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Abstract. It is shown that the twelve linear field equations of the Sanders-Koiter

first approximation shell theory, when specialized to shells with midsurfaces of constant

mean curvature, can be replaced by eight equations of particularly simple form. This

is accomplished by adding certain negligibly small terms to the conventional uncoupled

stress-strain relations. On the basis of order of magnitude estimates, it is argued that

these equations are actually adequate for shells of arbitrary geometry. For shells of

nonzero Gaussian curvature, the simplified field equations are reduced to four coupled

scalar equations. For catenoidal and helicoidal shells, these equations are further reduced

to two coupled fourth-order equations. Various special forms of these equations are

shown to agree with results obtained by Lardner, Reissner, and Wan for shallow shells,

shells of revolution undergoing axisymmetric and lateral deformation, and helicoidal

shells undergoing axisymmetric deformation.

1. Introduction. This paper is concerned with simplifying, without any essential

loss of accuracy, the linear field equations of the Sanders-Koiter first approximation

shell theory [1], [2], [3]. These field equations consist of the twelve equilibrium, com-

patibility, and stress-strain relations for the components of a set of symmetric stress

and strain tensors. We proceed in two stages.

First, we show for shells of constant mean curvature H that the field equations take a

particularly simple form, provided only that certain small, explicitly computable terms

are added to the conventional, uncoupled stress-strain relations. The modified stress-

strain relations are as accurate as the unmodified ones, since the differences between the

two involve terms of the same order of magnitude as the inherent errors in the un-

modified stress-strain relations. Two of the field equations simplify still further if H — 0.

Some order of magnitude arguments are then advanced to conclude that the simplified

field equations for H = 0 are sufficiently accurate for shells of arbitrary geometry.

In the second stage we begin with the observation that the simplified equilibrium

and compatibility equations can each be expressed as the divergence of a space vector.

Using an idea due to Libai [4], which was further developed by the author [5] in reducing

a simplified set of field equations proposed by Sanders [6], we reduce the vector equa-

tions for shells of nonzero Gaussian curvature (K ^ 0) to four coupled scalar equations.

If II = 0, these equations simplify considerably and, for catenoidal and helicoidal shells,
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they are further reduced to two coupled fourth-order equations. Several special cases of

these equations are shown to agree with earlier work of Reissner and his students.

There have been several notable and valuable attempts in the literature to reduce

the general equations of shell theory. Novozhilov [7] showed that if Poisson's ratio is

zero, the equilibrium and compatibility equations can be pair-wise combined by the

introduction of complex-valued quantities. He also attempted to argue, on the basis of

order of magnitude considerations, that his simplified equations would still be sufficiently

accurate if Poisson's ratio were not zero. However, Koiter pointed out [8] that Novo-

zhilov's equations did not adequately describe the axisymmetric deformation of a

helicoidal shell. Furthermore, our results show that Novozhilov's single complex, con-

stant-coefficient equation for catenoidal shells is generally inadequate (unfortunately,

our more accurate equations have variable coefficients and cannot be combined into a

single complex equation).

In a recent paper [G] Sanders attempted to eliminate the deficiencies in Novozhilov's

equations. In an ingenious analysis, he showed that by adding certain terms to the

stress-strain relations, three simplified equilibrium-compatibility equations could be

obtained for a symmetric, complex-valued tensor of second order. He then showed how

these equations could be reduced to a single fourth-order equation for a complex-valued

scalar for a variety of shell geometries. The success of Sanders' method rests upon showing

that the terms added to the stress-strain relations are of a certain order of magnitude.

For cylindrical shells of arbitrary cross section, he was able to determine these terms

explicitly. However, in an addendum to his paper, he stated that for a helicoidal shell

undergoing axisymmetric deformation, it is impossible to choose the required additional

terms in the stress-strain relations to be of the right order of magnitude. The fact that

we are unable to combine our reduced equations for helicoidal shells into a single com-

plex-valued equation, even for the special case of axisymmetric deformation, corrobo-

rates Sanders' finding, because it shows that there is no fourth-order "characteristic

equation" for the helicoidal shell, as Sanders' reduced equations would imply were they

universally valid.

The work of two other writers should be mentioned. Goldenveizer [9], starting from

the stress-strain relations with the stresses and strains expressed in terms of three stress

functions and three displacement components, respectively, obtained a determinantal

equation for a complex-valued function whose real and imaginary parts are the mid-

surface normal displacement and one of the stress functions. His final equations, being

enormously complicated and of sixth rather than fourth order, seem of little practical

value. In a paper just published [10], F. Y. M. Wan considers complete shells of revo-

lution under arbitrary, self-equilibrated loads. Using Fourier series, he obtains a set

of equations for the Fourier components of the unknowns. These he reduces to two

coupled fourth-order equations. Whether this procedure will work for shells of revolution

of arbitrary shape when Fourier decomposition is not possible, and whether, if it does,

the resulting partial differential equations will be of no higher order than the unreduced

equations is an open question.

