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THE LINEAR THEORY OF SECOND-GRADE ELASTIC MATERIALS*

BY

R. W. LARDNER

Simon Fraser University, Burnaby, B. C.

Abstract. Second-grade elastic materials have an energy density which depends
on both first and second deformation gradients. The behaviour of these materials is
investigated for deformations sufficiently small that the equations of motion can be
linearized. The elastic materials with couple stress studied by Mindlin and Tiersten [1]
are a special case of the materials studied here, and our results reduce to theirs with
an appropriate choice for our elastic constants.

1. Introduction. Some time ago Toupin [2], Mindlin and Tiersten [1], and Koiter
[3] proposed a theory of elastic materials with couple stress based on the Cosserat
equations of motion and on the assumption that the rate of working of the couple
stress is the scalar product of that stress with the vorticity. This assumption allows
constitutive relations to be derived for stress and couple stress in terms of the stored
energy density. The linearised form of the constitutive relations was obtained by Mindlin
and Tiersten who used them to solve a number of problems both of wave propagation
and static elasticity. Later work (for example, by Mulci and Sternberg [4]) has provided
solutions to many further problems.

A curious feature of this theory, pointed out later by Toupin [5], is that while shear
waves become dispersive, dilatational waves remain nondispersive, as in the classical
theory of elasticity. Toupin [5] showed that the theory is a special case of the theory
of second-grade materials—that is, materials for which the energy density depends on
both the first and second deformation gradients—and expressed the view that within
this wider class of materials the dispersion anomaly would not occur. It is the purpose
of this paper to investigate the behaviour of second-grade materials for deformations
sufficiently small that linearised constitutive relations are applicable.

In Sec. 2 we derive the equations of motion from an action principle, assuming
the action density to depend on the first and second deformation gradients, material
velocity and velocity gradient. Throughout the rest of the paper we assume this last
variable to be absent, although, as discussed in the final section, its presence makes
little change. In Sec. 3 some simplifications are made on the basis that the action density
consists of separate kinetic and potential parts, using the principle of frame indifference
and restricting ourselves to isotropic materials, and in Sec. 4 the system is linearised by
taking only quadratic terms in the energy density. This leads to linear expressions for the
stress and hyperstress tensors in terms of the displacement gradients, and to a generalisa-
tion of Navier's equations of motion. In the energy density we are forced to introduce
five elastic constants beyond the usual Lame constants, but only two combinations
of these enter the Navier's equations.
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In the following sections we examine various problems of wave propagation. For
the case of plane body waves there are two wave solutions for both the shear and dilata-
tion cases, one of which is propagating and dispersive, the other of which is nonpropagat-
ing. The decay lengths for the nonpropagating waves are different in the two cases.
For the vibration frequencies of a finite slab, we obtain the same frequency equation
as Mindlin and Tiersten for the thickness-shear vibrations, but a new frequency equa-
tion for the longitudinal mode. The equation for the torsional vibration frequencies
of a circular cylinder is also different from Mindlin and Tiersten's result with a new
term involving a combination of elastic constants which vanishes in their special case.

Certain restrictions on the values of the elastic constants arise from the requirement
that the energy density is positive definite. Some of these are obtained in Sec. 8, where
it is shown in particular that the decay lengths for both nonpropagating wave modes
are real.

2. Equations of motion. We consider a continuous body the particles of which
are described by their position vectors X in some reference configuration. These have
components (X„) with respect to a given Cartesian coordinate frame. At time I the
particle X has position x = x(X, t) in space, and x has components (x.) with respect
to a second Cartesian frame. Particle velocity is x = (d/dt)x(X, t).

The first two deformation gradients are defined as

d
Xi.ct ^ y 0! Xi ,aj9 -j y Xi(X, t) , (1)

and from these we obtain

e«is = h(xi.aXi.e - Sa6) (2)

Qo0y X{ t aXi ^y . (3)

The ea/1 are components of the strain tensor, while qapy are related to the strain gradients:

QaP-y &ai9.y ~l~ 6ay.0 P&y.a

2Ca(jty (jf y "j- Qya/3 •

Second-grade elastic materials are usually defined as materials for which the stress
is a function of both xi%a and . We wish to follow Toupin [5] and use an action
principle to formulate the theory, so we extend consideration to those materials which
have an action density depending on the following variables:

