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1. Introduction. In addition to their mathematical interest, differential equations

have long been a valuable tool for physicists and engineers. Mathematically, a typical

problem in differential equations is composed of an operator L, a forcing function / and

auxiliary conditions. In recent years it has been found useful to study the solution of

a differential equation when one of the three components of the problem is random.

The following remarks may suggest why this is beneficial. Essentially all of the known

quantities in the operator L are determined through physical measurements; therefore,

a certain amount of random error is unavoidably introduced by imperfect measuring

instruments. Sometimes particular quantities in the problem are assumed to be homo-

geneous, but since this is rarely the case physically, a random error is again incurred.

Even in cases where the nonhomogeneities are completely specified, the complete formu-

lation of the problem may be too complicated to solve mathematically; however, by

considering an "average value" for this nonhomogeneity we may be able to obtain an

"average" solution which is related to the solution of the desired problem. Therefore,

for several reasons a study of stochastic differential equations may aid in understanding

some physical problems better.

In ordinary differential equations an extensive literature exists for stochastic initial

value problems, as can be verified, for example, by considering Middleton [13] and his

bibliography. On the other hand, a very limited amount of work has been done in sto-

chastic boundary value problems. Even though many results from random initial value

problems are applicable to random boundary value problems, the latter often raise

questions which are unanswered by a study of the former. Boyce [5], [6], [7], Goodwin [9]

and Haines [10], [11] have studied many properties of random eigenvalues and random

eigenfunctions of a boundary value problem by a variety of techniques. Bharucha-

Reid [4] and others have proved the existence and uniqueness of solutions to stochastic

boundary value problems by using arguments from functional analysis and measure

theory.

Let us consider the Sturm-Liouville problem

Ly(x) = -(p(x)y'(x))' + q(x)y(x) = ](x),

2/(0) - ay'(0) = 0, (1)

   2/(1) + WO) = o.
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If any of the quantities p(x), q(x), j(x), a and b, are random, then the solution y(x) is

also a random process and can only be described in a statistical sense. In this paper we

will consider only the case when j(x) is a random process. Because this forcing function

j(x) is a random function, we can give only its statistical properties (such as its mean

and covariance) in an attempt to describe it. Of course, when the process is known to be

normal (Gaussian), the mean and the covariance completely determine the process.

Frequently, one assumes a process is normal because of convenience and because such

an assumption is not entirely unreasonable physically. Even if no assumption is made

about a normal distribution for the process in question, discussions are frequently

limited to the first two moments. We shall be primarily concerned with studying the

variation of the covariance of the solution of problem (1) when the coefficient q{x)

changes. The covariance of the random function / is defined at points and x2 in I =

[0, 1] as
/co /»co

J t1t2 dFXl .,,(^1 , t2)

where ( ) denotes ensemble average or expectation and where

, k) = probability {j{xx) < h , j(x2) < Q.

Thus, y(x), the solution of problem (1), has covariance given by

(y(x1)y(x2)) = [ [ G{xi , z,)G{x2 , z2) (f(z,)j(z2)) dz\ dz2 (2)

where G(x, z) is the Green's function of problem (1). We assume throughout this paper

that the covariance of j(x) is measurable and is bounded almost everywhere in 12; i.e.,

(f(®.)/(®.)) e L-(iy.
We shall show that under suitable restrictions the covariance of the solution of

problem (1) is monotonically nonincreasing as a function of the coefficient q(x); i.e.,

as q(x) increases from g,(x) to q2(x) with qt(x) < q2(x) for alia; £ I, (y(x1)y(x2)) for

q(x) = q2(x) is less than or equal to (y(xl)y(x2)) for q(x) = q,(x). This proof relies heavily

on the Neumann expansion theorem for linear operators and on oscillation theorems.

We shall examine not only coefficients q(x) which are nonnegative but also a re-

stricted class of negative q(x)'s. We are first forced to determine restrictions on q(x) < 0

which render the Green's function positive. Although papers by Aronszajn and Smith [1],

Pak [14] and others have dealt with this question from an existence viewpoint, we pro-

vide quantitative bounds on q(x). Since the Green's function is always nonnegative if

q(x) > 0, these restrictions will not be needed when q(x) > 0. Some of the lemmas ap-

pearing in Sec. 2 are special cases of more general results obtained in oscillation theorems

and maximum principles as given in Swanson [16] and in Protter and Weinberger [15].

