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BIFURCATION IN ELASTIC-PLASTIC SOLIDS IN PLANE STRESS*

BY

R. N. DUBEY AND S. T. ARIARATNAM

University of Waterloo

Summary. A sufficient condition for bifurcation of equilibrium for an elastic-
plastic solid under a state of plane stress is established. The bifurcation is found to
occur in any of the following modes: (i) symmetric mode corresponding to necking or
bulging, (ii) antisymmetric mode corresponding to buckling and (iii) mode of deforma-
tion localized at the surface.

Introduction. The stability and bifurcation of rigid-plastic solids in plane-plastic
flow has been studied extensively [1-3]. Similar work for elastic-plastic solids in plane
flow is also available [4], However, very little work seems to have been done on the
problems of stability and bifurcation of an elastic-plastic solid in three-dimensional
flow. A similar investigation for rigid-plastic solids in three-dimensional flow is limited
in scope due to the restricted choice of the velocity field.

Prager [5] found that for a von Mises solid under a state of uniform stress, the only
admissible velocity field in three-dimensional flow is of quadratic form. Hence some
form of instability may be excluded when the behaviour of the solid is postulated to be
rigid plastic (example—surface instabilities, buckling). In the degenerate case for a
von Mises solid, when one principal component of the stress deviation is zero as in plane
strain, or for a Tresca solid, a transcendental form of the velocity field is admissible.
Even then it would appear that a rigid-plastic solid does not exhibit instability localized
at the surface.

In this analysis, an elastic-plastic plate in a state of plane stress is considered. In
the constitutive equation, which is due to Hill [6], the plastic component of deformation
is expressed in terms of the components of the unit normal to the yield surface at the
local stress point. Hence the analysis is applicable to a wide class of inelastic solids.

As an illustration, we consider a plate that is under equal biaxial stress and obeys
von Mises' yield criterion. This assumption results in considerable mathematical
simplification. It is found that the plate may become unstable in any of the following
modes: (i) symmetric mode, (ii) antisymmetric mode or buckling mode, and (iii) in-
stability localized at the surface.

Formulation of the problem. Consider an incompressible isotropic elastic-plastic
disk in a state of plane stress at a certain time t = 0 during a process of continued
deformation. In the current configuration, also taken as reference configuration for
incremental deformation, the plate is of in-plane dimension 2a X 26 and of thickness 2c.

A fixed coordinate frame coinciding with the axes of symmetry of the plate is
taken as the reference frame. Wherever convenient the coordinates xx , x2 , x3 will
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be replaced by x, y, z, and the velocity components i'i , v2 , v3 by u. v, w, respectively.
With respect to this frame, the current stress field, assumed homogeneous, is given by

<7n 0 0

0 022 0

0 0 0
(1)

In the current configuration, the components of the true stress a,, and the nominal
stress su are identical (Hill [6]).

We now investigate the condition for bifurcation of equilibrium of the body under
continuing deformation. During the subsequent infinitesimal deformation, the faces
xs — ±c of the plate are given to be free of external traction-rate whereas the edges
Xx = ±a, x2 = ±b, assumed to be frictionless, are prescribed to move with velocities
U and V, respectively. For conciseness, the traction-rate boundary condition is expressed
in terms of the material derivative, that is the time derivative following the element,
of the nominal stress, si;- . Hence,

S12 = S13 = 0, Vi = riiU on the face xl = ±a,

s2i = 0s23 = 0, vt = n, V on the face x2 = ±6, (2)

s3i =0, i = 1, 2, 3 on the face x3 = ±c,

where is the unit outward normal to the boundary surface.
The incremental stress field must satisfy the equations of continuing equilibrium)

s,y„- = 0. (3)

Material properties. We consider the Jaumann derivative of the true stress Da"/£>t
as the objective stress-rate for describing the material property. The fixed components
of Dcr"/SD< are given by the relation [7]

SDff'VSOt = a"'1' + a'ka>'k + cTiku'k , (4)

where col; = %(vit,■ — viti) is the antisymmetric part of the velocity gradient tensor.
The constitutive equation for an incompressible and isotropic elastic-plastic solid may
be taken in the form

SD<r„./ayt = 2M(6<f- - elf) + p S„ , (5)

where

e,-f = h~1mij(mklT>(7ii/S)t) when wi;,2D<7;,/3l>£ > 0, ^

0 • ■ • <0.