2. Simplification of the governing equation. The field equations of the Sanders-

Koiter linear shell theory [1], [2], [3] consist of three exact equilibrium equations1

(N" + U + Wt|t = (2-1}

1 For simplicity, we assume throughout that there are no surface loads.
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— Ma" |a, -f ba„Na' = 0, (2.2)

three exact compatibility equations

(£"' - |0 - b'aE^\y = 0, (2.3)

EU + baJL" = 0, (2.4)

plus six isotropic stress-strain relations which are usually taken in the uncoupled form

iir3 = D[aa0Kl - (1 - n)K"t], (2.5)

Ea* = A[aaPN\ - (1 + f)A^]. (2.6)

These field equations exhibit the material-static-geometric analogy:

NaB <-» R" M" «-► -E" 7)

A <-» — D n <-> —v.

In (2.1)—(2.6), the following quantities and notation have been introduced: Nai3

and Ma!> are modified symmetric stress resultants and couples related to the conven-

tional unsymmetric stress resultants and couples Nand Mal> by the equations

N't = + i(b«Mye + btyM«y)t (2.8)

M" = t(&a0 + &'")■ (2.9)

aaS , bag, and e0(i are, respectively, the metric, curvature, and permutation tensor of the

shell midsurface. Ba$ , introduced by Sanders [6], is defined by

Bafi = §(eayb} + e,ybl). (2.10)

This tensor is independent of the three standard surface tensors in the sense that

a^Ba" = batB"> = eatB" = 0. (2.11)

To minimize the number of minus signs in the various equations to follow, we have

used the conventional definition of ba$ and adopted Koiter's definition [2] of M"13 and

K"^. Budiansky and Sanders [3] define these three tensors with the opposite sign. Either

way, the field equations are identical in the form and sign.

All indices are raised and lowered using aa(3 , and a vertical bar denotes covariant

differentiation with respect to a set of arbitrary surface coordinates 0", a = 1, 2. The

"bar" notation, defined for any tensor Aaf> by

Aaf = e"Y"A^ = a^Al - 4°' etc., (2.12)

was devised by Libai [4] and Sanders [6] and considerably condenses a number of shell

equations.

In the stress-strain relations, D is the bending stiffness and n is Poisson's ratio of

bending; A and v are the analogous stretching factors. It is customary, but not necessary,

to take

D = 12(1 -~7j ' A = Eh' " = (2'13)

where E is Young's modulus and h is the shell thickness.
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The simplifications considered in this section are restricted to shells with mid-

surfaces of constant mean curvature H = §6" . We began by replacing (2.5) and (2.6)

by the modified stress-strain relations

Ma* = D[aa*Kl - (1 - M)/^s], (2.14)

E" = A[a"'Nl - (1 + v)Na/]. (2.15)

We shall show, by explicit computation, that K°0 and may be chosen so that

the field equations take a particularly simple form and such that

Kl" = K"" + 0(E/R), (2.16)

N°f> = Na, + o{M/R), (2.17)

where E and M denote, respectively, the maximum absolute value of the extensional

strain and the stress couple and R denotes the minimum principle midsurface radius.

The order of magnitude relations (2.16) and (2.17) justify the use of (2.14) and (2.15),

because they show that the modified and unmodified stress-strain relations differ by

terms which are precisely of the same order of magnitude as the errors unavoidably

contained in the stress-strain relations of any first approximation shell theory [2].

Inserting (2.14) and (2.15) into (2.1) to (2.4), noting (2.12), and observing that
bafi | a = baa |" = 0 implies

b\ayKl |a = (ba'Kl) |a - b" L Kt

= (bal,Kl) |0 ,

we get

(2.18)

[Na* + Db-'Kl - $D( 1 - M)ea%,KM] I - D( 1 - n)bsyKly U = 0, (2.19)

T X

— Z>[V /vx - (1 - y)Kl" |ofl] + bafNa' = 0, (2.20)

[£"' - AVNl + \A{ 1 + vV'B.X:) \a + -1(1 + u)bgyN;y U = 0, (2.21)

-l[V2Arx - (1 + V)N? |B(I] + baffK°* = 0. (2.22)

Except for spherical and circular cylindrical shells,2 it is impossible to choose and

Nso that K|„ = N^" |„ = 0. However, let us assume that we can find scalars

R and N such that

K;s |. = ea'K |a and N°" |„ = \a . . (2.23)

It then follows that

and

K"J U = 0 (2.24)

b'yK;y U = (.<ayKR) \a (2.25)

by virtue of the Codazzi equation eayby \a = 0. Now use (2.10) to write

tayb*y = UWy + t*yb;) +
(2.26)

= Bttf + e°'7/.

