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ON STABILITY OF THE FLOW OF A STRATIFIED GAS OVER A LIQUID4

BY

JOHN F. SONTOWSKI1, BARRY S. SEIDEL and WILLIAM F. AMES2

University of Delaware

Summary. Instabilities of the superposed flow of a gas over a liquid are considered
under the assumption of inviscid, incompressible flow. The effects of density stratifica-
tion in the gas are examined, and in so doing, two separate and different types of in-
stabilities are revealed. As the velocity of the gas relative to the liquid increases from
zero, there first appears an instability of a selective and relatively weak nature referred
to as the initial instability. This is followed, at higher velocities, by a stronger type
of instability called the gross instability. The initial instability takes the form of two
distinct waves of different lengths, one superimposed upon the other. This superposition
of two waves at low velocity is in accord with experimental observations, as are the
calculated critical velocity and wavelength at which they first occur. The gross in-
stability, on the other hand, is composed of a continuous spectrum of unstable waves,
and is simply a slight refinement of the classical result of Kelvin. Such an occurence
of two separate instabilities is in agreement with Munk's experimentally based
contention that Kelvin's solution is not incorrect, as originally believed, but rather
represents an actual instability which, however, is preceded by an additional and dif-
ferent type of instability.

1. Introduction. The stability of a superposed flow of two fluids was studied by
Kelvin. Considering two different fluids, each having uniform density and velocity
distributions and flowing parallel to each other in a horizontal direction with an inter-
face of arbitrary surface tension, Kelvin determined a stability criterion in terms of
the relative velocity between the two fluids. Application of this result to the special
case of air blowing over water yields a critical velocity of 15 m.p.h. at which instability
first occurs. This result has met with general dissatisfaction, since disturbances actually
arise on large bodies of water at much lower values of the wind velocity. However,
Munk [3] expressed the belief that although not coincident with the onset of instability,
the value obtained by Kelvin is indeed a critical value as it marks the occurrence of
several other phenomena, such as sudden increases in evaporation, convection and
the number of breaking waves. Whether true or not, this does not explain instabilities
observed at velocities below Kelvin's critical value. A study of these questions is pre-
sented here. For greater detail of the analysis involved, the reader is referred to Son-
towski [5].

The flow configuration and assumptions of Kelvin are reexamined here along with
the additional consideration of density stratification in the upper fluid. This density
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Fig. 1. The assumed stationary state.

stratification will be modeled by an exponentially decreasing function of height. Fig. 1
illustrates the problem.

The fluid velocities to be considered are low, and so the assumption of incompressible
flow is reasonable. Viscosity can be neglected by reasoning in terms of the types of
instabilities expected in the unbounded flow of a gas over a liquid. In such a situation
both the Tollmien-Schlichting and the Kelvin-Helmholtz instabilities may occur.
The effect of viscosity is to directly cause instabilities of the Tollmien-Schlichting
type and to retard Kelvin-Helmholtz instabilities by moderating the kinetic energy
distribution. Thus, by neglecting viscosity the Tollmien-Schlichting instabilities are
not expected to appear in the analysis, while the Kelvin-Helmholtz instabilities should
occur, but at a velocity lower than reality. Since it is further expected (see Ostrach and
Koestel [4]) that Kelvin-Helmholtz instabilities actually occur before Tollmien-
Schlichting instabilities, the assumption of inviscid flow should provide a stability
criterion in terms of a velocity difference which somewhat underestimates reality and
thus serves as a conservative estimate of the actual inception of instability.

2. Mathematical statement of the problem. Consider two inviscid fluids in a
stationary state of horizontal streaming in the x-direction and superimpose a disturbance
upon this state. Assuming the disturbances to be small and neglecting higher order terms,
six linearized perturbation equations in six unknowns are obtained as a result of the
requirements of continuity, incompressibility, momentum and interface kinematics. The
method of normal modes is now employed. Seeking solutions which depend on x, y
and t in the fashion

exp [i(kxx + kuy + nt)] (1)

and substituting into the perturbation equations yields six equations which by a process
of elimination are reduced to one equation in one unknown. This equation is
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<»+~ t-y dz p dz n + kxU . .\A)
1 dp
p dz {n + k'U)Tz ~K^W] = 0

where w depends only on 2 and the product w exp [i(kxx + kvy + nt)] is the perturbation
of the z-component of velocity. The wave number k is defined to equal (k2 + k2v)l/2.
In addition it is required that the quantity w/ (n + kx U) be continuous across the inter-
face and also that

A, p(n + KU) ? - pK waz dz = gk' A,(p) - ^ T, (« + Ku). (3)
where A,(/) = lime_0 [/*-*.+« — and z, represents the undisturbed interface posi-
tion. Details of the development of these results are given by Chandrasekhar [1, Sec. 100].