L = L(Xi , ±i,a , Xt,a , xiiO0 , X). (5)

The action associated with a part P of the body and an interval I of time is

A(P, I) = f [ LdV dt. (6)
JI J P

Then we take the following variational principle, for a small change 8x< in the motion:

SA. + f f (Ft Sx, + Cia 5.x,, J dVdt+f f (T{ dx{ + D,a 8Xi „) dS dt
•> i •> p j j jdP

[ P* 8Xi dV + f Q* 5x, dS
Jp Jnn

0. (7)
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Here F, is a body force and Cia a dipolar force (for example a body couple), 7\ is a
surface traction and Dia a surface dipolar traction, P* the initial and final momentum
density and Q* a dipolar momentum density which must be prescribed on the surface
dP. Some of these terms are mathematically redundant (for example the Ci<t term
can be combined with the F, and 7', terms), but since they arise from physically separ-
able effects we prefer to include them.

Making the definitions

"Pi = ^ , Qia = -r— , P, = °Pi - Q,a.a
dXi OXi t a

°rr _ IT _ rp   0m   H
i a j i a& i a ^ t a t a0, /3

0%i,ct uXiap

we can write

SA = J J {Pi SXi + (Qia 8xi),a — Tia SXi,a — (Mia/3 5xii0)i(3J dV dt.

Integrating various terms by parts and setting the coefficient of the variation ox, equal
to zero in the different integration regions, we obtain

Pt = Tia.a + Ft - Cia.a in IXP (9)

Pi = P* on dl X P ^

QiaNa = Q* on dl X dP

(here N is the outward normal from P). We are left with the surface term

[ [ {(Ti - TiaNa + C,aNa - QiaNa) Sxi + (Dia - Mta,N,) te4>a} dS dt = 0.
JI JdP

Here only the normal derivative 5Xi,aNa is independent of 5x,- itself, which leads to

DiaNa - MiafNaN„ = 0 (on I X dP), (11)

and expressing the tangential derivative in terms of &x, gives, after using Eq. (11),

Ti - TiaNa + CiaNa - QiaNa - Da(Dia - Miaf>Ne) = 0 on I X BP. (12)

Here we have introduced a tangential differentiation operator

Da = (d/dXa - NaN, d/BXf). (13)

3. Second-grade materials. The conventional second-grade materials are obtained
by taking the special case

L = \p±iXi - W(xiia , Xi,aB , X). (14)

For these, P, = px, , Qia = 0, and the dipolar velocities do not enter the theory. If
we add the requirement that L (and hence W) is invariant under rigid rotation of the
x,-coordinate frame (x, —> R,,X; where R is orthogonal) then it follows that W must
be a function only of (eafi) and (qat8t) (or alternatively (eaJs,7)) and not of the complete
deformation gradients: W = W(eaS , epy.s , X). Then
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°f _ diy dea(i dW deaf,y
*x deap dXi,y deal3,y dzilX

1 (dW dW) 1 (j]V_ JW_\
2 Wx ^ 3exJ •'■°7 2 \deBXi7 ̂  aex„.,/ '

and

Thus

dW dea$, y _ 1 I dW , 3TF
deafl,y dxX,'a 2 \deaX^ hF" + ■ (W);)•

2",-x =
" dW _ ( dW \
~dC(a\) Vc?6(ax> ,^/ (16)

using brackets to denote symmetrisation.
Further restrictions on IF arise from the symmetry properties of the material.

We shall assume the material is homogeneous in the sense that there exists a reference
configuration for the whole body called a uniform configuration for which W is the same
for all particles—i.e. taking a uniform configuration as reference, W = W(eaf, , eap,y)
is independent of X. If a uniform configuration exists, then any other configuration
obtained from it by a homogeneous deformation is also uniform. From now on we
assume that the reference configuration (Xa) is uniform.

Let (X^) be coordinates with respect to a second Cartesian system in the same
reference configuration, so that X'a = Raf>Xp where R is orthogonal. Using this system
leads to a strain tensor e'afj where

d a ft 6 y fiRl y qRi [j

^ a /3. y ^ 51, ^R" t £ y b a •

The material symmetry group is the set of all transformations R for which W(e'af , e'afi y) =

A material is isotropic if there exists a configuration, called an undistorted state,
with respect to which the symmetry group is the whole orthogonal group. Again, if
one undistorted state exists, then there are many undistorted states. For let (Ya) be
the Cartesian coordinates of the particle (Xa) in a state obtained from the reference
state {(-^a)} by a homogeneous dilatation:

Ya = kXa (a - 1, 2, 3).

