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Abstract. We consider here the basic equation

= p(x),
dXi

where e(x) is a random function of position and p(x) is a prescribed source term. A

formal equation is derived that governs |</>(x)}, where the braces indicate an ensemble

average. The equation, which depends on the boundary conditions of the stochastic

problem, is presented in terms of an infinite sequence of correlation functions associated

with e(x). The equation is investigated first for the case of an infinite dielectric where

isotropy may be assumed. An impulse response function is obtained and an explicit

form of this response function is presented for the limit of small perturbations. Further,

it is shown that the equation governing {4>(x)} is greatly simplified for the case in which

all characteristic lengths associated with {</>(x)} are large compared to all correlation

lengths U associated with the e(x) field. The question of boundary conditions is next

considered and as an example a spherical boundary (radius R) is studied. It is demon-

strated, in this case, that if R 3> h the effects of the boundary conditions on the equation

governing {<p(x)) are negligible except at points within a thin layer near the boundary.

The relationship between the ensemble average and the local volume average is also

discussed.

1. Introduction. The problem to be discussed involves the operator equation

Lu = /, (1)

where L is a random differential operator and / may be a random forcing term. It is

desired to obtain an equation governing the mean of the random field quantity u.

This may be formally accomplished as follows. Take the average of Eq. (1). This gives

\L}{u] + [L'u'\ = {/} (2)

where { | indicates the ensemble average of the relevant quantity and the superscript

(') denotes the fluctuating part of the indicated quantity about this ensemble average.

Subtract Eq. (2) from Eq. (1). This gives the following equation for u

[{L} + (I — P)L']u' -L'{u\ +/'■ (3)

* Received March 27, 1969. This work was partially supported by the Army Research Office,

Durham, N. C. DA-31-124-ARO-D-340, and by the National Science Foundation under grant GK 530.

1 Present address: Catholic University, Washington, D. C,



246 M. J. BERAN AND J. J. McCOY [Vol. XXVIII, No. 2

In Eq. (3), I represents the identity operator and P represents the averaging operator,

i.e. Pu = {u}. Solving Eq. (3) for u', operating on this result by L' and averaging gives

(LV) = [L'[{L\ + (I - P)L'Vr! - [L'[[L\ + (/ - P)LTxL'}[u}. (4)

Substituting Eq. (4) in Eq. (2) gives the desired equation on {« }.

\{L) - \L'[{L) + (7 - P)L']-lL'}]{u} = {/) - \L'[{L} + (7 - F)LT7')- (5)

The study presented in this report is an investigation of the operator equation (5).

In doing this, it was found necessary to express the inverse operator, [\L\ + (I — P)L']~l,

by its binomial expansion. I.e.

[{L} + (/ - P)L'YX = £ - P)L']n{L}~1 . (6)
n = 0

Thus, the only inversion that must be carried out is for the operator {7}. Use of the

binomial expansion limits the validity of a result to a certain class of problems for which

this expansion converges. Unfortunately, it is not possible for us to define precisely

the class of problems for which the results are valid. For a specific problem, it is usually

possible to offer some justification on physical grounds but the ultimate justification

will be the usefulness of the equations obtained in predicting results which may be

experimentally justified. It may be noted, however, that since the series in Eq. (6)

is not truncated in the main body of the report, the solution is not a perturbation solu-

tion about the operator \L).

In the next section, the above formulism is carried out for the equation

"'<*>■ <7>

where e(x) is a random function of position and p(x) is a source term which is taken

for convience to be nonrandom. This equation represents the field equation for a number

of physical problems. For example, Et(x) = d4>/dx, , might denote the electric field

in a medium with a variable permittivity, or <f> might represent the temperature in a

medium with a variable conductivity. An explicit expression is obtained for the operator

appearing in the equation of {<£}. The equation is in terms of an infinite sequence of

correlation functions associated with «(x).

In Sec. 3 we consider an infinite medium, invoke statistical isotropy and show how

this allows us to obtain a solution to our equation governing {<#>} in transform space

(i.e. a three-dimensional Fourier transform space). Using this solution it is easy to see

how the solution may be simplified for the case in which all correlation lengths associated

with the «(x) field are small compared to all characteristic lengths associated with the

problem. We explicitly discuss the small perturbation case.