8 For these two special shells, several alternate methods of simplification are available [6], [11],

[12], [13],
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With these relations and the analogous ones for Nwe may put (2.19)-(2.22) into the

form

{N"" + Db"K\ - D( 1 - n){B"'K + + 2HR)}\ |a = 0, (2.27)

-DV2Kl + bafl" = 0, (2.28)

[RaS - Abaf,N\ + A( 1 + p)[B«N + + 2Hft)]} |. = 0, (2.29)

AVX + KtR" = 0. (2.30)

It is now seen that if we choose

N°e = N°f> + r>bai>Kl - D(1 - n)BafR, (2.31)

Kf = Ka0 - Ay'Nl + A(1 + (2.32)

N = m 1 - + 2HK), (2.33)

R = -\A{ 1 + v)(B,^: + 211N), (2.34)

the assumptions embodied in (2.16), (2.17), and (2.23) will all be fulfilled.

It is a straightforward matter, by eliminating R and N between the above four

equations, to express N°0 and explicitly in terms of Naf and Raf>. Fortunately,

we do not need these results to proceed further.

Finally, we introduce the two unsymmetric tensors

S't = n°i> - D(1 - n)[BafiR + h"\B^R^ + 2HR)]

= Nl" - Db"eRl - 1 - n)ea\B^R"; + 211R)

and

(2.35)

T"' = Ka" + 4(1 + v)[Ba»N + ha\B,,NK; + 2HN)

= RaJ + AbaBN\ + \A( 1 + v)t"\Bx/; + 2 HN).
(2.36)

In view of (2.11), it follows that

S = S: = Naa, ba0Sa* = 5a,S"' = (2.37)

with an analogous set of relations involving T"". Thus the field equations (2.27)-(2.30)

take the form

S" |« + Db*aT I" = 0, (2.38)

-DV2T + b^S"." = 0, (2.39)

T" U - Ab^S |" = 0, (2.40)

AV2S + bapT"p = 0. (2.41)

Note that (2.38)-(2.41) can be put into the concise vector form

sa L = 0, T" U = 0, (2.42), (2.43)

where

S" = Sa\ - DT |"n, (2.44)

T" = T"\ + AS r n. (2.45)
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Here a,3 and n are the covariant base vectors and unit normal vector to the undeformed

midsurface, which satisfy the Gauss-Weingarten equations

a* 10 = bafiTi, n |a = -&fa„ . (2.46)

The six simplified field equations (2.38)-(2.41), involve eight unknowns. The fol-

lowing two additional conditions follow from (2.35), (2.36) and the last of (2.37):

= -D( 1 - m)(£x„2'x* + 2IIS), (2.47)

= A(l + ,)(Z?X„SX" + 211N). (2.48)

By the last of (2.37), (2.33) and (2.34) can now be written

N = §Z)( 1 - m)(5x/J'x" + 211R), (2.49)

R = -W + v)(B^> + 211N). (2.50)

If these two equations are solved for N and K and the results inserted into (2.47) and

(2.48), it follows that

ea,Sa" = -D( 1 - M)(l + - HA(l + V)Sx"], (2.51)

ea,TaB = A( 1 + 0(1 + k2rlBUS" + IID( 1 - m)Tx"], (2.52)

where

k2 = Il2AD{ 1 + ?)(1 - n) = 0(h2/R2). (2.53)

For shells of zero mean curvature, (2.51) and (2.52) reduce to

eafS" = -D(l - (2.54)

ea0rr" = A( 1 + (2.55)

3. The adequacy of the simplified field equations for shells of arbitrary geometry.

The aim of the preceding section was to indicate the extent of the simplifications possi-

ble for shells of constant mean curvature if one was constrained to produce a definite set

of coupled stress-strain relations such that, starting with these, one could arrive at a

set of simplified field equations without neglecting any terms whatsoever. Such a program

led to particularly simple results when H — 0.

In this section, we wish to show that by taking a somewhat more flexible (and hence

less rigorous) approach, we may conclude that for shells of arbitrary midsurface geometry,

the simplified field equations (2.38)-(2.41), (2.54) and (2.55) are as accurate as the full,

unreduced Sanders-Koiter field equations.