Then dXi/dYa = k~lxUa and the strain relative to the Y-configuration,

/«/s = i((dXi/dYa)(dXi/dYfi) - 8a„)

— k 2e„/3 + !(& 2 ~ 1) .

Thus the strain energy relative to the F-configuration,

Wy(Jaf , fa,,y) = Wx(k2ja, + I (k* - l)«a„ , k3fa,,y)

and WY clearly always has the same symmetry group as Wx ■ So if X is an undistorted
state, then so is Y.
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Physically we expect Wx to become large as both k —> 0 and k —> for fixed }afl ,
so that there will be a value of k for which

dWx
dk

i.e.

dW

= 0,
/ olS-0

= 0
e a (A:3 — 1) 5 a jj/2

and hence

dWy
dfaa

= 0. (17)
l/«0=O

The state (Y) for which this relation holds is called the natural state.
4. Linearisation. We shall consider a homogeneous isotropic material, using the

natural state as reference, for which the strains and strain gradients are small. Then
making a Taylor expansion, we obtain

J ^ajS, 7) * ^1^0 "I- Aa(gCa|3 "I- ^afiy&ctfl, y ~"1~ ̂ afiy S^a^y S

~H D afiy S S , e ~"f~ ̂ afiy S e $a[i, y^b t , $ "I- ' • (^-^)

For an isotropic material, all the coefficient tensors must be isotropic and hence must be
of the forms:

^4 a ft 8 a ft

B ccfly Etafty

Capys = CiSapSyt; + C28ay8ftS + C38aS8fty

Dapy$t Dl8afi£ ySf "I- ^2^Q7^(Si( "I- D38a$6fjyt I (^7!

+ D58ftyiaS, + D68pSeayt + D7S,.tay,

+ DgSystap, -f- D98y,eapj + D108s,eapy

Ea0yStl — EiScftSyiS^ + E28ap8ye8st + E38aft8y(8St

+ EiSaySpsS^ + E58ai 8pt8H + E68ay Sp^Si,

+ E18aS8fSy8ti + Es8aS8ft,8y( + Eg8aS8^8y,

+ E10?>a,8py 5aj + EuSatSpsSyi + E128a,8^8y!

+ E138a(8fty8Si + EuSctSf)s8yt + E158ai8^,8yS .

(Note that in the sixth-order isotropic tensor, the product of two permuation tensors
can be decomposed into terms of the types listed.) Since the strains are measured from
the natural state,

3TF 1 = A = 0.
deaa «afl = Q

Many of the terms in the expansion vanish since eap and eaP,7 are symmetric in a, ft
while tafiy is antisymmetric, while other sets of terms give identical contributions.
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After simplifying we obtain

W(eap , ea(JiT) = 1^0 + iX(eoa)2 + + Dea^yeaKe^,y

I ^l^aa.T^.T I F2Ca a ,ffi(ly , y ~"i"~ ^ 3^ a 0,0^ a y , y (19)

"I- F 46 a 0, y@ a &, y ~"l~ F$6ap, y^a y . 0 J

where X = 2Ci and n = C2 + C3 are the usual Lame constants,

D = D2 + D3 + D5 + D6 , Fx = E3 , F2 = E,+E2 + E* + E13 ,

F3 = Et + E5 + E7 + E10 , F4 = Es + En and F5 = E0 + El2 + Eti -f- El5 .

We shall follow Mindlin and Tiersten and assume that the materials we deal with
are centro-symmetric, so that W is invariant under the inversion Xa —> — Xa . Then
since the Z)-term is a pseudoscalar with respect to (Xa), we must require D = 0. It
follows that

dW
XKii M — — = {2F1hK\ew„ + F2SK\e^.0 + F3hifiw,i

"e(«X) .H

+ 2F38^eKgj5 + 2 F4e,x.„ + 2F5e„„,x} Ux) (20)

and

X. = SW_ _ / dW \
5e(,x> \3e(,x) i(l/ M

(21)
2fxcK\ {2F18K\6ppifln E28K\6llfji(jlx

+ F?Cm,kx + 2F3e*p,p\ + 2/^4e,x,^ + 2F5eJt(1,x(1} ux> •

If (x%) and (Xa) are now taken with respect to the same coordinate frame, the dis-
placement vector is = xa — Xa , and ua,f> = dua/dXf<K 1. Thenea/J = \{ua,s + us.a)
to first order in the displacement gradients, and