Here e,, is the strain-rate tensor, e'f the plastic part of the strain rate, mit- the typical
component of the unit normal to the yield surface at the local stress point, h the positive
scalar measure of the current rate of work hardening, n Lamp's constant, and p the
hydrostatic pressure rate.

In view of the current stress distribution (1), the components of mu may be taken
in the form:
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mu 0 0

m,j = 0 m2 2 0 , (7)

0 0 m33 J
where

mu = 0, and = 1. (8)

With the use of (1), (5), (7) and (8), the relation (6), for material undergoing plastic
loading everywhere, can be written:

<ru = 2 n(anux + al2vy + a13wz) + p,

&22 = 2 n(a12ux + a22vy + a23wz) + p,

&33 = 2 n(a13ux + a23vy + a33wz) + p,

o"i2 = 2ix(atluu a12^'V))

<?23 = -(- Cl^Wy),

<r,3 = 2fi(aeiwx + ae2u.),

an = 1 — mu 5/(1 + 5), a22 = 1 — m22 5/(1 + 5),

a33 = 1 — m\3 5/(1 + 5), al2 = —mnm22 5/(1 + 5),

a23 = —m22m33 5/(1 + 5), a13 = —mnm33 5/(1 + 5),

®41 = ^[1 (®1 ^2)]) ^42 = s[l "t" (®1 ^2)])

®S1 = §[1 ^2]) a52 = ?[1 "1" ^2])

O.U = ?[! "t" ®l]> ®62 = §[1 ^l] j

Qi = (o-n/2/i), 022 = (tr2/2 n), 5 = (2p/h),

where

(9)

(10)

and the latin suffixes denote partial differentiation.
Homogeneous deformation. The relation (Hill [0])

Sh = <y a — TikVi,k (11)

and the incompressibility condition

Vi.i = 0 (12)

can be used to express the equations of equilibrium (3) in the form

&a,i = 0. (3a)

A homogeneous deformation field satisfying (3a) and the boundary condition (2) is
found by inspection to be

u = Ux/a, v = Vy/b, and w = — (U/a + V/b)z. (13)

The deformation field (13) preserves the rectangular shape of the plate. The associated
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stress-rate field is, using (2), (9), (10) and (13),

5
o"n =

<?22 — 2/Z

2 - (mu - m33) J g

1 - (mumjj + 2m33)

C//a + 2m 1 — (mnm22 + 2m33)

5
1 + 5 J

<*33 = <^12 = <?"l3 = ^23 " 0.

U/ a. -|- 2 m (m22 - w33)2

1 + 5.

5
1 + 5 J

V/b,

(14)
V/b,

Now we look for a velocity field, not identically zero, but such that its components
u and v vanish on the edges x = ±a and y = ±6 respectively and which satisfies the
equations of continuing equilibrium (3a) and the traction-rate boundary conditions (2).
It is obvious that the nonhomogeneous deformation field, when multiplied by an arbi-
trary constant and added to the homogeneous field (13) wall still satisfy the equations
(2) and (3). Thus there is a bifurcation of equilibrium in the current state.

It may be mentioned that the in-plane dimension of the plate is not altered by the
nonhomogeneous field.

Nonhomogeneous deformation. The velocity component w and the pressure rate
p can be eliminated from (3a) by using (9), (10) and (11), to yield

[1 — 2(2m,i + m22ra33) 5/(1 + 5)]m„„ + [1 — (0! — 02)]m„„„ + (1 — 6^)vyzz

— [1 + (01 - 02>xxx - [1 — 2(2?7i22 + mum33) 5/(1 + 5)]^^

- (i - e2)v,zz = o,

(1 + 01)w.„„ + (1 + d2)uzrilv + 2[1 — (mn — m33)2 5/(1 + 5)]uxxt,

+ [1 ~ (0i — 02)}uvuzz + (1 — 0i)uzzzz + (1 + 6,)vxxx„ + (1 02)vxyvv (15)

+ [1 — 2(2to|3 + m,,ra22) 5/(1 + S)]vTV„ = 0.