Assume that in (2.1) and (2.2) we have used the conventional, uncoupled stress-

strain relations (2.5) to express I*® in terms of K"p. The resulting equations read

[Na> - §D( 1 - mK'WJ U + DbBaKl U - D( 1 - MR-* „ = 0, (3.1)

rZ)-V2/vx - (1 - n)R°e U + KeN" = 0. (3.2)

From (2.3),

KaP \f = 0(E/RL), (3.3)
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where L denotes the "characteristic wavelength" of the midsurface deformation pattern

[2]. Now when dealing with the stress-strain relations (2.5) (and only then) we are

free to add terms of the order E/R to the bending strain tensor. Terms of this type

lead to errors in the underlined terms in (3.1) and (3.2) of order (DE/RL) and (DE/RL2),

respectively. Thus, it is consistent to neglect the right-hand side of (3.3) when this

relation is inserted into (3.1) and (3.2). It then follows that

[N" - § D(1 - |a + Dbaf>K\ |a = 0, (3.4)

-DV2Kl + ba0Nafl = 0. (3.5)

A strictly analogous set of arguments applied to the compatibility equations (2.3)

and (2.4) and the stress-strain relations (2.6) leads to the simplified equations

[Ka* + W + V)^B^"} L - AbaeNl U = 0, (3.6)

AV2Nl + bafsK"* = 0. (3.7)

Thus by now defining

gafi = jfafi _ 1D(1 _ (3.8)

= Ra» + |yl(l + v)ea?B^Nx", (3.9)

we obtain a set of field equations identical to (2.38)-(2.41), (2.54) and (2.55).

The simplifications embodied in (3.4)-(3.7) have also been suggested by Koiter [14],

although we feel that our arguments for adopting them are sounder than his.

4. Reduction of the simplified equations for arbitrary shells of non-zero Gaussian

curvature. For shell of nonzero Gaussian curvature (K ^ 0), we reduce our simpli-

fied field equations to four, coupled, second-order scalar equations. The method of

reduction is similar to the one used by the author [5] to reduce the simplified Sanders'

equations, and it is based in part on stress function representations used by Golden-

veizer [15], Vekua [16], and Libai [4].

To begin the reduction, we observe that (2.42) can be identically satisfied by setting

S* = e"^|Y (4.1)

where

F = F°'a?J + Fn (4.2)

is, for the moment, an arbitrary vector stress function. Using the component form of S"

given by (2.44) and the Gauss-Weingarten equations, (2.46), we find that

S"> = eay^ \y - Fbfiy), (4.3)

DT |a = -e"(nf7 + F |T). (4.4)

Rewriting (4.4) in the form

M" = —F |x — Dea,T |a (4.5)

and using the identity [4]

= K S'f, (4.6)
we obtain

F" = K'Wi-F |x + De^T |"). (4.7)
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Inserting (4.7) into (4.3), we arrive at a representation for S"p in terms of F and T alone.

s.t = eT-[(x-igflxF |x) |t + Fbf _ D^iK'XT L) \y]. (4.8)

In (4.8), and wherever possible, we use the fact that

= <?yba<> . (4.9)

By the static-geometric analogy, T"s has the representation

faf = tya[(K"lb^G |0 |T + Gb'y + A/\K'XS L) \y], (4-10)

where G is the analogue of F.

Since aa^S"p = S and aapfaf> = T, it follows from (4.8)-(4.10) that

s = e"'(/rw I,) |T + I){K'1baf,T |J |, (4.11)

T = t'^K-'blG |,) \y - A(K~1ba0S |a) |, . (4.12)

Two additional equations relating the four scalars F, G, S, and T follow from (2.54),

(2.55), and (4.8)-(4.10). With the aid of (4.6) and the identities

Bat?" = HbJ - bj and ea%\b; = <?>K, (4.13)

there follows

(K-WF |x) |t + 2HF - De^iK-'KS |„) |T

= D{ 1 - rilHKK-'b^G |x) U + 2HG + Aey\K^VxS |0 |7]

- [V2(? - 2K'^H \„ G |x + (4II2 - 2K)G - 2AK'^KH |„ S |J}, (4.14)

(K-'b^G 10 \y + 2HG + Aty\K"KS |M) \y

= -A(l + v){H(K~lbyXF |0 U + 2HF - Dey\K~lKT |0 M (4.15)

- [V2/-1 - 2K~lb^H \, F |x + (4H2 - 2K)F + 2DK'^KH \„ T |Jj.

For a spherical shell with a midsurface of radius R and outward unit normal n,

Rba, = -aaf , ba? = ba0 , RH = — 1, R2K = 1, (4.16)

and (4.11), (4.12), (4.14) and (4.15) reduce to

S = -DR-1 AT (4.17)

T = AR-' AS, (4.18)

(A + 2 )F = 0, (4.19)

(A + 2 )G = 0, (4.20)

where A = R2 A2 is the Laplacian on the unit sphere. Setting

£2 = AD/R2 = 0(h2/R2), (4.21)

we may combine (4.17) and (4.18) into the single equation

(«A - i)[T + i(A/D)1/2S] = 0, (4.22)

which is somewhat simpler than Eq. (3.12) of [12], obtained using the unmodified

stress-strain relations (2.5) and (2.6).
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S. The reduced equations for shells of zero mean curvature. If II = 0, the reduced

field equations derived in the preceding section simplify considerably. Noting that in

this case bafs = — b"11 and thus eaf>bya = t7abf = eaybi , we find that (4.11), (4.12),

(4.14) and (4.15) can be expressed in terms of V2 and the two operators

L(F) = 1,) |r = eay(K"lb^F |,) |T (5.1)

and

W(F) = -(K~lbafiF\a) |„ (5.2)

as follows:

S = L(F) - DIV(T), (5.3)

T = L(G) + AW(S), (5.4)

W(F) + DL(T) + D( 1 - m)(V2 - 2K)G = 0, (5.5)

W(G) - AL(S) - .4(1 + ^(V2 - 2K)F = 0. (5.6)

Although the pairs of equations (5.3)-(5.4) and (5.5)-(5.6) can each be written as a

single equation for complex combinations of the unknowns, it is obvious that, unless

ju = v = 0, the two sets of complex combinations will be different.

