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UNSTEADY, SELF-SIMILAR, TWO-DIMENSIONAL SIMPLE WAVE FLOWS*

By LAWRENCE ELLIOTT LEVINE (Stevens Institute of Technology)

1. Introduction. The two-dimensional, unsteady, isentropic motion of a polytropic
gas, that is a gas whose pressure p(z, y, t) and density p(z, y, t) are related by

p=Kp, (>1)

where v is the adiabatic index of the gas and K is a constant, is governed by the equa-
tions of continuity and momentum which may be put in the form

¢, + uc, + ve, + X ; Low +ea) =0 (1.1)
2
u,+uu,+vu,,+7_lcc,=0, (1.2)
v, +w, + w, + cc, = 0. (1.3)
¥y —1

In Egs. (1.1)—(1.3) the subscripts denote partial derivatives, u(z, y, t) and v(z, vy, {)
are the z and y components of the velocity respectively, and c(z, y, £) is the local speed
of sound which is given by

¢ =dp/dp = Kyp" ™.

Recently Mackie [1] has investigated directly solutions of the system (1.1)-(1.3)
in which the independent variables z, ¥, and ¢ occur only in the combination z/t and y/¢,
so-called self-similar solutions; whereas PPogodin, Suchkov, and Ianenko [2] have first
considered from a quite general standpoint solutions in which ¢ = ¢(u, v), which they have
termed “‘traveling wave” solutions, and then specialized to the self-similar case. Further-
more, Suchkov [3], Ermolin and Sidorov [4], and Levine [5], [6] have studied certain
physical problems which have only velocities but no characteristic length parameter in
their formulation and therefore possess self-similar solutions which may be written as

u(x; Y, t) = COLT(X, Y)y 1)(1’, Y, t) = 0017(X) Y)) C(x) Y, t) = COF(X, Y), (1 4)
where
X = z/ct, Y = y/cit . (1.5)

Here ¢, is a constant with the dimensions of a velocity so that U, V, F, X, and Y have
the convenience of being dimensionless.

A consideration of the mapping from the U, V-plane (hodograph plane) to the
X, Y-plane (which in self-similar flow problems may be thought of as a ‘“snapshot”
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of the physical z, y-plane at some unit time) shows that there are three types of solu-
tions—uniform (U = const., V = const.), simple wave (U = U(F), V = V(F)) and
mixed wave (F = F(U, V)). In this paper we shall study the class of self-similar, simple
wave solutions of (1.1)-(1.3) which are of interest because of the occurrence in physical
problems of regions in the X, Y-plane where U = U(F), V = V(F) (see, for example,
[4]). In addition, this class of solutions possesses certain properties analogous to those
exhibited by simple waves in two-dimensional, steady flow.

2. Properties of simple waves. In the seclf-similar variables (1.4) and (1.3) the
system (1.1)—(1.3) takes the form

(U = X)F + (V= Dy + L5 (U + FVy) = 0, 2.1)
(U= XU+ (V = NUx + 2 Frye =0, 2.2)
(U= X)Vat (V= Vs 4 -2 FFy =0, @.3)

If the flow is assumed to be irrotational, then as a result of the dynamic similarity
there will exist a dimensionless velocity potential & defined by

¢ = i®(X, Y),

where ¢ is the customary velocity potential and thus satisfies u = ¢, , v = ¢, . From
(2.1)-(2.3) it follows that the equation for & is

{((@x — X)* — F*}&xx + 2(y — X)(By — V)&xr + {(By — V)" = F}dyy = 0. (2.4)
The function F* is given by the unsteady form of Bernoulli’s theorem, namely

r’ _ F;
y—1 y—-1

& — XOy — YO, + 3% 4 1@) + ,
where F, is a constant.