In Sec. 4, we consider the validity and meaning of equating the ensemble average

{</>} with a local volume average. It is further shown that the governing equation on

the local volume average of <£ is of the same form as the governing equation on 4> for a

homogeneous medium if one introduces the idea of nonlocal effects.

Finally, attention is paid to the problem of a bounded medium. The difficulties

introduced by adding the boundary are discussed. It is shown for the case in which all

characteristic lengths of the boundary are large compared to all correlation lengths
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that the infinite medium field equations are valid in the region interior to a small layer

at the boundary.

2. Derivation of equation on {<£(x)}. In this section the formulism presented

in the introduction is to be applied to the differential equation

& [<w &]"(8)

where e(x) is a statistically homogeneous random function of position and p(x) is a

source term which is taken to be nonrandom. Here and hereafter the summation con-

vention is employed. Referring to the operator Eq. (1), we can immediately identify

' h [e(I) s;] (9)

and {/) = p(x). The assumption that e(x) is statistically homogeneous allows us to

write

[L\ = {e} d2/dXi dXi , (10)

while

L' = h, [''«£]• <">
The equation on the mean field (<^(x)} is now given by Eq. (5). Using the iterated

expression for the inverse of the operator, [{L} + (7 — P)L']-1, the only operator that

we need invert to obtain an explicit equation on {0(x)| is \L}. The inverse of the Lap-

lacian operator may be carried out by the introduction of a Green's function (see Courant

and Hilbert [4, p. 261]). The appropriate Green's function to introduce will, of course,

depend on the boundary conditions. In this treatment the boundary conditions on <p

are taken as nonrandom; hence cj>' satisfies homogeneous conditions. Denoting the

appropriate Green's function by G(x, x'), where x locates the field point and x' locates

the source point, we write

{L}-yX) = f G(x, x')w(x') dx' (12)
(€} J

where u(x) is a generic function of position and the integration is to be carried out over

the entire volume.

With Eq. (12), the manipulations involved in obtaining an explicit equation on

\4>(x)} are straightforward although extremely cumbersome. Consider the second term

on the left-hand side of Eq. (5). We write

where

In Eq. (14)

{L'[{L} + (/ - P)L']~1L'} (<£(x)} = ~ {eW(x)}. (13)

E',(x) = [{L} + (/ - P)L'V ~ WixJlE^)}}. (14)

{^(x)l = !<Kx)i- (15)
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As discussed in the introduction, the inversion of the operator appearing in Eq. (14)

is to be carried out by formally expanding it as an infinite series. The resulting series

may be put in an understandable form by first introducing the integrodifferential

operator, -Ai((x, x'), defined by

A,-,(x, x')«,(x') = ~ (x, x') -~j [e'(x')«,(x')] dx' , (16)

where u,-(x) is a generic vector field. Thus, we write

E'(x) = A{i(x, xOt^x,)}

+ (7 - P)Aii(x, x1)A,t(x1 , x2){Ek(x2)}

+ (7 - P)Au{x, x,)(7 - P)Aik(x, , x2)Akl(x, , XaM^fe)} (17)

+ ... +

•(7 - P)Aij(x, X])(/ - P)Aik(xI , x2) • • • (7 - P)4J,a(x„_2 , xn_,)

4ar(x„_, , Z„) {i?r(x„) )

+ ••• •

This may be written in the form

E'{(x) = Hah x'){£,(x')}, (18)

where 7/,,(x, x') is an integrodifferential operator given by

Hi:(x, x') = Ai,(x, xx)

+ (7 - P)A,k(x, x^A^x, , x') ^

+ (7 - P)Ait(x, x,)(7 - P)Akl(xu x2).4;,(x2 , x')

+ ••• •

We next multiply both sides of Eq. (18) by e'(x) and average. We find

h'(x)7?;(x)} = 7f,.,.(x,x'){^(x')}, (20)

where

Ki,(x, x') = {«'(x)77„(x, x')j. (21)

The equation on {4>(x)} may now be written using Eqs. (5), (13), and (20) and is

given by

{*} ̂  {Et(x)\ + [K„(x, x')!S,,(x')}] = p(x), (22)

where it is to be recalled that {i?,(x)j = (9{0(x) {/6x, .

