixed e in order to apply the proof.
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(e_,,/,)(1) = _e-w^22 1/2)

(e 2 7 )<2> = c 2 ' (^172) (l + p/2

or, more generally,

(e-"y» = •

Now,

(e-../.)<»+., = e-"-Qat+1^ = ^ - i

and the polynomials Q2k-1 have the recurrence relation

Q»,i(-x) = -| <?„-,(*) - f QsVifr) A = 1, 2, • • •
where Qi(x) = — x/2. A slight change in notation,

(-»)*
2

gives

a = 1,2, • • • ,

(e-.'/-)<« = LjjLp^y-**-

with x = l/z,/2, P-i(x) = 1, P„(2:) = 1 and

P*(x) = (1 + kx)Pk-l{x) + x2P'k_l(x) k = 1, 2, ■ •

The right side of (7) takes the form

7T , _  (-1)* /2-Vp / 1
2 ^' 6 S (n - fc - 1) !(fc!)2 \ 2 / *" V/:

and with P-i(x) = 1,

W
«fo a - -e-v y (~1)"r y (-1}t X2/-P f-1U'fcr, t; - e 2_j n Z. (n _ _ 1}, (k!yr^[X

-"'Sw(iK-GD.I,(— 1)T"
n(n — k — 1)!

after changing orders of summation. A shift of index in the second sum, n = A* + 1 + p,
gives a series which is identifiable as an incomplete gamma function,

°° /  -I \ P/T7P + A: + 1 r> TSifckrT)
The final form for m1 is
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«.(*> 0 = e"'Y E Pk-{^)y(k + 1,20 (8)

where P-i(x) = 1 and

7(fc + 1, 7') = ^ [ e "vk dv.
0

Numerical values (to a specified number of significant figures) for these gamma functions
can be generated very efficiently by the procedure described in [6].

An explicit expression for Pk(x) is easily obtained by examining the transform [5,
p. 67]

r v sin v e~'"\/2 (2n — m — 4)! . 1/2.m
Jo (« + v2)" (n + 1)\C2z1/2)2n~3 ml (n - m - 2)1 { '

and comparing this with (7) for m = 0,

r v sin v = (^ir-v/2 /-i\" / r
Jo (z+v2)" (n-l)l \2z'/2J n~2V/2,

Then, by summing in the reverse direction and replacing n — 2 by n,

The terms

y. (n + to)! (x
nW m! (n - m)! \2,

Fk^(X) = ^ > 1

remain well scaled, even for very large X, but some rearrangement is necessary to ensure
that all factors remain scaled:

F m = J_ f (2k -r- 1)! = f
2*fc! (fc - r)! (r - 1)! 2*~r r4f " ( j

where

and

fcX(2/c - 2)! X r(/c - 1/2) X
22k~1(k !)2 2tt1/2 T(fc + 1) ~ 27r1/2fc3

= (fc - r)(2Z) fc
Ar+l r(2A; - r - i) '

The fact that Ui(x, t) —> 1 as T —* oo is shown by exchanging the order of summation
in (8) with the aid of (9) and noting that

V (2p + r - 1)! = r e-'IM _ 1
h^"+rvHr + p)! Jo

A second series for (4) can be obtained in which X and T essentially exchange roles.
This is done by adding and subtracting e~T on the right of (4) in the form

_r 2 f sin v _r ,= - /  e dv.
7r J0 v
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Then

Ul(x, t) = 1 - e-r - — f - l] ^dv.
7T J o V

Expansion of the exponential this time leads to

-T Kl V1 r siny, , -r 2e v-v IT)" rMi(x, 0 = 1 - e 2^ —, /
7T n=l *>0

Kx2 + v2y dv-

This latter integral is evaluated by integrating the transform [5, p. 14]

r cos vy tt1/2 (y\~u\, , , y > 0
Jo (a + v2)n r(n) V2a) K-"*(aV>

a > 0

on 0 < y < 1 after noting that

jjr ,. /it V/2 _z V4 r(m + n) 1X,-„,(.) = y e £ ^ m! T(n — m) (22)"

The result is

and

f° sin v dv tv y4 T(m + n)
J0v(X2+v2)n X2n ml r(n)2m+" t(w m' ^ ()

»(.,9 — 1 —— »- Egg r<" + tf—•x)- a.)
ulIX(x, t) is also needed to compute the thermodynamic temperature for the results

in [2]. This can be done by using
-X

uUx, t) = [t(1, T) + 7(2, T)