6. Catenoidal shells. In a right-hand cartesian reference frame with base vectors

i, j, and k, the equation of a catenoid can be specified by

x — R (cosh f cos 8i + cosh f sin 6j + fk). (6.1)

With 01 = 8 and 62 = f, the components of the metric and curvature tensors become

"l 0
[a0#)] = R cosh r

0 1
(6.2)

(6.3)

S, = S1\a11/a11)1/t, etc. (6.4)

denote the physical components of Saf), and let primes and dots denote differentiation

with respect to f and 8 respectively. The four equations implied by (4.8) take the form

RSo — (F' + F tanh f)' - D(T" + T tanh f), (6.5)

RSh = ~(F" + F' tanh f + Fsech2 f) - D(T" + Ttanh f)", (6.6)

RS(e = F' tanh f - F sech2 f - F" + D(T' + T tanh ff, (6.7)

RSt = (f + F tanh r)" + D(-T' tanh f + T"). (6.8)

By use of the static-geometric analogy (F G, Se <-> Te = T{ etc.) expressions for

Te , etc., can be immediately written down, if needed.

The operators V2 — 2K, L and IF read

ft2(V2 - 2K)F = sech2 f(F" + F" + F sech2 f), (6.9)
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RL(F) = 2{F' + F tanh f)', (6.10)

RW(F) = F" + 2F' tanh f — F". (6.11)

It is convenient to introduce the change of variable

(F, G, S, T) = («i>, y, a, t) sech f (6.12)

under which (6.5)—(6.11) go into

RS0 — sech £"[<£'" — D(t" — t' tanh £ — r sech2 f)], (6.13)

RS6[ = —sech f(0" — 4>' tanh f + Dt''), (6.14)

RS{e = sech tanh f — 4> — </>" + Dt''), (6.15)

= sech + D( — t' tanh f + r tanh2 f + t")], (6.16)

/22 cosh f(V2 — 27v)($sech f) = sech2 — 2<£' tanh f + cj>" + <f>) ^ ^

= sech2 f 2D(</>),

7? cosh fL(0 sech f) = 2<£", (6.18)

i? cosh fTF(</>sech f) = <£" — — <£" a %V($). (6.19)

The governing equations (5.3)-(5.6) now read

i?cr = 2</>'' - DW(r), (6.20)

tfr = 2-y'" + A-Wfcr), (6.21)

W(0) + 2Dt' + (D/R)( 1 - ju) sech2 fRfy) = 0, (6.22)

W(y) - 24a'" - Q4/fl)(l + v) sech2 £2D(</>) = 0. (6.23)

In the derivation of his complex shell equations [7], Novozhilov assumes (in our

notation) that tcpS"" — €ai37""3 = 0. In particular, this assumption removes the under-

lined terms in the above equations, and this is why Novozhilov obtains constant co-

efficient equations for the catenoidal shell. It is obvious from the form of Eqs. (6.26)

and (6.27) to follow that, in general, this simplification is not permissible.

By differential elimination of a and r, (6.20)-(6.23) can be reduced to two coupled

equations for <j> and y:

W[4> - (1 + v)e2 sech2 f £>(<£)] + (D/R)[Ay"" + *W2(y) + (1 — /x) sech2 f3D(?)] = 0,

(6.24)

W[T - (1 - sech2 f £(y)1 - (A/R)\4<f>"" + + (1 + v) sech2 f2D(<£)] = 0,

(6.25)

where e is defined by (4.21). The second, underlined term in each of the first brackets

in (6.24) and (6.25) is ()(h2/L2) compared to the first term in the same bracket, where L

is the "characteristic wavelength" of the deformation pattern. Since the neglect of

normal stress effects in classical shell theory introduces errors of 0(h2/L2) into the stress-

strain relations [2], it should be possible to replace these equations by

VP(d>) + (D/R)[47"" + W2(y) + (1 - m) sech2 f©(7)] = 0, (6.26)
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W(t) - (A/R)[4<t>"" + <W2(tf>) + (1 + v) sech2 f £>(*)] = 0. (6.27)

(Unfortunately, we are unable to give a more rigorous argument.) Even with this

simplification, it is obvious, because of the presence of the factors (1 — ju) and (1 + v),

that (6.26) and (6.27) cannot be combined into a single complex equation.