In explicit form, we may write

Kij(x, x') = {£'(x).4,.,(x, x')}

+ {e'(x)(7 - P)Aik(x, x^A^x, , x'))

+ {e'(x)(7 - P)Aik(x, x,)(7 - P)Akl(xl , x2)A„(x2l x')}

+ ••• .
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We note that {t'(x)PQ(x, x')} = 0. Therefore since

e'(x,)4ii(x,-, x,-+i) = Aki(Xj, xi+1)e'(x), i < j

we find

tf.,(x, x') = M.,(x, x')e'(x))

+ {4,*(x, xOAi^Xi ,x')«'(x)}

+ {Aik(x, x1)Akl(x1 , x2)Ati(x2 , x')e'(x)} + • • •

- {4a(x, xOe'(x)J {A^Cx! , x2)4,,(x2 ,x')} — ••• .

If we now define the operator -B;,(x, x') by

Bu(x, x')w(x') =h I <?<(*• *') dj£^ dx' , (24)

where u(x) is a generic function of position, we have finally

K„(x, x') = Bi,(x, x')C(x, x')

+ Bik(x, xi)Bki(xl , x')C(x, X! , x')

+ • • • + Ba(x, xJBufa, x2) • • • Bpa(xn-! , x„)Sar(x„ , x') (25)

•C(x,x, , •••,x„ , x'),

+ ...

where

C(x, x, , • • •, x„ , x') = {e'(x)e'(x1) • • • e'(x„)e'(x')}

- ••• e'(x,)}{e'(xi + 1) ••• e'(x,)} ••• (e'(xa) ••• e'(x')}.

The sum is over all combinations of p products of {e'(x,) • • • «'(x,) }• The order of the

arguments must be preserved.

Kij(x, x') is thus an integrodifferential operator determined by the Green's function

Gi (x, x') and the infinite set of correlation functions

C(x, Xi , • • • , x„ , x'); n -> co.

Before proceeding to investigate the integrodifferential equation on the mean field

it is well to point out that Eq. (22) (using Eq. (25)) is dependent on the boundary

conditions applied to the original stochastic problem. Thus, it would perhaps be in-

appropriate to term such an equation a field equation on {<£(x)}. It is important to

note that this is not a result of the derivation of this equation but rather is a result

of the nature of the problem. In the last section of this paper the effects of boundary

conditions are studied in some detail and it shall be shown, for the case of a large spher-

ical boundary, that the contribution of the boundary conditions to the equation of

{$(x)J is significant only within a layer of the boundary. The thickness of this layer

is a function of the correlation lengths associated with the fluctuations in t(x). From

this we may conclude that the equation on {<£(x)} is independent of the boundary

conditions, and thus may be appropriately termed a field equation, except for points

lying within a boundary layer.
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3. Infinite space. In this section we consider an infinite space with a local source

p(x) confined essentially to some finite volume. We assume 4>(x) vanishes at infinity.

We choose the statistics of the e(x) field to be homogeneous and isotropic. In this space

Gi(x, x') is the free space Green's function and is a function only of r = x — x'. We have

<?,(*. *') - (26)

and

<27>

A typical term of the product Ku{x, x') {Ej(x')} is

Wnwx (~l)n+1 f r,(x, xQ d r r,.(x, , x2) d f rp(x„_, , x„)

4 (4-7Tjej)"+1 Jr. r(x, x,) dxlt Jr„ r3(x, , x2) dx2i r3(x„_, , x„)

x f r°/X" ' ^ [C(x> x, , • • •, x„, x') {2?,(x')) ] dx' dxn • • • dx,. (28)
dx„a Jv„r (xn , x j dx,-

Consider the last integral

Q = f ^7 [C(x, , ■ • ■, X„ , X') {^(xo} ] dx' . (29)
•'Fa, ' vxn , x ) ox,

Q may be written in the form

- L fer0(x„ , x')
C(x, x, , • • •, x„ , x'){£,(x')} dx'. (30)

r:,(x„ , x')_

Using the divergence theorem, the first integral is equal to

f ^7*" ' *>l C(x, x, , • • •, xn , x'){E,(x')}n: dS.
J S T \^n > * ^

S may be taken to be an infinite sphere around the point x„ and a small sphere around

this point x to allow evaluation of the integral in the neighborhood of the singularity

l/r3(xn , x'). We assume that C(x, Xj, • • • , x„ , x') vanishes rapidly enough as |x„—x'| —> 00

so that the infinite sphere gives no contribution. The singularity gives the contribution

-(47t/3)£,.(x„)C(x, x, , ■ • ■ , x„ , x„).