+ E# + 1, T)[F^(X) - 2Gk-1(X) + H^iX)]}
* = 2 J

where

= E -4, ,
r = 1

C*_1(Z) = ^ E rAr ,
A r = 1

= i~2 E - lMr ,
A r = 1

or

. . —2e r -A Tn r(m + n)g(n — m, X)
Ul"(X' ' ~ e hn\ 2m+nrn\T(n)

where gin — m, X) = X"-",-2e~'r[n — m — 1 — X]/r(n — m). Numerical results based
upon (8) and (11) and the corresponding formulae for ulx,(x, t) are shown in [2],
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If we note

_x 2X2 r sin v j
16 — I /xr2 I 2\ >

7T Jo V(X + V )

from (10), expressions similar to (8) and (11) can be written down for u2(x, t). They are

u2(x, 0 = <fx + ± ~ P^jjyUc, T)

and

(~ f\ _ i _ „-r/i _ „-x\ _ « -r v — V r(m + n + 1)t(w — m + 1, X)
u2(x,t) (1 e 2e A,nl L, ml T(n + l)2m+n+1

Asymptotics for e —> 0. Since (1) was obtained by linearizing the heat conduction
theory in [2], one expects e to be small in a physical application. We therefore develop
the asymptotic expressions in e for Ui(x, t) and u2(x, t). This we do by taking the Laplace
transform of expressions (4) and (6), expanding into power series in e and inverting them
term by term. Then for m, (x, t) we have

Ui(x, s) = j - - /
S IT .'o

co 2 I 2 —x + ev sin v j e
2 i 2 i 2 dl) — /ii \x s + sev + v v s(l + es)

1 2 f sin v .
~ s ~ tt J0 v(s + v2/x2)

2 A (-l)V r v2n*1sn~1 sin v ,
+ * k *2n+2 Jo (« + v2/x2)n+l dv

where

• - L-r-y-
Term by term inversion gives [5, p. 175]

u,(x, t) = erfc (^72) + ^ aLz~ [ v2n+le~"',/x's'mv dv.
\Zt / n=l ibX J 0 \X /

A = ( — TO + l)t (t/x2)k ^
n n~l\x2/

The Laguerre polynomial,

T 0)/^ =
U (fc+1)! k\

together with
/% 00 / 1 \»+fc 1/2 / 2\n + ifc+l / \
/ «2n + 2Jb + l -»»«/«» • 1   V l; ^ f^_| -iJ/(4() tt f I
| v e sinv dv — 2n+ft+3/2 \£/ ^e2n+2k+iy^2iy/2Ji

gives

, A - f ( * \ , e—/MO V (±\n V f \
u^x, t) ertc ^2i1/2/ + (2tt)1/2 \2t) h, (fc+1)! A:! 2* tle2n+2lc+l\(2t)1/V

where He„(x) is a Hermite polynomial given by
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[n/2] / -j\m n—2m

Hen(x) = n\ £ ——]--2mm\ (n — 2m)!

Some numerical experiments indicate that the first term works well for large t but applies
sooner for large x.

A similar analysis for u2(x, t) gives

u2(x, t) = erfc (-f^) + /(,°Q E (ft) £ Vf" ̂ 2^ '
Some comments on a numerical solution. Although for e = 0 the solution of the

boundary value problem (2) is closely approximated by the difference scheme
n+1 n \2 n+1 • 1 <-» -\rUj — u, _ A 16,- _ j = 1, 2j N

" "W n = l,2,-
u] = 0, j — 1,2, • • • TV, «o = 1, M^+1 =0, n = 1, 2, • ■ • ,

the foregoing analysis shows that if the analogous difference scheme

A'«r . A- A2m" j = 1, 2, • • • , AT
At (Ax)2 ' f (Ax)2 At _

n — 1, • • •

U° = 0, j=l,2,---N, m" = 1, w" + 1 = 0, n = 1, 2, •••,

for (2) with e > 0 converges, it can be expected to approach u2{x, t). u2(x, t) would also
be produced by starting with

u2(x, 0) = e~'/lX/\ w2(0, t) = 1.

Thus, if one wishes to produce it, (x, t), consideration must be given to other conditions.
One expects from the analysis that either of the pairs

u^x, 0) = e~ax J«i(x, 0) = 0

.«,(<), t) = 1 k(0, 0=1-
will produce Ui(x, t) if a is chosen commensurate with Ax. If a is too large then u2 is
produced. In practice a = 1/Ax works very well, (a = 1/ Ax = slope of the line connect-
ing w(0, AO = 1 with u(Ax, 0) = 0.) These observations were confirmed by some numer-
ical experiments with Ax and At as low as .001, with e = .01, .1 and .5.