MkU = {2F15<x%,^ + \F2bKx{Un,M + up.pi>)

+ F28\flUf] /3K + F35Xm(m,iW + Wjj.o,) (22)

+ jP4(mk,x^ + Wx.«n) + F5(m,,„x + M^,kX)!(«X) J

TK\ = XA5„x + m(w«,x + «x,«) ~ {2Fi + F2)5kxV2A + (F2 + ^3 + F5)d,d\A

+ (I'\ + \F3 + |F5)V2K.x + ttx,.)} (23)

where A = ua,a and 3, = 3/dX, . Finally, putting this into the momentum equation
gives the generalisation of Navier's equation to second-grade materials:

pu-a — Fa + CatI,/) = Tafiill - (X + n) daA + /uV2w„ — vi d*V2A — ■q2Viua (24)
where

Vi = 2 Fl + 2 F2 + f F3 + Ft + f Fs and V2 = \F3 + F< + \F5. (25)

The materials considered by Mindlin and Tiersten satisfy this same equation with
Vi = — Hi •

Finally it is now only a matter of substitution to express the boundary conditions
in terms of (ua).
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5. Wave solutions. The displacement field u can always be decomposed as

u = V<£ + V A H.
Substituting this into Navier's equations, (24), with all body forces and couples absent,
we obtain

- V20 + Z2V4<*>
c, + V A k H - V2H + llV4H

LC2
= 0

where

cf = (X + 2p)/p, C2 = m/p, 'i = (»?i + ^/(X + 2p), = ij2//a. (26)

This is satisfied by

cr20 - V20 + Z2V4tf> = 0, C22H - V2H + llV4H = 0. (27)

We now look for plane wrave solutions. For the dilatational wave, we take <p =
if0 exp i(kn-T — wt) and obtain that

w2 = c\k\ 1 + Ilk2). (28)

For the rotation wave, H = H0 exp i(kn ■ r — wt) which leads to

w2 = c2fc2(l + P2k2). (29)

In contrast to Mindlin and Tiersten's case, both modes are dispersive for second-grade
materials.

Usually we would want the solutions for a given value of w; solving for k2 for each
mode produces

/c2 = [-c2 ± {c\ + 4c2W/2]/2. (30)

Always one value of k2 is positive and one value negative, and we denote the positive
value by k2 , the negative value by — m2 . For U « Ci/w, these are approximately

2 i2~, w f, 2 wkt m — 1 2c, L c, and rrii fa l{ 1.

Thus there are two wave solutions in each mode for fixed frequency, one of which is
propagating with slight dispersion, the other nonpropagating with decay length h ■

6. Vibrations of a slab. Consider a slab with plane faces y = ± b; these surfaces
are traction-free and no body forces are acting. We shall look for solutions of the types

(a) H, = H„ = 0, H, = i(y)eiat;

(b) 4> = gW"'
Then, from Eq. (27),

£, + - o (31)

(I? + '=)(!? " ' °' (32)
where k2 and rn\ are given in Eq. (30).
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For the boundary conditions (11) and (12) there is no x- or 2-dependence of Miat3 ,
so the tangential derivative of Miafi in the last term of (12) vanishes. Thus, at y = ±b,

MiapNaN$ = il/,-22 = 0 T iaN „ = T i2 = 0

In case (a), ux = f(y)e'wt, uv = uz = 0. From Eqs. (22) and (23),

M.„ = fj.ll £2 uK = nl\r"{y)eiw'5Kl

T<2 = ^~UK - /»«

The general solution of Eq. (32) is

j(y) = A cos k2y + B sin k2y + C cosh m2y + D sinli m2y.

Applying the four boundary conditions and eliminating A, B, C and D leads to two
possible solutions:

(i) A = C = 0 (j(y) is odd)

tan (k2b) = tanh (m2b) (34)
\17l 2/

(ii) B = D = 0 (f(y) is even)

tan (k2b) = tanh (m2b), (35)

which is the same equation as for Mindlin and Tiersten's antisymmetric thickness
shear wave.