Noting that

d rQ(xn , x') = 1

dx, r'(x„ , x) r\xn , x')

Q may be w ritten as2

. _ 3r,r„
°'0 J?

, X')
3

Q = £,-(x„)C(x, x, , • • •, x„ , x„)

a In this form the second integral exists only in a Cauchy principal value sense.
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~ f rVv1 r'l a'^x" - x')c(x< *1 . x'){-E',(x')! dx. (31)
^ V cd kXn j A J

Substituting Eq. (31) into Eq. (28) yields

Tw(r\ - (~1)T> 1 f r>(x' x') ,h d f r*(x' ■ x^> ,fc JL
•' W [4tt{ej]" 3{ej JVw r3(x, Xl) flXl axu J r3(Xj , x2) aX2 &r2I

L Pfbrrtd sib L rfetfj £C(Z'
(-1)" r,-(x, x,) d r rk(xi , x2) d

[(4ir) je} ]"+1 r3(x, x,) dxu Jv„ r3(Xl , x2) <3x2(

•/ Pfcrz> £ X. ?zh> «*>c(x, . (32>
We note that the first integral of Eq. (32) is the same as given by this equation

if C(x, x, , • • • , x„_! , x') is replaced by (l/3{t))C(x, Xj , •• • , x„_x , x', x')- The sequence

of steps Eq. (29)-Eq.(32) can thus be performed for /j"-1' where C(x, Xj , • • • , x,_i , x')

is replaced by

C(X, Xl , ■ ■ • , Xn_, , X') + C(x, X, , • • • , Xn_i , X' , X').

Let us define the following function

C2(X, X, , • • ■, xf) = C(x, X, , • • • , Xf) + ^fy C(x, Xi.---.Xi, X,)
3je}

+ • - + [^y] c(x> x, , • • •, x,- . ■" •, x,) + • • • (33)

where x, , • , x, means the coordinate x, is repeated m times.

In terms of Cz(x, Xj , • • ■ , x,) and a new operator /,,■ , defined as

7,,(x, x')u(x') = -^y^y r:»(x «„(x, x')m(x') rfx' ,

w(x) being a generic function of position, K,,(x. x') {7?,(x') j is given by

7f„(x, x')f-E,(x')l = - 3^-C,(x){i?,(x)} + 7i;(x, x')C2(x, x')

' {Ej(x') J + Iik(x, xO/i^x, , x')Cj(x, X! , xOii'^x')!

+ • • ■ + 7it(x, x,)/n(x, , x2) • ■ • 7pa(x„_i , x„)7ar(x„ , x')

•Cx(x, x, , ■, xn , x')|7i',(x')j

+ • • • . (34)

In infinite space Eqs. (22) and (34) constitute a formal solution to our problem.
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If we define G,,(x, x') as

" "Jl.) ?i, x') «"(l'

1 :x7~7\ «..(x. xO/t,(x, , xOC^Cx, x, , x')
4ir{e| / (x, x,)

+ * 47r{e} r\x x ) ' ^2) *' * -^po(xn-i > ̂ n)

•/or(x„ , x')Cz(x, x, , • • •, xn , x') + • • ■ , (35)

we may write

ff„(x,x'){#,(*')} = -3^yCs(x){£,.(x)} + I G,,(x,x'){i?,(x')} dx' . (36)

Since the e field statistics are homogeneous and isotropic C2(x) is independent of

position and (?,-,• (x, x') depends only on x — x'. Thus we may write Eq. (20) in the form

£;{Ei} + £~J G"(x ~ rfx' = (3?)

Inspection of G,,(x — x') shows that in every term there is a correlation function

of the form C(x, x, , ■ • • , x„ , x')- When [x — x'| » I, where I is a characteristic correla-

tion length of the field, C decreases rapidly in magnitude. We assume here that similarly

On has this property.

Let us denote a characteristic length associated with the source p(x) to be Lp and

assume for the moment that LJl » 1. In this case Ave may assume that {Ef(x')} varies

slowly in distances of the order of I. Thus we write

f G„(x - x'){£,-(x')} dx' « {E,(x)} J G,,(x - x') dx' . (38)

Tin = f Gij(x — x') dx' is independent of x. In addition 17,,• is an isotropic tensor

and thus 77, ,■ = >; 5,,- . Therefore we have finally for Eq. (37)

3 !c!