Application of the above mathematics to the case described by Fig. 1 requires
solutions of the equations

d2w dw ,2
dz*~Pdz~ 1 _ $9 w — 0 z > 0,(» + KUSJ

d2w/dz2 — k2w = 0 2 < 0.

The general solutions are

w = Aaem+Z + Baem~' 2 > 0,

w = A,/' + Bbe~k! z < 0

where Aa , Ba , Ab and Bb are arbitrary constants and

[(!)' irrfe]]"m± = -±

Boundary conditions disallow disturbances which increase exponentially as the outer
bounds of the fluids are approached. Thus

w = Bae"~' 2 > 0,

w = Abe" z < 0

with the requirement that

gPRe li; + fc'1 - (n + k„U.y]]'" * I-
Continuity of w/(n + kxU) across the interface leads to the following solution in terms
of one arbitrary constant A:

w = A(n + kxUa)em~Z 2 > 0,

w = A(n + kxUb)ek' 2 < 0.

Substitution into the second interface condition (3) yields the eigenvalue equation.
This equation may be written in dimensionless form as
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P*&(e + kxUa)2 — K(v + k^Ui,)2 + [(1 — p+) + (Tk\

= P*(" + U„)

in terms of the eigenvalue v. Adding the requirement

2ft
(" +

(4)

Re
[-

2ft
(* + J K

completes the specification of the eigenvalue problem. According to definition

_ P«P* 

(5)

i) + fc'J , *
n k„ =

kg1" k "* Pb

P
2 jr k T, , 2

K = r- , = — «

© +'' W + *
cuV , ,,y lis

gpb

9) +kl ((9) +fc2
Ua = ^ 1/2 l/t = ,/2 ' U,

Recalling the form of the disturbance in (1), it follows that the flow is unstable if
and only if any one or more of the eigenvalues v has a negative imaginary part. For
a complete stability analysis the characteristic values of v must be examined for all
values of the vector k = [k, , kv],

3. Determination of the instabilities. The nature of the eigenvalues will now be
determined. Make the substitutions

f = V + k^Ua r) = V + k,Ub - Y^pJ: ~ ®

'• " lk>{0' ~ W + <7)

into the eigenvalue Eq. (4) and accompanying condition (5). This yields
1/2

2 1 P* f-2{, 2ft ^ 2" <8)

and
Re (1 - 2ft/f2)1/2 > ft , (9)

which, in conjunction with the auxiliary relationship

£ - v = (K/(K - p*ft))[fc*(& - 17.)], (10)
is equivalent to the eigenvalue problem. Because of the condition (9) this problem is
nonalgebraic. Therefore, it is advantageous to construct a parent algebraic system
possessing the eigenvalue problem as a subsystem. If all restrictions on Re (1 — (2ft/£2))1/2
are removed then Eq. (8), together with auxiliary Eq. (10), is equivalent to a fourth
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degree polynomial in v and this is taken as the parent system. Let us distinguish two
branches of the parent system, calling our eigenvalue problem the principal or P-branch
and the remainder of the system, where Re (1 — (2/3fc/^2))1/2 < ft, the subsidiary or
(S'-branch. In mathematical form

i t P* j-s/1 2ft\ 2 ,1V + K- pjJV'T) =Vn' (11)
P-branch

(S-branch
Part 1

&

S-branch
Part 2

S2

Re [I - ^)V2 > ft , (12)

2 _| P* yif 1 _ 2ft\ _ 2
v K — PJk H ?) 1,0 ' (13)

0 < Re (l - ^)'/2 < ft , (14)

2 P* ylf 1 _ 2ft\ 2
v k - H a2) Vo' (15)

Re (l - y)12 - °- (16)

The auxiliary Eq. (10) must be satisfied simultaneously with each of the above basic
branch equations and conditions. It follows now that the number of roots of the eigen-
value problem is four or less.

