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HYDROMAGNETIC FLOW EXTERIOR TO A ROTATING CYLINDER*

By K. B. RANGER (University of Toronto)

1. Introduction. Wood [1] has considered the steady incompressible viscous flow
between two infinitely long rotating cylinders whose axes are parallel and are slightly
displaced so that one cylinder is interior to the other. The flow is developed as a regular
perturbation in the small displacement parameter and is such that the leading term is
an exact solution of the vorticity equation. It is then possible to solve the first order
equations and the interest in the solution is that it represents a viscous flow depending
on the Reynolds number. In the problem considered in this paper a similar method
is applied to the flow exterior to a rotating cylinder in an infinite conducting fluid where
the applied field is produced by an infinite straight wire carrying a steady current and
whose axis is parallel to that of the cylinder but slightly displaced from it. The region
interior to the cylinder is supposed nonconducting and the wire is fixed and not free
to rotate with the boundary of the cylinder. The zero order terms for the flow and mag-
netic fields are found to be exact solutions of the steady hydromagnetic equations and
it is possible, subject to a condition on the flow parameters, to determine the first order
terms in a closed form. The interest in the flow is that it represents a hydromagnetic
flow depending on the flow parameters Rm the magnetic Reynolds number, R the Reyn-
olds number and M the Hartmann number. In fact the functions contained in the
first order term in the displacement parameter are simply complex powers of the polar
radius whose indices are the roots of a quartic equation. For the two cases in which
the magnetic Prandtl number is unity, and for the Stokes flow in which both the Reyn-
olds number and magnetic Reynolds are very small, fairly simple expressions are found
for the roots of the quartic equation. It is shown that the solution changes in func-
tional form as the Hartmann number passes through the value two, which also is a feature
of the Stokes flow for magnetohydrodynamic Jeffery Hamel solution for motion in a
two-dimensional wedge-shaped region. To first order in the displacement parameter
it is shown that the magnetic field has no effect on the couple required to maintain the
motion. Finally, a generalization to the case of flow between two rotating cylinders is
discussed briefly.

2. Flow equations. The steady hydromagnetic flow equations are

(q-V)q + - [H A curl H] = — grad- + vV2q (1)
P V

curl [q A H] + r,V2H = 0 (2)

div q = 0, div H = 0 (3)

where q is the fluid velocity, H the magnetic field, p the density, p the pressure, /x the
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permeability, v the kinematic viscosity and r; the diffusivity. For two-dimensional flow
flux functions \p and x may be introduced by writing

q = curl H = curl ( —x&)

where tz is the unit vector directed perpendicular to the plane of motion. On elimination
of the pressure, Eqs. (1) and (2) become:

1 3(^, VV) n d(x, V2x) t—741 m
r d(r,0) ~ p rd{r,d) ~ vV + (4)

r ~~ vV'X = constant <5>

where V2 is the two-dimensional Laplacian given by

v2 = + +v — ~ 2 I n \ 2 r. /j2or r or r oO

and (r, 8) are polar coordinates. The flow to be considered is the two-dimensional motion
exterior to a circular cylinder of radius a which is rotating with angular velocity co£
in a conducting fluid which is at rest at infinity. The free field originates from an axial
current Kk carried by an infinite straight wire which is parallel to the axis of the cylinder
and displaced from it by a small distance c « a. The position of the wire is fixed and
does not rotate with the boundary of the cylinder. When the wire coincides with the
axis of the cylinder the flow can be represented by an exact solution of the hydromag-
netic equations in which the streamlines and lines of force are systems of concentric
circles. The method adopted in the present paper is to perturb about this solution
in terms of the small parameter representing the displacement of the axes. If the non-
dimensional quantities defined by

$ = waV, X = KX', r = at', M2 = - — , Rm = — R = — , « = e/a (6)
p vrj 7] v

are substituted into the equations of motion, then, on omission of the primes, the scaled
equations of flow are

R a(tt, v2*) _ d(x, V2x) = ^ m
r d(r, d) Rmr d(r, 6)

Rm d(V, X) „2 „
7aM)~Vx = c ^8)

where c is a constant. The free field is typified by the flux function x°, where

X° = 2 log (?"2 ~ 2re cos 6 + e2)

which to first order in e may be represented by

X:° = logr — - cos 6 + 0(e). (9)r

Thus the wire at r = e, 9 = 0 is essentially replaced by a wire at r = 0, together with
a two-dimensional dipole directed along the x-axis and of strength e. It is assumed
the complete flow and magnetic fields can be expanded in the small parameter e as
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a power series of the form