( 1 _ i CjL
!e! 3 |ei + *] tel {Ei(x)} = P(X)" (39)

Writing

«*={«}-*(Cz/M) + u, (40)

we see that t* is just the effective constant of the random media defined for constant

average fields (see Beran [1, Chap. 5]).

In general it is useful to define an effective constant even when the ratio LJl is

arbitrary. This allows the equation to assume a useful form as LJl —* 00. In addition

e* is a measurable quantity. Thus in general we may write for Eq. (41)

dXi
{£,(£)} -f J Gi,(x — x') - 5(x - x') J G,:(x - x') dx'

[E,(x')} dx' = p(x). (41)
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Finally, writing

Mn(x — x') = Gij(x — x') — 5(x — x') J Ga(x — x') dx' , (42)

we have

e* h, {^(x)1 + ^" / M<,(x ~ dx' =p(x)- (43)

or remembering {i?,(x)} = (d/dz;){<£(x)},

e*V2 {<*>«} + ~ J Mu(x - x') {*(*')} dx' = p(x). (44)

Eq. (44) is the equation governing {<£(x)). Because of the random medium, the

free space equation

eVV(x) = p(x) (45)

has been modified in two ways:

(1) e is replaced by e* the effective constant;

(2) The term

_d

dx
- J Mij(x - x') {<j>(x')\ dx'

has been added.

Both e* and M,-, (x — x') may be calculated in principle if all the correlation functions

C'(xi , x2 , • • • , x„) were known. An alternate procedure is to measure e* andM,,(x —x').

e* is easily measurable and presents no difficulty. Mi{(x — x') has not been measured

to our knowledge but before we discuss its measurability we wish to perform further

manipulations with Eq. (44) and present a solution for {<£(x)J for a reasonable choice

of M,, (x — x')- First let us take the Fourier transform of both sides of Eq. (44). This

is easily done since the integral appearing in the equation is of the Faltung type. We

find

-e*fc2(<£(k)} - M/,,(k)fc,{*(k)} = /5(k). (46)

Mii(k) is an isotropic tensor in k space and thus has the form

Afi,-(k) = M^k) 5%i + M2(A:)fc,fc,. . (47)

Writing

we have

FM(k) = fc.fc.M.^k) = k2Mx{k) + M2(k)k\ (48)

iwt " (49)

M (k) depends on all the correlation functions associated with the e field. In the

case of small perturbations, however, we may confine our attention to only the two-

point correlation function. As an example we now consider this case.
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In the small perturbation case we find from Eq. (35) (see in this limit Bourret [2])

Gti(x,x') = x') x')C(x, x'). (50)

Since C(x, x') = C(|x — x'|) direct calculation shows that / G,,(x, x') rfx' = 0.

Thus we have

M,,(x - x') = -"Tj-^ ^ o-,,(x, x')C(x, x'), (51)

and

^M/.,(k) = £ ~3 a,,(r)C(r)e,k'r dr, (52)

where r = x — x'.

Manipulation then gives

i,>/in 2 C(r) ("sin kr ( 3 \ 3 cos kr] . .
m ~ 'R J, r dr■ (53)

Here we note

2 (klf
M(k)

and

I C d
is lei Jo \ir\ir\i

2 C(0)
M(k) (54)

Thus if the characteristic length of p(x), L„ , is very large compared to I then the

medium responds as if it were homogeneous with effective constant e* = {e} — \C(0)/{e}.

When the characteristic length of p(x) is very small compared to I, p(fc) is a constant

until k ~ 1/L„. For k > l/Z, {$(k) j is determined by the average value {ej — C(0)/{e}.

This is the small perturbation limit of 1/{1/e}. Since the values k —* oo determine

p(x) as |x| —> 0 this is the expected result. p(x); |x| —> 0 experiences only one value of

e in each member of the ensemble.

We expect ]fo(k) to behave similarly when the fluctuations in e(x) are large. That

is, we expect

M{k) |*_„ -♦ ak2 -> 0,

M(k) - 7~- - e* • (55)

Here a is a constant with dimensions length2. For example for some materials a useful

expression might be

& CO -
.{1/e}

where lc is some characteristic correlation length.