Shallow shell theory. If f » 1, the catenoid is shallow with respect to the base plane

f = 0, and its meridional profile assumes a logarithmic shape. Within the range of

validity of shallow shell theory, we may set sech2 f = 0. The simplified equations so

obtained may then be combined into the single equation

y _ $ _ y + uw>" + 2\p" + - 2*" + 2\p" + i) = 0 (6.28)

where

t = t + i(A/D)l/2<j). (6.29)

The characteristic equation (6.28) agrees with that obtained by Lardner [17], who ob-

tained this result by specializing the standard shallow shell equations.

Axisymmetric and simple sinusoidal stress states. It has been long known that the

exact equations for shells of revolution undergoing axisymmetric deformation can be

reduced to two coupled second-order equations. Actually, it is only necessary to require

that the stresses be axisymmetric to accomplish this reduction—the displacement may be

multivalued, of the dislocation type [18]. Novozhilov pointed out that if his simplified

complex equations were applied to shells of revolution subject to wind-type (= simple

sinusoidal = lateral = bending) loads, the conditions of overall force and moment

equilibrium could be used to reduce these equations to a single, second-order, ordinary

differential equation. Chernin [19] later showed how this reduction could be performed

exactly starting from the full unreduced shell equations. He obtained two coupled,

second-order equations, (32) and (33) of [19]. Wan [20] has reproduced Chernin's results

using a slightly more general set of shell equations, and has included the possibility

of dislocational solutions.

In view of these remarks, our reduced equations for the catenoidal shell should

lead to a coupled second-order ordinary differential equation for axisymmetric and

simple sinusoidal stress distributions. They do and therefore may be compared for

accuracy against the exact equations of Chernin [19] or Wan [20].

Consider first axisymmetric stress distributions. It is not difficult to show that <f>

and 7 must be of the form

<f> = 6 sinh f + $(?), (6.30)

7 = S20 sinh t + r(f). (6.31)

The constants Bx and B2 can be directly related to the net axial force and its geometric,

dislocation analogue. Inserting (6.30) and (6.31) into (6.22) and (6.23), we find that

V - V + 03 sech2 f(*" - 2*' tanh f + *) = 0 (6.32)

-r+(6-33)

= e[(l - /*)(! + ,)]1/2. (6.34)

*

and
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By inspection, sinh f is a homogeneous solution of (6.32). Thus ^ is of the form

^ = (71 sinh f + sinh (6.35)

where

(1 + i/3 sech2 f)^* = C2 csch2 f. (6.36)

The sinh f solution is a null stress solution; hence we may set C\ = 0. The complex

constant C2 may be directly related to the net axial torque and its geometric dislocational

analogue.

Returning to (6.20) and (6.21), we have particular solutions of the form

<rv = 2B1R~1 cosh f, r„ = 2B^R'1 cosh f (6.37)

plus homogeneous solutions which satisfy

[e(d2/df - 1) - i](rh + i{A/D)l/\h) = 0. (6.38)

This equation is simpler than the corresponding two real-valued equations (for different

variables) one obtains by specializing Reissner's equations [18], [21], which, as they

stand, are neither constant coefficient nor can be combined into a single complex equa-

tion. However this apparent discrepancy is resolved by noting that both sets of homo-

geneous equations are of the boundary layer type, so that the underlined term in (6.38)

and the analogous type of term in Reissner's equations make a uniformly small con-

tribution of relative order OQi/R) to the solutions, and hence may be neglected.

Now consider stress distributions proportional to sin 9. Again, it is not difficult to

show that <j> and y must be of the form

<f> = B36 sin 6 + /(f) cos 6, (6.39)

7 = Bt6 sin 6 + g(£) cos 6. (6.40)

The constants B3 and Z?4 can be related to the net shear force over any circular edge and

its geometric, dislocational analogue. Inserting (6.39) and (6.40) into (6.22) and (6.23)

and setting

d = s(f) sin 6, r = <(f) sin 6, (6.41), (6.42)

we have

f" + 2Dt' + (D/R)(l - n) sech2 ffo" - 2g' tanh f) = 2B3 , (6.43)

g" - 2As' - (A/R)(l + v) sech2 f(/" - 2/'tanh f) = 2B4 . (6.44)

These equations may be immediately integrated once:

/' + 2Dt + (D/R){ 1 - n)g' sech2 f = 2B3f + B5 , (6.45)

g' - 2As - (A/R)(l + v)j' sech2 f = 2+ B6 . (6.46)

The constants Br, and BR may be related to the net moment acting over any circular

edge and its geometric, dislocational analogue. Solving these two equations algebraically

for /' and g', inserting the results along with (6.41) and (6.42) into (6.20) and (6.21),

and neglecting terms of order h2/R2 compared to unity in the final equations, we get