The proposed (implicit) difference scheme yields the usual tridiagonal system of
equations for u"+1, j = 1, 2, • • • , N which is easily solved by recursion [10, p. 198]. This
numerical scheme can be expected to be unconditionally stable since for

u(n, j) = £ v(r, n)eir" i = (~1)I/2

the amplification factor in a von Neumann type analysis is bounded by one,

v(r, n + 1) (Ax)2 + 4e sin2 (r Ax/2)
v(r, n) (Ax)2 + 4(e + At) sin2 (r Ax/2)

A Taylor expansion shows the difference scheme to be consistent with the differential
equation as At and Ax —> 0 with an error O(At) + 0[(Ax)2]. On finite intervals, stability
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and consistency imply convergence, and under suitable hypotheses it seems reasonable
that a convergence proof could be constructed for the infinite interval.

The difference scheme which is explicit for e = 0

uT1 - u" A2u" AVr1 - A2u!
A 2 "T~At (Ax) (Axy At

gives, in a similar analysis, the stability condition (Ax)2/2 > (At — 21). Thus, if At < 2e,
this is always satisfied. For e = 0, the standard stability condition is obtained. This
scheme is also consistent with the differential equation, but there is no numerical advan-
tage over the first scheme since this is still implicit for e > 0.

A solution for continuous boundary and initial data. For convenience we super-
impose two solutions u and v to form w = u + v where formally we solve

Ut xxt , ^ t ^xx tVxxt ,

u(0, t) = <p(t), <p(0) = 0, v(0, t) = /(0),

u(x, 0) = 0, v(x, 0) = f(x),

and supply sufficient conditions for the existence of a continuous solution with appro-
priate continuous derivatives in x > 0, t > 0. Then w satisfies

Wt = Wxx + 6wxxt ,

w(0, t) = /(0) + <p(0 t > 0, v(0) = 0,
w(x, 0) = j(x) x > 0.

The Laplace transform for u yields u(x, s) = ^(s)e"ai where ip(s) is the transform of <p(t)
and

• - (nbT
Since the exponential is not a transform, we cannot use the convolution theorem directly.
Instead, we write ii(x, s) = s<p(s)e~''I/s and then convolute

e-0M<—Tj/u+ifl*) gin px dpi(x, t) = f - - [
J 0 ^ 7T J o <3(1 + e/f) dr

by inverting around a contour in the upper half s plane indented around the cut from
— 1/t to 0. An exchange of integrals, followed by integration by parts with (5) for t = 0,
gives the candidate

*(i-T)/u + !0'>0 gin pxu(x, t) = <p(.t)e-*"x" + - f <p(t) f
7T Jo Jo

df.3 dr.(i + tpy

For v, a formal Laplace transform solution yields

v(x, t) = j(G)Ui(x, t) + e~l/'j(x) + - [ [e-^",/u+i'S!,) _ e~,/']f(fi) sin fix dfi (12)
7T J o

while a formal Fourier sine transform solution yields

v(x, t) = t) + - [ e~",1/a + <'i*'/(/3) sin fix dp (13)
7T J o
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where / is the sine transform

m = f m sin ?/3 Clt
J 0

and Ui(x, t) is taken in the form (4). These are equivalent if one assumes conditions which
will ensure the inversion of / to /. Actually (12) is preferable since the value and limiting
form for v(x, t) at x = 0 are unambiguous, the integral being uniformly convergent in the
neighborhood of x = t = 0 with only mild restrictions on /. The inequality

i + 6/r

obtained by bounding the maximum in t for fixed v, helps in bounding the integral
independent of x and t for the Weierstrass M test.

It is easily seen by integrating the sine transform by parts twice that two differentia-
tions with respect to x can be performed,

v(x, t) = /(0)(1 - e_1/<) + f(x)e-'/c - - P [e ' '"""J ~ 6 sin fix dp, (14)
7T J0 P

and differentiation with respect to t does not hinder the convergence of the integral.
However, in order to satisfy the differential equation, f'(x)e~'/l must be cancelled by the
inversion of Conditions to guarantee the inversion of the Fourier integrals, in
addition to

lim j(x) = lim f'(x) = 0, <p, <p', f" continuous,
x-»0 x—*0

are key hypotheses for this analysis [7, pp. 12, 16].
Notice that enhancement of the convergence by adding and subtracting f(x)e~l/' can

be done for Ui(x, t) in (4), making a numerical quadrature more feasible:

r = ^(-i)" f(n+1" d/3
*>0 P n = 0 * nir P

with an error bound after N terms (integral truncated at (N + l)ir) asymptotic to

2N + 3 
2e/'(N + l)2(iV + 2)5'

Then

Ul(x, 0 = 1- e~'/e - - £ (-1)" f("+1>' [c-'"/(1 + *',) - e~'/l] d/3.
7T n = 0 "nir P

It is worthwhile to note that the alternating series bound retains 0(l/N3) convergence
while a direct estimate for the truncation error in the form

J (N+l)

d/3
(A'+i),/3(x + f/3)

gives 0(1/N2) convergence.
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