In order to make this paper more nearly self-contained, we have given proofs of these

results rather than citations.

2. The positive Green's function. When q(x) is negative, we may feel that q(x)

will have to be limited in a manner that will exclude all eigenvalues of the homo-

geneous problem corresponding to (1). But other than this limitation it is hard to antici-

pate physically what restrictions must be placed on q(x) in order to be assured that the

covariance of the solution is monotonic in q(x), much less in what direction the mono-

tone property exists. To help guide us toward the right direction, we shall first consider

a simple example and then try to generalize our result.
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Let u{x) and v(x) be the solutions of

-u"(x) = f(x), u( 0) = 0 = w(l) (3)

and

— v"(x) — v(x) = f(x), y(0) = 0 = y(l) (4)

respectively. Then

<p(xx)v(x2)) - (u{xl)u{x2))

= [ [ (G(x! , 2i)G(^2 , Z2) - H(x1 , Zi)H(x2 , z2)) * (jizjfizt)) dzx dz2 (5)
Jo ^0

where G(x, z) is the Green's function associated with problem (4) and II(x, z) is the

Green's function associated with problem (3). Thus we see that

{v{xx)v(x2)) — (uixjufa)) > 0

if G(x, z) > H(x, z) > 0 and if we consider only forcing functions with nonnegative

covariances. Now

G(x, z) = Jsin (x) sin (1 — r)/sin (1), if 0 < x < z,

[sin (z) sin (1 — ^)/sin (1), if z < x < 1

and

II(x, z) = \x(l — z), if 0 < x < z,

But for 0 < x < z

lz(l — x), if z < x < 1.

sin (x) sin (1 — z)

x 1 — z

(6)

(7)

is a monotonically decreasing function of x for fixed z since 0 < x < 1. Hence,

sin (x) sin (1 — z) . sin (z) sin (1 — z) . . /1X
—T ^ , —i—, > sin (1);

x 1 — z z i — z

therefore,

Gix, z) = sin (:r) sin (1 — z)/sin (1) > x{\ — z) = H(x, z).

Similarly, G(x, z) > II (x, z) for z < x < 1. Thus we see that when problems (3) and (4)

are in the form of problem (1), an increase in q(x) decreases the covariance of the solution.

As in this example, we consider problem (1) when q (x) is nonpositive in this section

and in Sec. 3, and we define r(x) = —q(x). In trying to describe (yixjyixi)), we look

initially at the Green's function of the problem. Under the restrictions

p(x) > 0 in I, p(x) E Cm(I), (g)

r{x) >0 in 7 and r{x) ^0 if a = b — <», r(x)E.C(I),

we wish to establish the positivity of the Green's function of problem (1) or at least

determine what conditions can be imposed on r(x) to guarantee a positive Green's



414 WILLIAM B. DAY

function. We proceed to this goal via a sequence of lemmas. Throughout this paper we

shall use the following notation:

M — maxp(x), K = min p(x)
.<=/ *er (9)

R = maxr(x), Q = max g(x).
x ei xei

Because all of the following lemmas contain similar results either for the endpoint

x = 0 or for the endpoint x = 1, we shall give a proof at only one endpoint and merely

state the result for the other endpoint.

Lemma 1. If R < K, 0 < r0 < 1, restrictions (S) are satisfied and u(x) is the solution

of the problem

— (p(x)y'(x))' ~ r0r(x)u(x) = 0 (10)

w(0) - 0, w'(0) = 1, (11)

then u'{x) > 0 in I. If (11) is replaced by

«(1) = 0, tt'(l) = 1,

then u'{x) > 0 in I.

Proof. Since R/K < 1 < tt2, u{x) cannot oscillate in I according to Ince [12,

p. 227]; hence, u(x) > 0 in I. Now (p(x)u'(x))' = —r0r{x)u{x) < 0. Integrating from 0

to x, we have

f (p(x)u'{x))' dx = p(x)u'(x) — p(0)u'(0) < 0
Jo

or u'(x) < p(0)/p(x) < p(0)/K. Integrating again from 0 to a; we get

[ u'(x) dx = u(x) — u(0) < p(0)/K < p(0)/R.
^ 0

Therefore, max u(x) < p(0)/R. But
x€7

(j>(x)u'(x))' = — r0r(x)u(x) > — i?(max u(x)).
x£I

Thus,

u'(x) > (p(0) — 72(max u(x))x)/p(x) > 0.