Rs = -D(t" - 40 - 4B3r ~ 2B5 + 2(D/R)(1 - m) sech2 f(2B4f + Bt), (6.47)
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Rt = A(s" - 4s) - 4- 2B, - 2(A/R)(1 + v) sech2 f(2B3£ + B,). (6.48)

The homogeneous form of (6.47) and (6.48), which can be conveniently combined into

the single equation

[e(cf-/d2r - 4) - i](th + i(A/D)1/2sh) = 0, (6.49)

is somewhat simpler than the corresponding two real homogeneous characteristic equa-

tions (for different variables) that follow upon specializing Wan's equations ((5.1) and

(5.2) in [20]) to catenoidal shells. However, as with the case of axisymmetric stresses, we

resolve this discrepency by observing that both our Eq. (6.49) and Wan's are of the

boundary layer type so that the underlined term in (6.49) and the analogous terms in

(5.1) and (5.2) of [20] can be neglected, bringing the two results into agreement.

7. Helicoidal shells. In a right-handed cartesian reference frame with base vectors

i, j and k, the equation of a helicoid can be specified by

x = R (sinh f cos 6i + sinh f sinh 8j + 6k). (7.1)

(Here, we follow Koiter [14] and use f instead of r = R sinh f as one of the surface co-

ordinates. This choice seem to condense considerably a number of the equations which

follow.) With d1 = f and 62 = 9, the components of the metric and curvature tensors

become

"l 0"
[a„j] = R2 cosh2 f

[^atf] = ~R

0 1
(7.2)

(7.3)
o ll

.1 oj'

Let

St = Su(aai/on)1/a, etc., (7.4)

denote the physical components of S"p, and let primes and dots denote differentiation

with respect to f and 6 respectively. The four equations implied by (4.8) take the form

RSt = —F' tanh f + F sech2 f + F" + D(T' + T tanh f)-, (7.5)

RStt = (F' + F tanh f)" + D(T' tanh f — T"), (7.6)

RSh = —(F' + F tanh f)' - D(T" + T' tanh f), (7.7)

RSe = ~(F" + F' tanh f + F sech2 f) + D(T' + T tanh f)*. (7.8)

By use of the static-geometric analogy, expressions for Te , etc., may be immediately

written down, if needed.

The operators V2 — 2K, L and W read

fl2(V2 - 2K)F = sech2 f(F" + F" + F sech2 f), (7.9)

RL(F) = —F" - IF' tanh f + F", (7.10)

RW(F) = —2(F' + F tanh f)'. (7.11)

It is convenient to introduce the change of variables

(F, G, S, T) = (<p, y, a, r) sech f (7.12)
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under which (7.5)-(7.11) go into

RS[ = sech —<j>' tanh f 4- <j> H~ <t> ~f~ Dt ), (7.13)

RS{e = sech f[$'- + D(r'tanh f — t tanh2 f — t'")], (7.14)

72*S9f = —sech f[<£'- + Z)(r" — r' tanh f — r sech2 f)], (7.15)

72<Ss = —sech f(<£" — <t>' tanh f — Dt''), (7.16)

i?2 cosh f(V2 — 27v)(^sech f) = sech2 — 2<£'tanh f + <£" -f $) ~ ^

= sech2 )(</>),

72 cosh fL($ sech f) = -(<£" - <j> - <£") ^ lg^

= -£(0),

i2 cosh fTF(^sech f) = —2<f>''. (7.19)

The basic, reduced Eqs. (5.3)-(5.6) now read

Ra = — £(<£) + 2Dr'", (7.20)

fir = -£(7) - 2.4a'', (7.21)

2</>'• + D£(r) - (Z)//2)(l - a) sech2 f£>(y) = 0, (7.22)

2T'" - 4£(ff) + (A/B)(l + v) sech2 f £>(<£) = 0. (7.23)

By differential elimination of o- and r, (7.20)-(7.23) can be reduced to the following

two coupled equations for <j> and 7:

2[0 - (1 + v)e2 sech2 fjDfo)]'" - (D/R)[W" + £*(7) + (1 - y) sech2 fSD(y)] = 0,

(7.24)

2[7 - (1 - n)e2 sech2 rp(7)y + (A/R)[4<t>"" + £2(0) + (1 + x) sech2 fSDfo)] = 0.

(7.25)

As with the catenoidal shell, the second (underlined) terms in each of the first brackets

in (7.24) and (7.25) are 0(h2/L2) compared to the first terms in each of these brackets,

so that we should be able to replace these equations by the simpler ones

2*'- - (D/R)W" + £2(y) + (1 - m) sech2 fSD(7)] = 0, (7.26)

27'' + (A/R)W~ + £2(4,) + (1 + y) sech2 fSDfo)] = 0. (7.27)
/

It is obvious, because of the presence of the factors (1 — n) and (1 + v), that (7.26)

and (7.27) cannot be combined into a single complex equation.