"A = Z) e"^» i X = £ enX* (10)
n = 0 n = 0

If Eq. (10) is substituted into (7) and (8), the zero order equations in e are the same as
(7) and (8) in which \p, x are replaced by \pQ , Xo respectively. The boundary conditioas
for the fluid velocity require that

dio , i dia 1 di^o „— -1, r-1, — , -^-0 (11)

and the magnetic field boundary conditions are

dxo _ (dx°\ 1 §2Co _ (l dx°
\dr)„ „dr \ dr 1 (_o r dd \r dd/e.0 '

dxo 1 dxo n QQ m
dr r dd

(12)

where it is assumed that the cylinder is nonconducting and possesses the same perme-
ability as the fluid medium. The zero order solutions are readily shown to be

\p0 = log r, xo = log r (13)

which are in fact exact solutions of the hydromagnetic flow equations (7) and (8) in
which the lines of force and streamlines are systems of concentric circles, the mag-
netic field does not affect the fluid motion, and the magnetic field and velocity field
do not interact. Again from (7) and (8) the first order equations in e are given by

R d\pa d 2, M2 dxo d 2 _ -r74 / nA.\
~r IF v ^ - RZr ~dr Yd V Xl " V (14)

Rm jdxpo dxi dxo drpA n rx71¥m-¥¥| = Vx" (1o)

The boundary conditions for the fluid velocity require

£l_m_0, r-l; (16)
dr r dd dr r dd

If xi denotes the flux function for the field interior to the cylinder then the field continuity
equations are

M = 5>?d = §xi , n7)
dr dr ' dd dd ' { }

and as r —* <», dxi/dr, (1/r) dxi/dd —> 0. The equation satisfied by xi is

Vxi = 0 (18)
and for the term of order e in (9) to be recaptured a suitable form for xl is

xi = {^ir — ̂  cos 6 + b'r sin 9 (19)

where a1, bl are constants. It follows that suitable representations for and x> are
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ii = F i(r)e,e, xi = CiWe'9 (20)

where it is understood that the real parts are to be taken as the solutions. On sub-
stituting (20) into (14) and (15) it is found that Fx and (?i satisfy the ordinary dif-
ferential equations

?7? ,'M2
7 DFl " Ri5 DGl = D*F1 (21)

?/? 7/?
G, - Ft = DOn (22)r r v

where Z> = d2/dr2 + (1 /r)(d/dr) — 1/r2. In general, there are solutions of (21) and
(22) of the form

F i = Anrn, G1 = Bj (23)

where A„ , B„ and n satisfy the equations

1'M2
[iR + l - (n - 2)2](n2 - 1 )An = ™ (n2 - 1)B„ (24)

Km

iRmAn = Bn(iRm + 1 — n2). (25)

Eliminating A„ and B„ , it is found that n = ±1 are solutions provided that A±1 = B±l
and the other values of n satisfy the equation

[(» - 2)2 - (iff + l)][rc2 - (iRm + 1)] + M2 = 0. (26)

The solutions for Ft and GL may then be represented in the form

Ft(r) = Alr + — + £) Asrn' (27)
' 8 — 1

GlW , ,4V + f + ± ,l,r" (28)

with A1, -B1, As , s = 1, 2, 3, 4 arbitrary constants and with n, the roots of the quartic
equation f(z) = 0, where

j(z) = z4 — 4 z3 + (2 — iR — iRm)z2 + 4 z(iRm + 1)

+ [M2 — 3 — + i(R — 3Rm)].

Now if the outer boundary conditions are to be satisfied it is necessary that at least
two roots of f(z) = 0 have real parts less than unity. Set z = f + 1, f = a + iff; then

= /(f + 1) = f4 — (4 + iR + iRm)£2 + 2 i%(Rm — R) + M2 (30)

and employing the argument principle it is found that a necessary and sufficient condi-
tion that g($) has exactly two roots with negative real parts is

h(fi) = Re g{ifi) = /34 + 4/32 - 2p(Rm - R) + M2

= £4 + 4[/3 - \{Rm - R)]2 + M2 - i(Rm -R)2 ^ 0

for all real /3. A sufficient condition that h(j3) is positive is clearly 4M2 > (Rm — R)2.
It is noted that if /i(3) is somewhere negative then it must have at least two real roots
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and consequently <7(f) will have at least three roots with negative real parts. In this
case the boundary conditions do not determine the term of order e uniquely as there
are eigensolutions and, in principle, the roots have to be combined in such a way so
as to ensure the convergence of the complete expansion in e. However, this case will
not be considered further in the present work. Thus if 4il/2 > (Rm — R)2, let n* , i = 1, 2,
be the roots of (29) satisfying Re n; < 1; then the solutions for Fl and G'i are given by

/<» = B>

G1(r) = B'

_l_ n2 + 1 r„, _ n, + 1 rn,~\
nx — n2 nx — n2 J

1 _| iRm(n2 + 1 )r"* iRmjrh + 1 )r"'
r (nx — n2)(iRm + 1 — n\) (nx — n2)(iRm + 1 — ri2).