In case (b), ux = uz = 0, uv = g'{y)e,wt. Then from Eqs. (22) and (23),

Mk22 = (X + 2v)t\g"'{y)e"'6* ,

Tk2 = (X + 2fi)5K2eiw'[g"(y) - lWu\y)}.

The general solution of Eq. (31) is as above with k2m2 —> , and applying the bound-
ary conditions we obtain a corresponding result. There are solutions with g(y) an odd
function of y, with eigenfrequencies determined by the equation

tan (fcjb) = — (ki/mC)3 tanh (mfi) (36)

and even solutions with eigenfrequency equation

tan (kib) = (m1/k1)3 tanh (ni fi). (37)

7. Torsional vibrations of a circular cylinder. Consider the deformation obtained
by taking <p = 0 and Hr = H„ = 0, II, = where (r, 6, z) are cylindrical polar
coordinates. The only nonzero displacement component is ue, whose physical component
is

tie = —f(r)e'wt.

Substituting H into Eq. (27) gives

(V2 + kl)(V2 - ml)j(r) = 0 (38)
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For the torsion of a solid cylinder we need the solution to be regular at r = 0; hence

fir) = AJ0(k2r) + BI0(m2r). (39)

It is convenient to write formulas (22) and (23) in covariant form. Noting that
for the present deformation A = 0, and using a semicolon to denote covariant dif-
ferentiation,

T.x = J — l22V\uK.,x + Wx;«)}; (40)

MkXi, = ^F2gK^\72u„ + + gKI>V2Ui)

+ (2^5 + + WX;<;(1) +

The only nonzero components of V2m0 and V2w«;(s are

V2ue = |-^"(r) + i gr'(r)| ,

72„, — 1 _L - _ —

(41)

V Ue-.r = y-g"'{r) + - g"(r) - ~2 g\r) \ ,

VV;. = g"(r) - ~2 g'(r)|,

where g(r) = rf(r) = —uee~lwt. Furthermore,

^r;r;r ^0;r;0 ^0;0;r ; 0 ; 0

ur;r;# = ur;9;r = g'(r) - ^ gf(r)| ,

Ue-.r;r = ^ fif'M ~ ^ fif(r)| ,

ug-e-.e = {-rg'(r) + 2gr(r)}.

Consequently the only nonzero stress components are

Tr, = Ter = + * g(r) + g[-ff'"(r) + ~ g"(r) - % , (42)

M,re « +}g') + 2- -2, 3) 4- + jg> - ~ g) , (43)

Mrer = M(rr = \F,(-g" + +fd'-p s)

+ \F>(-g" + *g' -pff) , (44)

Meee = (|F2 + F3)(-r2g" + rg') + 2 (Fl + I'\)(-rg' + 2 g). (45)

The condition that the outer surface (r = a) of the cylinder be free of tractions is
obtained by substituting these results into Eqs. (11) and (12). The first of these gives:

Mirr = 0 at r = a.

TiaN" - ga,y(MiypN")+ N*N'(M <„&'). t = 0.



332 R. W. LARDNER IVol. XXVII, No. 3

For i — r and i = 0 respectively we obtain from this that on r = a

T„ + - M,„ = 0, Tre - 2rMrer = 0.r

The first of these is identically satisfied since Mfrr = 0 is one of the hyperstress condi-
tions, while the second reduces to Tr$ = 0. Using the above expressions for stress and
replacing g(r) by rf'(r) gives, on r = a:

1 ,2/" - f /' - %r
3 3r - % /" + % rr r

= 0 (46)

r-}r + ?r + -r - krr r

= 0. (47)

If we now substitute the solution (39) into these conditions and eliminate A/B we
get an equation for the eigenfrequencies. This simplifies to

(F3 + Fi){y3I1(y)J2(x) + x3I2(y)J1(x)} ^

+ (F, + F5)\y%{y)J2{x) - x%(y)J3(x)\ = 0

where x = k2a and y = m2a.
This frequency equation involves the elastic constants in combinations other than

, and hence differs from the analogous result of Mindlin and Tiersten. It can be shown
to reduce to their result when F4 + F5 = 0.

8. Stability of equilibrium. For the natural state to be stable W must be a posi-
tive definite function of the strains and strain gradients. For the strain-dependence
this leads to the usual requirements fi > 0 and 3\ + 2/u > 0 while the strain gradient
criterion will lead to a series of inequalities for F, , - • • , F5 .