The real loci of the basic branch equations are plotted in the (£, r/)-plane for the case
K > p^k • These loci are shown in Fig. 2, where

f.2 _ 2ft 2   2   P*ft
S8 J/-2 Va Vo 77"   Q 1Kz " /u K - Pj|tA

& = ft +

k

ft2 + vtp*

S2

(-Co, 0)

<-W* )si

^

S2.

frW* V
sS^ils^s'

P *ygn. 0>

Sl/^S' " V

x'V^VV
2S

Fig. 2. The real locus of the basic branch equations.
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Fig. 3. Real intersections of the auxiliary equation with the branch equations

In Fig. 2 the solid lines represent the P-branch and the broken lines the Si and S2-
branches. Symmetry occurs about both the £ and ij-axes. Tangents to the curve are
vertical at the points ((2/3k)1/2, tj0) and (£0 , 0). Also, it is very significant that, except
at the two points (0, ±tj0), there is no real locus for |£| < (2/3k)1/2.

The real locus of the auxiliary Eqs. (10) is a straight line having a slope of 1, as shown
by two examples (lines 1 and 2) in Fig. 3. Intersections in the real (£, rj)-plane of this
line with the locus of the basic branch equations represent real roots of the parent alge-
braic system. Location of these intersections indicates the particular branch to which
each real root belongs. For situations where there are four real intersections the eigen-
value problem represented by the P-branch can have no complex roots and the system
is stable. Referring now to Fig. 4, let four lines be drawn in the real (£, r;)-plane with
a slope of 1. Line 1 passes through the origin while lines 1', 2 and 2' are drawn tangent
to the locus of the branch equations. Analytical examination of the loci reveals that
under the conditions

K - P^k < 1 and K -*P*A < CJ + .64 + 2( Vo

2ft) 1/2

1/2

(17)

auxiliary lines falling between 2 and 2' of Fig. 4 will always have four real intersections
while all auxiliary lines to the right of 2' will have two real intersections. If additionally

(18)> 4((2A)1/2) L1 ((2ft!)17')

then auxiliary lines occur between 1 and 1' with four real intersections while auxiliary
lines between 1' and 2 have 2 real intersections. Thus it is possible to discern two regions
corresponding to situations of definitely stable flow. These regions are stability zone 1
between lines I and 1' on Fig. 4 and stability zone 2 between lines 2 and 2'.

For a given fluid system in a particular stationary state, the sufficient conditions
(17) and (18) become a requirement on the range of k. In the case of normal gases and
liquids p* and /3 are extremely small, and consequently the above conditions, as well
as the earlier assumption of K > pJ3k , are satisfied for all disturbances except those
of extremely long length.

At this point it is helpful to examine the behavior of the equations and resulting
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curves in the (£, i?)-plane for a fluid system of fixed properties, under the influence of a
particular disturbance, as the velocity difference (Ua — Ub) alone increases. Since
([Ua — Ub) and only appear together it is convenient to define the dimensionless
velocity U = k*(Ua — Ub). Now as the velocity difference, or U, increases, the £ and v
intercepts of the auxiliary line move rightward and downward respectively. At the same
time the real locus of the branch equations enlarges. However, close examination shows
that for normal gases and liquids transition of the line from an initial position through
the origin, as corresponds to a velocity difference of zero, to a location at the right
of (£0 , 0) corresponds to a nearly imperceptible change in the location of the locus of
the branch equations. Thus, as U alone increases, the fluid system experiences con-
secutively conditions of definite stability (stability zone 1), possible instability (between
stability zones 1 and 2), definite stability (stability zone 2) and finally possible instability
(to the right of stability zone 2).

Consider now the question of stability in the region between stability zones 1 and 2.
In this region the parent system possesses a conjugate pair of complex roots and in-
stability or stability depends on whether or not this pair belongs to the P-branch.
An exceptional situation of known stability is noted when the auxiliary line passes
through the point (0, — 770) which corresponds to a real root of multiplicity two. The
branch to which a particular root belongs depends on the nature of the real part of
(1 — (2/3fc/f2))1/2, and information of this nature must follow in accordance with the
branch equations and the root in question. Thus, since (K — is real and positive
(considering K > it follows according to the branch relations (11) through (16)
that a root belongs to the *S2-branch if Re (170 — V2)/£2 < 0, to the Si-branch if 0 <
Re (til — v")/£2 < P*fik/{K — p^Pk), and to the P-branch if

Re (vl - v)/? > P^k/(K - PJk) (19)

with the above being evaluated by substitution of the root in question.
For fixed values of all physical parameters, including U, it is noted that (170 — j)2)/£2

is real and positive along the real locus of the combined S1 and P-branches in the fourth
quadrant. Further, it follows from the branch equations (11) and (13) that (172 — ??2)/$2
has a value, at any given point on this locus, that is greater than its value at all other
points to its left (lower values of £) along the locus. Now let UT be that value of U

STABILITY ZONE 2

2'

Fig. 4. Stability zones in the real (J, tj)-plane
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Fig. 5. The boundary of stability zone 2 at U = tj T

for which the system first enters stability zone 2 with the corresponding real root of
multiplicity two being (£r , — ijr). Suppose |r = + a, where a is some positive real
number, with the point (£r , — t]T) consequently being on the P-branch as shown in
Fig. 5.