Shallow shell theory. If f 1, the helicoidal shell becomes shallow with respect to

the plane of the base vectors i and j. Within the range of validity of shallow shell theory,

we may set sech2 f = 0 in (7.26) and (7.27). The simplified equations so obtained may be

combined into the single equation

e(<A"" + 2*"" + f" - 2\p" + 2\p" + + 2 if = 0 (7.28)
where

i = y + i(A/D)l/2<f>. (7.29)
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It is not difficult to verify that the characteristic equation (7.28) agrees with that

obtained directly from shallow shell theory using polar coordinates (r, 0), provided

one sets r = § exp(f).

Axisymmetric and simple sinusoidal stress states. Helicoidal shells, like shells of

revolution, admit special classes of deformation in which the resulting states of stress

and strain are either asymmetric or proportional to sin 6 or cos 6. Furthermore, in the

axisymmetric case, overall equilibrium and compatibility conditions imply the existence

of first and second integrals of each of the resulting ordinary differential equations.

However, Professor Wan has pointed out (in a private communication) that in the

sinusoidal case these conditions imply the existence of only a first integral of each of the

resulting ordinary differential equations.

Axisymmetric stress problems in helicoidal shells have been extensively studied by

Reissner and his students [22]—[27]. Our equations lead to a second-order differential

equation which agrees exactly with that obtained by Cohen [28], Reissner [25], and

others. Wan [29], [30], [31] has considered several other problems which produce simple

sinusoidal stress distributions, but, except for shallow shells of revolution, he has not

derived the reduced governing differential equations. We show that such problems may

be reduced to the solution of a coupled set of third-order differential equations.

For axisymmetric stresses, it is not difficult to show that 4> and y must be of the form

<£ = Ejfl sinh £ + $(f) (7.30)

y = -B30 sinh f + r(f). (7.31)

The constants Bt and B2 can be related, respectively, to the net axial force along an

edge f = const, and its geometric analogue. Inserting (7.30) and (7.31) into (7.22)

and (7.23) and using (7.20) and (7.21) to express <r and r in terms to <f> and y, we obtain

(D/R)[T"" - 2T" + T + (1 - m) sech2 f(r" - 2r'tanh f + r)] = 25, cosh f

(7.32)

(A/R)[&"' - 2$" + $ + (1 + v) sech2 f($" - 2$' tanh f + $)] = -2B, cosh f.

(7.33)

Because these equations are uncoupled and of identical form, it is sufficient to consider

just the first. By inspection sinh f is a homogeneous solution of (7.32). Hence the general

solution of this equation is of the form

r = C, sinh t + sinh f J c/f. (7.34)

Since sinh f is a null-stress solution, we can set C, = 0. Substituting this expression

into (7.32), we obtain an equation for r* which may be expressed as a total differential.

Integrating this, we obtain, finally, the following second-order differential equation for :

(D/R)[Y^ sinh2 f + 2r; sinh f cosh f - 2T* + (1 - /x)^ tanh2 f]

= B1 cosh2 f + B3 . (7.35)

The constant B3 may be related to a combination of the net axial force and the net

torque per unit winding acting on an edge f = const. [25]. This equation may be shown

to agree with Eq. (26) of [25]-providing that in the latter equation we use Eq. (34) of [25]

to express /3r in terms of ^ and then set r = R sinh f and \p — tanh f J df.
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For stress distribution proportional to sin 9 or cos 9, it is not difficult to show that 4>

and y must be of the form

4> = B56 cos 6 + /(f) sin 9, (7.36)

7 = Bs9 sin 9 + g(X) cos 6. (7.37)

The constants I>6 and Bs can be related, respectively, to the net moment across an

edge 6 = const, and its geometric analogue [29]. Inserting (7.36) and (7.37) into (7.26)

and (7.27), we find that the resulting equations can be written as total differentials.

(This is also true of (7.24) and (7.25) with the underlined terms retained.) Integrating

once we obtain the following two coupled third-order equations for / and g:

2/ - (D/R)[g"' - 4g' + (1 - M)<7'sech2 f] = 2(D/R)(1 - »)B5 tanh f + B7 , (7.38)

-2g + (A/RW" - 4/' + (1 + v)j' sech2 f] = 2{A/R)(1 + v)Bt tanh f + Bs , (7.39)

where B7 and Bs are arbitrary constants of integration.

Finally, it can be shown that stress distributions of the type

a = s(f)0 cos 9, t = t(£)6 sin 9 (7.40), (7.41)

lead to a coupled set of fourth-order equations, which again can each be integrated once.

Stress distributions of this type arise, for example, in the beamlike bending of a helicoidal

shell subject to end shears and moments. Wan has recently considered such problems

for shallow helicoidal shells [32],
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