We seek a solution for v{ in (15) in the form

u = a, sin vx cos nil exp (fiz), v = a2 cos vx sin rjy exp (/3s), (16)

where a, , a2 are constants.
A necessary and sufficient condition for a nontrivial solution of a, and a2 to exist

is found by substituting for u and v in (15) and equating the determinant of the co-
efficients of and a2 to zero. This condition is obtained in the form

/36(1 - 00(1 - e2)

- 04(1 - 0i)[{1 + (01 - 02)!^2 + 2{1 - (m22 - m33)2 5/(1 + 5)jr?2]

+ (1 - 02)[2{1 - (mn - m33)2 5(1 + 5)},2 + U - (0. - e2)}r,2]

+ /32{[1 + (0j - 02)][3 - 2(m„ - m33)2 5/(1 + 5)],4

+ [1 — (0„ — 02)][3 — 2(m22 — m33)2 5/(1 + 5)]tj4 — 0102(y2 — ??2)2

+ ?2i72[6/(l + 5) — 2(62 + 82,)]}

— [(1 + 8i)v2 + (1 + 02)t72]![1 + (91 — d2)]v4

+ 2[1 — (mn — m22)2 5/(1 + 5)]vV + [1 — (0! — 02)]'?4! = 0.

(17)
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Once the values of the roots /?,■ (i = 1, • • • , 6) of Eq. (17) are determined, the ratio
(a2/«i) can then be obtained from (15). Thus u and v are known except for an arbi-
trary constant multiplier, and w is found from the incompressibility condition (12).
The condition for bifurcation of equilibrium can now be obtained in a routine manner.

The actual field is equal to the sum of the homogeneous field (13) and the non-
homogeneous field multiplied by an arbitrary constant, which can be chosen so that
the material everywhere loads during the deformation. This procedure results in con-
siderable mathematical simplification.

As an illustration, we consider a body under equal all-round tension and obeying
von Mises' yield criterion. Thus <ru = c22 = a (say), and mn = l/\/6, m22 = l/"\/6,
m33 = —2/^/6. The characteristic equation (17) now reduces to

/f(i - e)2 + 3/?4(i - e){S + W(1 + 5) + 0V + v)

Ll-|1 - e2 + 0'2 + vya + 0) = o (18)

where 6 = cr/2/x, 5 = 2n/h, v — mir/a, rj — nir/b; m and n being positive integers.
The roots of (18) are

2 I 2
_ V + V

1 - e
2 ~2

= 7 8l
2 ?2= 7 o2 ,

= 7 (say)
(19a)

where
11/2

Sl - + [«• - , and

Si =

2(1 + 8)^ I 4(1 + 5)2J
2 - 6 _ [" 2 _ 35(3 + 4)1

2(1 +5) L 4(1 + 5)2J
1/2

(19b)

Hence, from (15)

u = sin vx cos vy[<Xi exp (7z) + a2 exp (—7z) + a3 exp (yS^)

+ a4 exp (—78^) + a5 exp (yS2z) + a6 exp (—•yS2z)],

v = cos sin -qyK—v/n)^ exp (7z) + a2 exp (—72)]

+ 0?A)[«8 exp (y8tz) + a4 exp (—yo^) + a5 exp (yhz) + ae, exp (—7522)]),

w — — 7[(1 — 0)/v] cosvx cos vyl^/di) exp (7 5^)

— (cti/61) exp (—ydiz) + (a5/S2) exp (yS2z) — (a6/S2) exp (—yb2z)].

Bifurcation may occur in any of the following modes: (i) symmetric mode of deforma-
tion corresponding to the necking or bulging of the specimen, (ii) antisymmetric mode
of deformation corresponding to buckling mode, (iii) a mode of deformation localized
at the surface (surface instability). The three cases are considered separately.