[1 — exp — l2ck2]
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If we consider l/Lf « 1 but wish a first correction to this limit, Eq. (53) becomes

- PF+W (66)

In coordinate space this yields

- aV4{<Kx)} = p(x). (57)

Eq. (57) may also be derived from Eq. (43) by transforming to the coordinate

r = x — x' and expanding j Ej (x + r) J in a Taylor series about x. Eq. (57) allows us

to take into account slowly varying fields (l/Lp « 1). To do this it is only necessary

to know the additional constant a.

4. Discussion of ensemble and volume averaging—interpretation of Eq. (44).

The meaning of j£,(x)} as defined in this paper is unambiguous. We consider a family

of dielectrics for which there is an associated probability distribution for the field «(x).

Each member of the family is, in turn, subjected to an identical excitation p(x) and

the value of the electric field vector is either measured or calculated at the identical

point denoted by x. {E,(x) i is the result of averaging all of the values so measured (or

calculated).
It is not so clear how to infer any information from {i?,(x)j that is useful for dis-

cussing the response of a single dielectric, the permittivity of which varies with position

in space in a manner about which we have only limited information. If the random

vector field E, (x) is defined over an infinite region of space and if it is statistically

homogeneous, i.e. {-E'.-(x) j is not a function of position, then it is possible to invoke an

ergodic hypothesis. The ergodic hypothesis equates the ensemble average with a spatial

volume average. Thus, one may view {i?i(x)} as a spatial average of the electric field

vector that exists in a single dielectric.

In the case in which the random vector field is not statistically homogeneous the

conditions justifying the invoking of an ergodic hypothesis are not present. Still, one

could argue that if ji?i(x)} varied "slowly" with position in space then the conditions

necessary for an ergodic hypothesis to be valid are approximately present. In such a

case it could be hoped that some information of the response of the single medium prob-

lem might be inferred from { E, fx) J.

To give some meaning to {Ei(x)} varying "slowly" with position and what we

might infer from {^.(x)}, one might imagine that the variations in E{(x) are seen over

two scales. On one scale one could discern details of the variation of the permittivity.

On this scale (the inner scale) the overall dimensions of the dielectric and any charac-

teristic length associated with the forcing of the dielectric appear to be infinitely large.

On the second scale (the outer scale) one can make measurements of the overall di-

mensions of the dielectric and of characteristic lengths associated with the forcing

of the dielectric. On this scale the fluctuations in the permittivity with position in space

are too rapid to be discernible. The variations of E{ (x) with distance measured on the

inner i-cale are variations due to the variations in the permittivity. The variations of

Ei(x) with distance measured on the outer scale arise due to the finiteness of the di-

electric and/or the finiteness of all characteristic lengths associated with the forcing.

If j Ei (x)} does not vary appreciably with a change in position of any length measured

on the inner scale, then the conditions for the justification of an ergodic hypothesis are
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present on this scale. Hence, {E, (x)} may be associated with a local spatial volume

average over a region with dimensions very large compared to the inner scale.

In a specific problem, the length defining the inner scale, which we may denote by

h , will be given by some correlation length associated with the variations in the per-

mittivity, for example, the correlation length associated with C(r). The length defining

the outer scale, which we may denote by L0 , has already been defined as the smallest

characteristic length that can either be associated with the overall geometry or with

the forcing mechanism (i.e. Lp). If li/L0 « 1, one can equate \E{(x) | to a local volume

average taken over a region which is large compared to U but small compared to L0 .

For problems in which two clearly discernable length scales are not present it is

not possible to extract any deterministic information regarding the response of a single

medium from statistical averages such as {i?,(x)}.

In general Eq. (44) only makes sense if viewed from an ensemble point of view. If,

however, Z,/Lp « 1 (e.g. l/Lp « 1) the problem may be viewed from either an ensemble

averaged or volume averaged point of view. Eq. (57) admits of either interpretation.

5. Effect of boundaries. The analysis of the bounded dielectric differs from that of

the infinite dielectric only in the form of the Green's function that is used to invert the

operator, \L] = {«} V2, which acts on a vector field. In the case of an infinite dielectric

the appropriate Green's function is

G„i(x, 0 = (Xi - {0/4*- I®, - fcP, (58)

whereas in the case of the bounded dielectric the appropriate Green's function is

Gb,(x, 0 = G„,(x, 0 + Wi(x, 0, (59)

where GBi(x, ^) is to satisfy the condition specified for x on the boundary and W is

continuous both within the dielectric and on the boundary and is regular within the

dielectric. (See Courant and Hilbert [4, p. 262].)