According to the above discussion and assumptions it follows that

(vl - (-*r)a)/& = P^/(K - PJk) + b

where b is a positive real number. For U < UT , the auxiliary line is in the region be-
tween stability zones with a corresponding conjugate pair of complex roots that are
destined to become the multiple root (fr , ~vt) when U = UT . In conjuction with
these complex roots

vl — V vl — (—V t)2 p*@k , /, >.—? 3 ' ■ + (b~')
and according to Eq. (19) the roots are zeros of the P-equation if

Re e < b.

Since the pair of complex roots are always zeros of the parent algebraic system, they
must be continuous functions of the coefficients of the parent equation (see, e.g., Marden
[2, pp. 3-4]). These coefficients are in turn continuous functions of U and thus the
conjugate pair of complex roots, as well as the term r)20 — ■q2/^ (£ 5^ 0 in the neighborhood
of{r), must vary continuously with U. Thus Re e is made arbitrarily small by choosing
U arbitrarily close to UT . As a result there must exist a region, immediately before
stability zone 2, where Re e < bT and the pair of complex roots belongs to the P-branch.
This must be a zone of unstable flow, and by similar reasoning there must be another
unstable region just after stability zone 2. While the condition > £» is necessary and
sufficient for instability in the neighborhood of the inner boundary of stability zone 2,
it is noted that the alternative condition < L is not sufficient to disallow instability
throughout the region between stability zones 1 and 2. The degree to which the imag-
inary part of the complex roots may become large is influenced by the width of the
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region between stability zones 1 and 2, and therefore this width, or the ^-coordinate
value (2/3i)W2, is an indication of the rate of growth of the corresponding instabilities.

It should be noted that continuity of the roots requires that the coefficient of the
highest degree term of the parent polynomial be different from zero. This condition is
satisfied for all disturbances except those nearly infinite length disturbances having
the specific wave number k = pH=/3/( 1 — p2).

Physical conditions corresponding to > £» will now be determined. Knowing
= (2/3,01/2 for normal gases, it is equivalent and much more expedient to determine

conditions such that d-q/d^ > 1 at (£a , — i?,), the end point of the P-branch in the fourth
quadrant, for the velocity U = U3 locating the auxiliary line through (£, , — r?8). U, is
unique and given by the relationship

ft = (2ft)1/2 ,
K ^ [(1 — P*) + °"J

For this velocity the requirement that dr)/d% > 1 at (£» , — i?,) reduces to

(4 - 3K2) > [(1 - P J + «rj + ^
P* P*

^ ((1 - P,) + «k) (20)

which is a sufficient condition for instability prior to stability zone 2. Henceforth these
instabilities will be referred to as the initial instabilities. Examination of the condition
(20) shows that for normal fluids (small p* and /3) the initial instabilities must occur
over at least a limited range of k. Of course failure to be in this range does not necessarily
disallow initial instabilities.

The value of U marking the occurrence of the initial instabilities will now be de-
termined. A readily accessible and accurate approximation for this velocity U is the
value of Ui which locates the auxiliary line through the point (0, — ??<,) as shown in
Fig. 6.

From the equations for ij0 and the auxiliary line it follows that

tJi =
]l/2

^ [(1 - P*) + | (21)

Fig. 6. The velocity of initial instabilities, approximated by t?,-
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Fig. 7. Typical instabilities for a gas over a liquid

or in dimensional terms

\h(Ua - U>)]< = _|_ Li h
k pb J (22)

For normal gases jS is very small, thus making the points (— (20k)1/2, —t]0) and
((2/3k)1/2, —rio) extremely close to each other for all but very small k. In such cases
Ui for all practical purposes exactly marks the occurrence of the initial instabilities.