(32)

(33)

These solutions are defined for values of the parameters R, Rm , and M2 satisfying the
inequality 4M2 > (R — Rm)\ The remaining constants are determined from the con-
tinuity equations (17) and lead to the equations

b' cos 6 — (a' — 1) sin

= R eiB'ie 1 , iR„(n2 + 1) iRm(+ 1)
(nx — n2)(iRm + 1 — n\) {nx — n2)(iRm + 1 — n\).

b' sin 9 + (a' + 1) cos 6 (34)

= Re IbV  2 . iR^jrii + 1) iRmn2(yix + 1) 
(nj — n2)(iRrn + 1 — n2) (nx — n2)(iitm + 1 — n22).

so that there are four arbitrary constants a', b', B1 and B1 to satisfy the four linear
simultaneous equations arising from (34).

3. Slow motion solution. In this section some explicit values for ns will be de-
termined for the case when the motion is slow, that is for effectively zero Reynolds
number. If in addition Rm is negligibly small and we put z = f + 1, the equation satisfied
by f in the limit as Rm , R —» 0 is

f4 - 4f2 + M2 = 0. (35)

Now it is observed that the equation z4 = 2az2 + 62 = 0 has the solutions

z = =t^-^ {(a + b)1/2 ± (a — b)1/2}

so that the nature of the solutions depends on the sign of (o — b). In the present case
a = 2, b = M. For 0 < M <2, the solutions for F^r) and Gx{r) are given by

F1(r) = {--
[r [a — a ) (a — a )

Gi(r) = -1'
(36)

where a1 = {2 ± (4 — M2)1'2} '/2. For M > 2, the values of z for which Re z < 1 are
given by
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(M + 2\1/2 .(M - 2\1/2

2 - 1 - (,-r-j ± (37)
and the solutions are given by

f\(r) = -j± + [-^->^pPr1-(M+2/4,1/,sin [{M - 2/4)1/2 log r]

- rx-'"+2/i)l" cos [(M - 2/4)l/2 logr]} (38)

Gi(r) =

For M — 2, f = — \/2 from (35) and a second solution of the form ?-1 2 log r is found
from (21). The complete solution for Fi satisfying the boundary conditions is given by

/'\(r) = — — r1 v'2 + (2 — \/2)r1 ^2 log rj (39)

and (?i is the same as before. Thus (36), (38), and (39) define a magnetohydrodynamic
Stokes flow valid for arbitrary M. These solutions express the effect which the dipole
part of the applied magnetic field has on the fluid motion and this in general is to retard
the flow. From (38) the graph of Fi(r) against r presents the appearance of a damped
wave whose physical effect is to inhibit the flow round the cylinder. The first order term
also contains a term which represents a two-dimensional dipole flow located on the axis
of the cylinder and is such that for large M it is the dominant part of the field at large
distances from the cylinder. It is of interest to note that the solution changes in func-
tional form as M passes through the value 2. Exactly the same situation occurs for
the slow motion solution to the magnetohydrodynamic Jeffery Hamel flow [2] in which
the motion takes place in a wedge-shaped region and the applied field is produced by
an infinite straight wire carrying a steady current placed at the line of intersection
of the walls. Finally it is observed that the quartic (30) reduces essentially to a quadratic
for the case in which the magnetic Prandtl number Rm/B is unity, and consequently
the solution for the flow field can be represented in a relatively simple form.

4. The couple on the cylinder. If q and H represent the physical fluid velocity
and magnetic field vectors respectively then the couple on the cylinder is given by the
formula

G = n I ([r A H](H-r)}r,„ dd + f [r A Rr]r=aa d0 (40)
*>o Jo

where the stress vector Rr is given by

rRr = —pr + pe[(r • V)q — q + V(q-r)].

To first order in e, the magnetic field contribution vanishes and the second integral
gives the result

G = 4:Tra'puct)/c (41)

so that to first order in e the magnetic field has no effect on the couple required to main-
tain the motion.



1969] NOTES 415

5. Flow between two rotating cylinders. It is of interest to enquire whether the
preceding analysis applies more generally to the flow between coaxial rotating cylinders
whose axes are slightly displaced by a nondimensional distance e « 1. Both cylinders
are nonconducting and it is assumed that the free field is produced by an infinite straight
wire located on the axis of the inner cylinder and carrying a steady current. Proceeding
in the same manner as before we reduce the flow problem to the solution of

iR[A +^)DFl ~ljf(c + Dr )dg1 = d2f\

iR^A + - iR„,(c + = DGX
(42)

where A, B, C, and D are constants depending on the radii and angular velocities of
the cylinders. The system defined by (42) cannot be solved with the same generality
as (21) and (22). A perturbation solution can be obtained easily for small values of all
three parameters and for larger values it is possibly more appropriate to employ a bound-
ary layer type of approximation to the system. However, this will not be attempted
in the present paper.
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