In terms of the displacement gradients,

(49)
W = (F i + \F 2 + jF3)ua. cjiip.py + {\F 2 + %F3)ua ,apUpiy y

+ \FiUa,wUa.yy + (^P\ + \Fr^)ua,pyua+ (5F4 + ^Fh)uu Pyue ya .

Thus

—    = (2 Fx + F2 + hF^S^S^S^ + {\F2 + !F3)(8,x5mp 5«tt + 5X(15P„5,T)3m,.

+ §F3&\i>&Ki>f>tT + (F* + I F^d^d^S^ + (§F4 + §Fs)(S)il,S,aSllT + 5„AAr)

and in particular

= (2F1 + F2 + \F3 + \F, + |F,)«.x + hF3K + (Ft + I Fs)

+ (F2 + F3 + \Fi + f/'V,)5,A5Xp .

It is certainly necessary that all these latter quantities should, when added to the cor-
responding quantity with X <-> /*, be nonnegative, which leads to the conditions:
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F4 + §F5 > 0

2F, + F2 + §F3 + IF, + iF,> 0

Wz + F\ + \Fb > 0

F, + F2 + F3 + F4 + F5 > 0.

(50)

The last two of these are just the requirements that l\ > 0 and l\> 0.
The displacement gradients are independent quantities except that uaAsT = u„.ylj ,

so that we require the 18 X 18 matrix whose elements are

d2W
— — (2 - 5 J (2 - Srr) = 3TC,x,.,«
OU,c. (Xm) aUpA<rr)

to be positive definite. Consideration of the 2X2 principal minors of this matrix leads
to the further conditions that

F3 + F4 + hF, > 0
2G3G4 - (1 f2 + F3)2 > 0

2G2Gi - (2F1 + |F2 + F3)2 > 0

2G2G3 - (JF, + \F3 + F4 + |F6)2 > 0

2G2G3 - (§F2 + F3)2 > 0

g2g3 - (§f2 + *f, + |f4 + fF6)2 > 0

2G2(?4 - (2/'\ + §F2 + F3 + §F4 + fFs)2 > 0

2G2(?4 - (2Fj + §F2 + F3 + F4 + §F5)2 > 0

4F, + 2F2 + F3 + fF4 + iF5> 0

F4 + hFb > |iF4 + mi

where (?i , • • • , (74 are the four expressions in Eq. (50).
9. Concluding remarks. The material of Mindlin and Tiersten is a special case

of the present class of materials. These authors consider, in the small-strain case, a
strain-energy density of the form

W = i\(eaa) + nea^eap + 2-r]KapKap + 2^'k„^ Kpa

where Kap = epyseay,s . Comparing with Eq. (19) we get

F» = F3= -2 F2 = 4V', F4 = -F5 = 2(v + „')• (51)

In particular this leads to l\ = 0, l\ = ri/n, giving no dispersion of the dilatational
waves.

A straightforward extension of the materials we have considered is obtained by
allowing the dipolar velocities x,_a to enter the action density. The simplest case is to
assume that this quantity consists of separate kinetic and potential parts. For small
strains and stain-rates we would consider only quadratic dependences:

L = ^pXiXi + i<pXi,aXi,a — W(xi,axitai,).
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Then Qia = tpXi,a and P, = pi, — <pXi,aa , and the equations of motion (24), in the
small-strain approximation, become

pua — tpua,w ~ Fa + = (X + n) daA + — vi 3„V2A — r)2V*u„ .

In the boundary conditions, (12), is added to Tia .
The dispersion equation for plane waves becomes

w\ 1 + <pk2/p) = cVc\ 1 + l*k2)

which has the same qualitative features as the earlier equation. If we now let , —m*
be the two solutions of this equation for fixed w, then for the vibration frequencies
of a finite slab we obtain the same equations as in Sec. 6 (Eqs. (34)-(37)). However,
Eq. (48) for the torsional frequencies of a circular cylinder is changed by the new term
in the boundary conditions and becomes

= 0.

(F, + F^y'iMUx) + x'lMJib) + --n2 (y - x )zyii(y)Ji(p)pa

+ (F* + F5)\y3I3(y)J2(x) - x3I2(y)J3(x) + xy3I3(y)J i(x) + x3y 11 (y) J 3 (x)
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