Instabilities also occur in the neighborhood of the outer boundary (line 2' in Fig. 4)
of stability zone 2. This instability is followed at higher U by an unlimited region of
unknown stability conditions. This region is assumed to be unstable. Such an assump-
tion is suggested by the nature of results usually obtained in analytic stability analyses
as well as results obtained in experimental investigations. Grounds for the assumption
will become even more sound when viewed in light of the relationship of this analysis
to the classical problem of Kelvin. The instabilities following stability zone 2 will be
referred to as the gross instabilities.

The onset of the gross instabilities will be represented by the velocity U = U„
and for resaons which become obvious later, U„ is excellently approximated by Kelvin's
solution written as

£ [(1 — p.J + 0*]
II \ 1 /21+P* U,Uk - \ p* '

or in dimensional terms

lK(ua - u„)]K = (l+^Y'T^1 - p*l + ^/c] = (L±-£*Y\k^ua - u„)]{.
\ Pyfi. ' L 'h Pb J \ J

For a gas over a liquid, the shape of the P-branch is long and thin and so another good
approximation for Ug is that value of U which passes the auxiliary line through the
point (£0 , 0). Determination of this velocity involves the solutions of a quadratic equa-
tion. Although usually unnecessary, greater accuracy can be obtained by a graphical



1969] ON STABILITY OF THE FLOW OF A GAS OVER A LIQUID 345

iteration procedure involving determination of improved velocity approximations from
auxiliary lines drawn tangent to the P-branch plotted on the basis of less accurate
values of U.

It is now possible to assess the behavior of a given fluid system under the influence
of a general disturbance. In so doing, the regions of stability and instability are plotted
in a plane of velocity difference v — k^[Ua — Ub] versus wave number, as shown in
Fig. 7. The curve for [k^(Ua— Ub)]i follows from Eq. (22) with the broken portion repre-
senting the region where the condition (20) is not satisfied and where instability is there-
fore uncertain. Dashes along the solid portion illustrate the fact that initial instabilities
occur in a narrow band of U for each value of k. The curve for [k^(Ua — Ub)]„ corresponds
to the boundary of stability zone 2. According to Fig. 7, a fluid system is expected
to be stable at low velocities. Instabilities first occur at the velocity [k^(Ua — £/&)]<,«,
determined from Eq. (22) by elementary calculus to be

[k*(Ua - 17,)]!.- = 2[g(Pb - pa)T,/pl]1/2 (23)

and have a wave number k ,■. m given by the relationship

= [<?u - P„)/r,]1/2. (24)

At velocities just above this value the system is unstable, as indicated by position 1
in Fig. 7. Instabilities at such a point, however, are of a weak, selective nature, as they
are confined to two narrow bands of wave numbers located about the values k! and k[ .
At a velocity [k^(Ua — Ub)]g,m an additional instability is initiated. This instability
is of a much stronger nature, being composed at any given velocity of a continuous
spectrum of unstable waves as illustrated by position 2 of Fig. 7. Finally it is pointed
out that the tendency to become unstable increases as the disturbance direction rotates
toward that of the stationary state velocity. This conclusion is indicated by the occur-
rence of k^ as a coefficient of (Ua — Ub) in Fig. 7, and it testifies to the validity of Yih's
[6] generalization of Squire's theorem.

To complete the above description the velocity of propagation 7 is determined
for the initial waves. From the real (£, r;)-plot it follows, at least to within very close
accuracy for normal fluids, that for the initial instabilities 77 = ~t]0 ■ Substituting the
definitions of 17 and 170 and rearranging, with the realization that y = —n/k, yields

y = k*u» ~ - ub)]K -

+ [fc*(C7° ~ U*)]2 + 21(1 ^*4^
( ~ P*Pw ju _ PjtS.

2

Taking advantage of the smallness of p* and /3, it follows that

g\ 2irT,\ 1/2

1 = k-U' + [2, + l^l ■

The right-hand side may be recognized as the classical result for the propagation speed of
surface waves on a liquid of infinite depth. It is also of interest to note the relationship of
this propagation speed to the accompanying wind velocity. Again from the real (f, r;)-pIot,
it is true within close accuracy that for initial instabilities £ = 0. Substituting the def-
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V

Fig. 8. Stability zones in the real (£, i;)-plane for 0 = 0

inition of f into this relationship and rearranging yields [k^(Ua — Hb)}, — y — k^Ub .
Thus wind and wave travel together.