Equation (2.4) was derived by Mackie [1]. It is valid throughout the entire re-
gion of the X, Y-plane in which a physical problem is posed. Note that (2.4) has a certain
resemblance to the equation for the potential ¢ in two-dimensional, steady flow

@2 — .. + 20.0,0., + @, — ), = 0. (2.5)

Returning now to Egs. (2.1)-(2.3), we see that these equations take a particularly
simple form in the special case U = U(F), V = V(F), since the derivatives of U and
V with respect to X and Y may now be replaced by derivatives with respect to F only.
If this is done, we have

-1 ..
(U = X)Fx + (V= Y)Fy + 2= (FUFy + FVeFy) = 0, (2.6)

9
U= XUFx +(V — VUFy + 7%1 FFy =0, 2.7

9
(U= X)VelFx + (V= Y)VeFy + ﬁ FFy = 0. 2.8)
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From (2.7) and (2.8) it follows that
UrFy = ViFyx , (2.9)

that is, a self-similar, simple wave flow must be wrrotational. Using (2.9) in either (2.7)
or (2.8) yields

UpX + VoY — [7—3"1 F+ UU, + VVF] = 0. (2.10)

Furthermore, if (2.7) and (2.8) are multiplied by Uy and V, respectively and added,
and if the resulting terms containing F are eliminated by means of (2.6), then we have

2
U+ V2 = (7—3—1) . @.11)
Equations (2.10) and (2.11) are the basic equations governing self-similar, simple waves
and will be used for further investigation. (It is interesting to note that two somewhat
more general equations of which (2.10) and (2.11) are special cases may be derived
from (1.1)-(1.3) by directly seeking solutions of the form v = u(c), v = v(c). This was
apparently first done by Ianenko [7]. From these equations it follows as above that a
flow in which u and v are functions of ¢ only must be irrotational so that, in particular,
the two-dimensional, isentropic, steady, simple wave motion of a gas is irrotational.
However, since we are concerned only with self-similar solutions, the derivation given
here and the resulting equations are sufficient.)
In a simple wave region we have the following result.

TaeorEM 1. If Egs. (2.10) and (2.11) hold in some domain D in the X, Y-plane,
then equation (2.4) 7s in general hyperbolic in . More specifically, Eq. (2.4) cannot be
elliptic anywhere in D and cannot be parabolic except possibly on a curve in D.

Proof. Let

=U—-X)+ ¥V =-Y) - F (2.12)

Since Egs. (2.11) and (2.12) are invariant under rotation, we may always perform a
suitable rotation to obtain a coordinate system in which both Vi and Uy are locally
nonzero. Considering this done, Eq. (2.10) may then be solved for the quantity V — Y
so that

2 1 .
V-Y=—-U- X) = _ ———i—V— (2.13)
Substituting (2.13) into (2.12) and squaring yields
U; 4 ( 2 ) 1 ]
— — 7\2 _x _F_' _ '2 e = .
= (U A)[l ]-l— F2(U X)F+F|:'y—l 7 1
If (2.11) is used in the above expression for L, we obtain
2
L=—1[———(U X) 4+ UsF ] 2.14)
Ve

and similarly

L= [ (V—Y)-l—VFFT

Ur
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Clearly L > 0 throughout . However, ®x = U and &, = V so that this implies
that equation (2.4) cannot be elliptic anywhere in D.

Suppose L = 0 in any region contained in O. Then differentiation of the above two
expressions for L with respect to X and Y leads to a contradiction.

We have not dealt with the possibility that L may be zero along a curve. After we
have established Theorem 2 we shall show that this situation does indeed occur, but
that in any simple wave region there is only one such curve.

TaEOREM 2. Along each characteristic of one family of characteristics of Eq. (2.4)
F, U, and V are constant, and furthermore, each of these is a straight line.

Proof. From (2.12) it is easily seen that the characteristics of Eq. (2.4) are given by

Y (U—=X)(V—-Y)+FVL
X = (U —X) = F

For the appropriate family the elimination of V. — Y from the above by means of (2.13)
and the taking into account of Eq. (2.14) yield

dY/dX = —Up/Vp.