Lemma 2. If R < K, restrictions (8) are fulfilled and u(x) satisfies

Lu{x) = — (p(x)u'(x))' — r{x)u{x) — 0 (12)

«(1) = c^0, u'( 1) = 0, (13)

then u(x) always has the same sign as c throughout I. Furthermore, u'{x) always has the

same sign as c in I. If (13) is replaced by

u(0) = c 9^ 0, w'(0) = 0,

then u(x) always has the same sign as c, but u'(x) has the opposite sign to c throughout I.



A MONOTONE PROPERTY OF THE SOLUTION 415

Proof. Suppose w(z) is not always of the same sign as c. Then u(a) = 0 for some

« G [0, 1)- Hence, u(z) is a nontrivial solution to

Lu(z) = 0, w(ffl) = 0 = u'{ 1),

which is equivalent to

— (jp{x)u'(x))' — (1 — a)2r(x)u(x) — 0 — Lau(x)

tt(0) = 0, «'(1) = 0 (14)

under the transformation x = (z — a)/{\ — a). However, if u(x) satisfies problem (14),

then so does ku(x) for any constant k. In particular, with k = 1/V(0), u(x)/u'(0) does.

Note that w'(0) is not zero since then

Lau(x) = 0, u( 0) = 0 = u'( 0),

which implies that u{x) is identically zero. But this contradicts u( 1) = c ^ 0. Now let

v(x) = u(x)/u'(0). Then

Lav(x) = 0, d(0) = 0, y'(0) = 1.

By Lemma 1, v'(x) > 0 in I, in particular v'(\) > 0. But this contradicts v'(l) = u'(l)/

u'(0) = 0. Thus m(z) is never zero in I and always has the same sign as c.

If we integrate (p(x)u'(x))' = —r(x)u{x) from x to 1, we have

J (p(x)u'(x))' dx = p(l)w'(l) — p(x)u'(x) = —u'(x)p(x) — J (—r(x)u(x)) dx.

Thus,

u'(x) = p~\x) J r(x)u(x) dx > 0, if c > 0,

<0, if c < 0.

Lemma 3. Let u{x) satisfy

Lu(x) = 0, (15)

u(0) = 0, u'(0) = 1. (16)

If R < K and restrictions (8) are satisfied, then

u(x) > - R/K)x

in I. If (16) is replaced by

u(l) = 0, «'(1) = 1,

then

tt(x) < (~p(l)/M)(l - R/K)( 1 - x).

Proof. Since u(x) is nonoscillatory in I, (p(x)u'(x))' = —r(x)u{x) < 0. Integration

from 0 to x yields

f (p(x)u'(x))' dx = p(x)u'(x) — p(0)u'(0) < 0.
J 0
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Thus, u'(x) < p(0)/p(x) < p(Q)/K. Again integrating from 0 to a: gives max u(x) <
»s r

p(0)/K. But

(p(x)u'(x))' = —r(x)u(x) > — Rp(0)/K.

Integrating this inequality between 0 and x yields

[ (p(x)u'(x))' eta: = p{x)u'(x) — p(0)u'(0) > —Rp(0)/K.
Jo

Thus,

u'(*) > p(0)(l - R/K)/p(x) > p(0)(1 - R/K)/M.

Again if we integrate from 0 to a;, we have

«(®) - u{0) = m(x) > p(0)(l - R/K)x/M.

Hence, u(x) > p(0)(l — R/K)x/M.

Corollary 1. If R < K and restrictions (8) are satisfied, then the solution of

Lu(x) = 0 (17)

w(0) = a, w'(0) = 1 (18)

is bounded below by p(0)(l — R/K)x/M if a > 0. If (18) is replaced by

w(l) = - b, tt'(l) = 1,

then u(x) is bounded above by —p(l)(l — R/K){\ — x)/M if b > 0.

Proof. Let us think of the solution u{x) of problem (17)—(18) as v(x) + aw(x)

where v(x) and w(x) satisfy

Lv(x) = 0, i>(0) = 0, v'(0) = 1 (19)

and

Lw{x) = 0, w{ 0) = 1, w'(0) — 0 (20)

respectively. Then v(x) > 0 by Ince's [12] oscillation theorem, and w(x) > 0 by Lemma 2.

Thus,

u(x) = v(x) + aw(x) > v(x) > p(0)(l — R/K)x/M

by Lemma 3. Hence, u(x) > p(0)(1 — R/K)x/M.