4. Kelvin's solution as a special case. Suppose the heterogeneity of the gas is
ignored. In this case (3 = 0 and the problem reduces to that considered by Kelvin.
Examination of the real (£, jj)-1ocus of the branches when /3 = 0 reveals the following
values for the characteristic dimensions and coordinates:

(2frf" = 0 1,1 = [(1 - pj + ak\,

£ = 0 v2. = vl ■
The most significant feature of these results is the location of the point ((2/34)1/2, ij0)
on the 77-axis. As a result the initial instabilities do not appear in Kelvin's problem.
According to the branch equations the Si-branch completely degenerates while the
P-branch becomes an ellipse and the S2-branch a hyperbola. Each of the latter two
branches is now separately equivalent to a second degree polynomial and thus the
stability zones must be as shown on Fig. 8.

The equations of the branches are now independent of U. Bounds on stability are
thus easily obtained mathematically by determining the point along the P-branch
where drj/d^ = 1, passing the auxiliary line through the point, and then solving the
resulting equation for U. The resulting velocity is

(Ua - Ubf = [(P6 - Pa) + T,k2/g}.
PaPb^x

This is the critical velocity found by Kelvin. The use of Kelvin's solution as an approxi-
mation to the gross instabilities for /3 7^ 0 may now be appreciated.

5. Numerical results for air over water. As a particular example consider air blow-
ing over sea water and assume

p4 = 1.02 gm/cm3 p^ = 1.26 X 10~3,

T, = 74dynes/cm p — 1.1 X 10~8 cm-1.
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Calculations according to Eq. (22) for the initial instabilities and use of Kelvin's solu-
tion as an approximation (found extremely accurate in this case) to the boundary of
the gross instability region results in the values shown in Fig. 9. The range of the solid por-
tion of the initial instability curve extends from k = 0.75 cm-1 to k = 18.75 cm-1. The
velocity difference at which instability first occurs is calculated according to Eq. (23) and
found to be 23.1 cm/sec, while the corresponding wavelength is calculated as X,-,m =
2ir/ki m = 1.71 cm. As a typical example the real (£, t))-1ocus of the branches is plotted
in Fig. 10 for fc = 3.67 cm-1. Because changes in the locus due to changes in U are very
slight, Fig. 10 may be applied to all low velocity differences.

As mentioned above, some indication of the rate of growth of initial instabilities
is given by the value of (2/3k),/2. Thus, for the initial instability at k = 3.67 cm-1 it
is expected that

Im n ~ (kg)u2 Im { ~ (fa?)1/2 (2&)1/2 = .033 sec-1

and as the imaginary part of n (see Eq. (1)) characterizes the growth rate, it is indicated
that for air and water the initial instabilities grow slowly.

6. Concluding Remarks. Density stratification in a gas flowing above a liquid
has been found to have a destabilizing influence taking the form of a relatively weak

[k_ (U-U.)] =651 —
3 b k,m

[km-uh>] -23.1^

3.67 cm 1

0 5
k (cm

Fig. 9. Instabilities for air blowing over water
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H t—
£

10 20 30

f0 = 39.8

Fig. 10. The real ({, tj)-1ocus of the branches for air over water at low velocity differences and
k = 3.67 cm-1

initial instability preceding the stronger classical instability of Kelvin. The qualitative
nature of this initial instability, as illustrated by the lower curve of Fig. 9, is in agree-
ment with experimental observation. Numerical results for air and water also appear
reasonably in accord with experimental values of the critical velocity and wave number
at which instability first occurs. However, the analysis indicates that the rate of growth
of the initial instabilities, as well as the width of the two bands of unstable wave numbers
comprising this instability at a given velocity, decreases with the factor j8, and as a
result, growth rates for air and water are likely to be quite small. The numerical estimate
made herein for the growth rates may be somewhat lower than actual values since it
is based on density stratification in an idealized atmosphere. For an actual atmosphere
density gradients, and therefore growth rates, could be larger due to the added effect
of temperature variations. Along these lines it is noted that the initial instability may
be especially pertinent to situations where the liquid is at a much lower temperature
than the gas, thus causing steep density gradients to be set up in the gas near the liquid.

Regarding the nature of the initial instability, the following physical mechanism
is suggested.

An interaction occurs between an internal wave in the stratified upper fluid and
a capillary-gravity wave in the lower one. The wave length and phase speed of the two
waves are such that the waves are amplified. That this occurs is indicated by the eigen-
value calculation which shows the propagation speed and wave length to be related
as in the classical form of capillary-gravity waves. Since the stratification is weak and
the internal wave travels very slowly relative to the upper fluid and because wind and
wave travel together the internal wave can match up and resonate with the capillary-
gravity wave.
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