Symmetric mode of deformation. The velocity field in this case is symmetrical
about the x — y plane; consequently u(z) = u(—z), v(z) = v(—z), w(z) = —w(—z).
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Only even functions of z need therefore be considered in the expressions for u and v
which may then be taken in the form:

u = sin vx cos -qylctx cosh 7z + a2 cosh 7^2 + a3 cosh 752z],

v = cos vx sin r)y[—ax(v/rj) cosh + (^/v)(a2 cosh 75,2 + a3 cosh y82z)],
and

w = —7((1 — 0)/v) cos vx cos ny\_{a2/bt) sinh 7 5^ + (a3/82) sinh 7622] (20)

follows by using (12).
The boundary condition (2c), on substituting from (9), (10), (11), (12) and (20),

yields
sinh 7c + aat^i + (1 — 0)/5,] sinh 7<5,c + a3[52 + (1 — 0)/52] sinh 782c = 0,

—«! sinh 7c + oc2(v/v)2[Si + (1 — 0)/81] sinh 76^

+ a3(r]/v)2[S2 + (1 — 8)/S2] sinh752c = 0,

a2[3/(l + 5) — 0 — 5j] cosh 75^ + a3[3/(l + 5) — 8 — 52] cosh752c = 0.
A necessary and sufficient condition for bifurcation of equilibrium is obtained by

eliminating a, , a2 and a3 , and may be expressed in the form:

82 tanh 7 5,c
5, tanh 7 82c

Li + s3 - 8 - 8\

3 a *2
1+8 9 S\

[1 — 8 + 52]
  (21)

[1-8 + S?]

The unknown in this equation is the critical stress <x. The least value of a obtained
by minimizing with respect to v and ?? gives the first bifurcation state. For a thin plate,
for which the ratio of the thickness to the smallest in-plane dimension of the plate is
small, i.e., c/a, c/b « 1, the critical stress for the initiation of necking is obtained as

4 + 5
a = p

1, i

]•

1 + 5
The minimum value of <x, obtained for to = 1, n = 1, is

° — M 1 g + "3^2 (1 + a /b2) | , 5 = 2p/h.

The second term in the bracket represents the effect of shear stiffening.
In general, the roots of the characteristic equation (18) are complex. Eq. (21) may

then be expressed in more convenient form in the following manner.
Let the roots of (18) be given by /? = ± \Z—lr2 • Then, from (19a),

2r\ = (2 - «)/2(l + 8) + (1 - 82)1/2, 2>■* = - (2 - 5)/2(l + 5) + (1 - 82).

Proceeding as before, the condition for bifurcation of equilibrium is obtained from
the boundary condition (2c), and may be written in the form hid) = f2(d), where

/1 - (1 — <p)/(l + <p),

1 +
1 -

4 + 8
28(1 + 5). and (22)

tp = (Vj sin 27r2c)/(r2 sinh 2yric), 8 = 2p/h.
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The curve of h against 6 for a given body constitutes a family, each corresponding
to a different value of v and rj. The point of intersection of this family of curves with
the curve of /2 against 0 corresponds to the critical value of 6 at which bifurcation of
equilibrium is to be expected. In Figure 1, the curves /i(0) and f2(d) against 6 are shown
for m = 1, n = 1, a = b/2 and for c/a = 0.1, 0.25 and 1.0. It is seen that Jl curves
corresponding to c/a = 0.1 and 0.25 each has only one point of intersection with /2
curve. The corresponding mode of deformation is possible under tensile load. The
fi curve corresponding to c/a = 1.0 has two points of intersection with the f2 curve;
the point C corresponds to necking mode (under tensile load) and the point D corresponds
to bulging mode (under compressive load). Similar curves can be drawn for other values
of m, n, a/b and c/a.

The two cases (a) c/a, c/b « 1, and (b) c/a, c/b are of particular interest and are
considered in detail.

Case (a): c/a, c/b « 1. In this case (irc/a)(m2 + n2d2)1/2 « 1, d = (a/b). Hence
<p tends to unity and consequently /j tends to zero. The line jl = 0, as is seen in Figure 2,
does not intersect the family of /2-curves for values of 8 < 2; that is, the tensile in-
stability of the type considered does not occur until the ratio 5 exceeds 2. The number
of half-waves occurring at this instant, however, is indeterminate.

Case (b): c/a, c/b » 1. In this case (mc/a)(m2 + n2d2)1/2 » 1; consequently <p
tends to zero, and tends to unity. Under these conditions, the bifurcation of equilib-
rium is possible under both compressive and tensile loads. The number of half-waves
is indeterminate in this case as well.