However, the irrotationality condition (2.9) implies
dY/dX = —Up/"'rp = —'Fx/Fy (2.15)
Thus along each characteristic of one family of characteristics we have from (2.15) that

FydX 4 FydY =0,

and F is constant along each characteristic.

If F is constant along some curve, then U, V, Ur , and V; are also constant along
this curve since they are functions of F only. In particular, the ratio Uy/V, is constant,
so that (2.15) implies the last part of the theorem.

Equation (2.15) and Theorem 2 allow us to explain fully the last part of Theorem 1.
Any characteristic in the family consisting of straight lines may be suitably rotated
so that its slope is zero, and hence U} = 0 on this rotated characteristic by (2.15),
where U’ denotes the velocity component in the new coordinate system. The invariance
of L and (2.14) then imply that at the point X’ = U’L is zero. However, since U’ is
constant along each characteristic there will only be one such point on each characteristic.
If these points are now joined, the continuity of the quantities in (2.12) implies that
a curve will result along which L = 0; that is, there is in general one curve along which
Eq. (2.4) is parabolic. It is interesting to note that for the special simple wave considered
in [1] U = 0 so that on the line X = 0 Eq. (2.4) is parabolic.

Let us comment briefly on Theorems 1 and 2. Iirstly, these theorems have their
obvious analogies in two-dimensional, supersonic flow where it is well known that
Eq. (2.5) is hyperbolic and that in a simple wave region one family of characteristics
in the «, y-planc consists of straight lines. Secondly, it is readily seen from Eq. (2.10)
that the curves along which F, U, and V are constant are straight lines in the X, Y-plane,
since this equation is linear in X and Y, and this has, in fact, been noted in [4]. However,
it is certainly not obvious that these lines are characteristics—a result which is ap-
parently not established in [4].

Up until now we have not related solutions of Egs. (2.10) and (2.11) to actual phys-
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ical motions. In order to do this we first introduce the terminology Riemann wave.
By the term Riemann wave we mean the solution to the following problem. Let poly-
tropic gas with adiabatic index v occupy the region y > rtan 6, — o < z < o« at time
t = 0. Furthermore, suppose at this instant it is flowing uniformly with constant x
and y velocity components u, and v, respectively and with acoustic speed ¢, . At time
t = 0 the gas is allowed to expand into the vacuum y < z tan 6. Thus a Riemann wave
is simply the one-dimensional, unsteady flow which results when a semi-infinite column
of gas behind a piston is allowed to expand into a vacuum by the instantaneous removal
of the piston when viewed by an observer moving with constant velocity in the plane.
By a fairly straightforward analysis of a Riemann wave (for details see [6]) the
following theorem relating simple waves and Riemann waves may be established.

TuEOREM 3. A linear simple wave, that is, a solution of (2.10) and (2.11) of the form
U=aF 4+ 8, V =aF + 8.,

where a; , B; (1 = 1, 2) are constants, is a Riemann wave. Conversely, any Riemann wave
18 a linear simple wave.

From equation (2.15) we obtain

CoroLLARY. Suppose that in a simple wave region the lines along which F s con-
stant are parallel. Then this simple wave is a Riemann wave.

In two-dimensional, steady, supersonic flow the assumption that the characteristics
in a simple wave are straight leads one to the physical problem of flow round a bend,
that is, Prandtl-Meyer flow. The situation in unsteady, self-similar flow is, however,
somewhat more complicated. Although here also one family of characteristics is straight
in a simple wave region, the exact physical nature of a nonlinear, simple wave is not
easy to interpret and cannot, in general, be identified globally as the solution of a definite
physical problem. (Consider, for example, the solution

. 2 .
0—7_151nF, V—-’y_1

cos I, F=XcosF —XsinF

of Egs. (2.10) and (2.11), where F is suitably restricted.) Nevertheless, nonlinear simple
waves do occur in the solution of physical problems (see [4]) as part of the total solution.
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