In this section we should like to consider the effect of modifying the Green's func-

tion in this manner. This will be accomplished by considering the special case of a

spherical dielectric with the boundary condition that 4> is zero on the surface of the

sphere. This particular configuration is, of course, chosen since the Green's function

for the sphere is known. The result of considering this special case will be a demonstration

that the contribution of the boundary to the equation on \E,} when l/R <<C 1 (R is the

radius of the sphere) is small except for a region in the immediate vicinity of the boun-

dary. Thus, one might conclude that the equation derived for {£, } based on the infinite

dielectric is an approximation to the field equation on [ E< j which is valid for bounded

media except for a small boundary layer. For the boundary layer itself, the equation

on [Ei\ depends on the configuration of the body and on the boundary conditions.

For a sphere of radius R subject to the indicated boundary conditions the appropriate

Green's function is

where r, = — £, and rRi = x, — (.K/£)2£; . r,- is the vector from the field point to the

source point and rRi is the vector from the field point to the reflected image of the source

point. (The reflection is about the surface of the sphere.) The expression for j t'E ■} may
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be written, if no iteration is performed,

i,'(x)e;»] - - /r? [4 i«'W<W(8i if]

+ (61>

We assume now that {e'(x)e'(£)#,(?)} falls appreciably to zero when r = |x —

is greater than I. In this entire development we have only considered media for which

all order correlation functions je'^) • • ■ e'(x„)J are effectively zero beyond some dis-

tance which we take to be of order I. This does not allow us to state, however, that the

above three-point correlation function behaves similarly, but consideration of Eq. (29)

leads us to this inference. It is clearly true in the first iteration wherein {t (x)t' (£)Ej(£) j

is replaced by j e'(x)t'(f) 1 {i?,(£) j, and the repeated integrations necessary in the terms

with higher-order correlation functions do not appear to change the character of the

decay. Moreover on physical grounds it is difficult to imagine that -&','(£) is correlated

to e'(x) when |r| » I. is determined by contributions within the sphere of radius r

and these contributing elements are uncorrelated when they are separated by distances

greater than /.

Subject to above assumption we consider the relative magnitudes of the two terms

in Eq. (61). We want to show that for points away from the surface |x| = R the second

term is small compared to the first term. If this is so then in the region away from

the surface we may use the free space Green's function and the analysis given in Sec.

3 is applicable.

Essentially we wish to compare the magnitude of the factors r^/r3 and RrRi/£rl .

Let us consider x — 0 to be the origin of the sphere. Choose a point x„ with radial co-

ordinate rv where R — rv > al where a is a number » 1. We assume, however, that R is

large enough to meet the condition R 5>> al:

0 r.l _ 1 _ 1
r:iJ r3 t '

0 (fr) = w ^
Thus when R — rp > I the second term is smaller than the first term by a factor of

(1l/R)2. We note that there is no singularity in the second integral and the singularity

in the first integral is only apparent (d'{ — r2 dQ). Moreover we assume no singularities

in the function

aM,.{e'(x)eW,©!.

If we neglect the second term in Eq. (61) the analysis given in Sec. 3 is applicable

and (he governing equation within the sphere (r < R — al) is given by Eq. (43).

The above analysis was restricted to a spherical surface. On physical grounds we

assume, however, that if all radii of curvature in the boundary are al then the same

conclusions hold for this surface.

6. Conclusions. We have determined, by iteration, an equation governing ($(x)}.

This equation is determined by the sequence of correlation functions associated with

the e-field. In infinite space, where isotropy may be invoked, we showed how the equa-
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tion may be simplified by use of an impulse response function (Eq. 44). A solution in

transform space is noted in Eq. (49) and for the case of small perturbations an explicit

expression is found for the transform of the impulse response function (Eq. 53). When

the characteristic length associated with the source, L„ , is large compared to a char-

acteristic correlation length, I, a simplified equation results (Eq. (56) or Eq. (57)).

This equation is not restricted to small perturbations and contains only one unknown

constant, a.

The case of a finite boundary was also considered using a spherical surface as an

example. It was shown that outside of a boundary layer near the surface of the sphere

the free space analysis given in Sec. 3 is valid and Eq. (43) may be used.

The elastic properties of a random medium may be treated by procedures analogous

to those given in this paper. In a subsequent paper we shall study the variation of the

average displacement field in a medium in which the elastic constants may be treated

stochastically.
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