Fig. 1
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1.0 fi(6)

0.5

0.0 f I (fl)
1.0 -0.8 -0.6 -0.4 -0.2 0.2

Fig. 2

It is to be noted that the case (b) is applicable also in the case of a body having a
finite c/a ratio and in which bifurcation is accompanied by the formation of a large num-
ber of waves.

Antisymmetric mode of deformation. The velocity field in this mode is charac-
terized by u(z) = —u( — z),v(z) = — v( — z),w(z) = iv( — z). Hence, considering only the
odd functions of z in the expressions for u and v,

u = sin vx cos 77?/[ai sinh yz + oc2 sinh yS^ + a3 sinh y S2z],

v = cos vx sin vlri)a.\ sinh yz + (r]/v)(a2 sinh y82z + a3 sinh yS2z)],

w = —7((1 — 0)/v) cosw cos j?2/[(a2/51) cosh 7^2 + (a3/52) cosh yb2z\-

By a procedure similar to that employed for the case of symmetric mode of deforma-
tion, the following condition for the existence of nontrivial solutions for al , a2 and a3
is obtained:

52 tanh 7 52c
5! tanh yb^

3 - e - si1 + s
- 0

(1 - e + s22)
  (23)

(l - e + si).1 + s

For a thin plate for which c/a, c/b « 1, the critical stress is found to be
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n22 2/2 2'ir c I m , n
o " v 2

E, = n

3 V a ' 1/

4 + S
1 + 5'

17 /m2
1 V a215 5+1 \ a2 b

(24)

The minimum value of a in (24) corresponds torn = 1, n = 1.
For large values of c/a, c/b, Eq. (23) reduces to a form already discussed in case (b)

under symmetric mode.
Surface instability. The disturbance at the surface in this case is assumed to decay

rapidly as the depth from the surface increases. Taking the free surface to be the x — y
plane with the positive direction of the z-axis pointing into the body, the incremental
field variables may be taken in the form j(x, y) exp ( — kz), k > 0. The components of
the velocity field v{ are then found to be

u = sin vx cos vyl^i exp (—7z) + a2 exp (—7S,z) + a3 exp (—752z)],

v = cos vx sin vyiaii—v/v) exp (—7z) + {v/v)a2 exp (—76^) + a3 exp (—7$2z)], (25)

w = 7((1 — d)/v) cos VX cos rjy[(a2/S 1) exp (—76^) + (a3/S2) exp (—732z)].

The surface z — 0 is considered to be free of surface traction-rate. Hence from the
boundary condition (2c), using (11), follows

Cii - (Tikv3,k = 0 0" = 1, 2, 3) at z = 0. (2d)

The equations (9), (10) and (25) can be used to express (2d) in the following form:

<*i + a2[5i + (1 — 0)/81] + a3[52 + (1 — 0)/S2] = 0,

— a, + a2(r/2/f)[5! + (1 — 0)/5i] + a3(r]2/v2)[S2 + (1 — 8)/52] = 0,

a2 9 - 5fH + 8 + «3 .1 + s e = 0.

A necessary and sufficient condition for existence of nontrivial solutions for a, , a2
and a3 is

Vi - e) . 20(1 + 5) J (26)

This equation has already been discussed in case (b) under symmetric mode. It may
be noted that the mode of deformation localized at the surface is possible under both
tensile and compressive loads. For a body with finite c/a and c/b ratio, the local in-
stability is characterized by the formation of large numbers of waves on the surface.

For a semi-infinite elastic solid, (26) yields d3 — 2d2 + 2 = 0, which has single real
root a — —1.68 p..

Loading criterion. The criterion for plastic loading is m,-,-(2D<7,-,-/a)£) > 0 which,
with the help of (5) and (6), may be written m,> 0. Substituting from (3a), (14)
and (20), the loading criterion for the symmetric mode of deformation yields

U V
— + — rj3 cos vx cos r)y(a2 cosh 75,c + a3 cosh 7S2c) 0.
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Hence the material will load everywhere if

U V
a2 cosh ySiC + a3 cosh yS2c < 1—t~-a b

Similarly, for antisymmetric mode of deformation, the loading criterion is obtained in
the form

U V
a2 sinh ydfi + a3 sinh yd2c < h T"a b
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