In our formula for Green's function

= J yi{x)y2{z)/-p{x)W{yl , y2)(x), if 0 < x < z,

{ y1(z)y2(x)/-p(x)W(y1 , y2)(x), if z < x < 1,

we require that yi(x) must satisfy

Ly(x) = 0, 2/(0) - ay'{0) = 0 (21)

or equivalently

Ly(x) = 0, 2/(0) = a, y'( 0) = 1 (22)

Gix, z)
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and that y2 (x) must satisfy

Ly(x) = 0, 2/(1) + by'{ 1) = 0 (23)

or equivalently

Lyix) = 0, 2/(1) = -b, y'{ 1) = 1. (24)

We can think of y2(x) as the sum v(x) + bw(x) where

Lv{x) = 0, w(l) = 0, t/(l) = 1 (25)

and

Lw{x) = 0, w( 1) = — 1, w'(l) = 0. (26)

Ince [12] shows that R/K < tt2 implies v(x) < 0 in I. Lemma 2 shows that R/K < 1

implies w(x) < 0 in I. Therefore, if R/K < 1, y2{x) < 0 in I. Similarly, we have Vi{x) > 0

in I as shown in Corollary 1. Hence, G(x, z) always has the same sign as lF(yi , y2) (x)

since p(x) > 0 in I. But we know that p(x)W(yi , y2)(x) is a constant. Let us "evaluate"

Tp{x)W{yl , y2){x) at x = 1. Thus,

W(l) = Vi(l) + by[( 1). (27)

We want to retain a positive Green's function; therefore, we now find what conditions

on r(x) will guarantee this.

Now with yi(x) = y{x)

(p(x)t/(x))' = -r(x)y{x) < 0. (28)

Upon integrating (28) from 0 to x, we have p(x)y'(x) — p(0)y'(0) < 0. Thus,

y'(x) < p(0)/p(x) < p(0)/K. (29)

Again we integrate from 0 to x and get

y(x) < a + p(0)/K. (30)

Hence,

max yi(x) < a + p(0)/K. (31)
xei

But (p(x)y'(x))' = —r(x)y{x) > —R{a + p(0)/K), which gives p(x)y'{x) — p(0)y'(0) >

— R(a + p(0)/K) when integrated from 0 to x. Thus,

y[{x) > {p{0) - R(a + p(0)/K))/p{x). (32)

But Corollary 1 shows that yt(x) > p(0)(l — R/K)x/M. Therefore, in order to obtain

y^ (1) + by [(I) > 0, we can require

p(0)(l - R/K)/M + b(p(0) - R(a + p(0)/K))/p(l) > 0

p . r>u) =  Kp(0)(p(l) + bM) . .

p(0)p(l) + abMK + bMpd0) - '

But we can find a similar cesult for

W(0) = ay'M - yM (34)
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since we could also have "evaluated" W{yt , y2) (x) at 0. If W(0) > 0, then our Green's

function is still nonnegative. In a manner completely analogous to that which produced

result (33), we can obtain

— b — p(l)/K < min y2(x) (35)
•€;

and

(p(l) - R(b + p(\)/K))/p(x) < y'2(x). (36)

Thus, requiring

P ^ /?<2) gp(l)(p(0) + aM) < K
p(0)p(l) + abMK + aMp(l) - ^ '

forces W(0) to be positive.

Consequently, if R is less than either 7?!1> or R(2) (not the minimum), then G(x, z)

will be nonnegative for all x and z in I. We summarize our results with this theorem.

Theorem 1. If conditions (8) are satisfied, the Green's junction of problem (1) with

r(x) > 0 is nonnegative for all x and z in I provided R < max (R'!), R<2)) where R (I)

is given in (33) and Rm is given in (37).

We present the next example to show that if R > max (Rll), Rm), then the Green's

function is not necessarily positive throughout the unit square. Let

Then

Thus,

-y"(x) - 16y(x) = j(x), y(0) = 0 = y( 1).

G(x, z) = jsin (4x) sin (4(1 — z))/{4 sin (4)), if 0 < x < z,

[sin (4z) sin (4(1 — x))/(4 sin (4)), if z < x < 1.

(?(.5, .5) = sin (2) sin (2)/(4 sin (4)) < 0.

But, of course., R = l&>l=K = fia> = R{2).

3. The monotonicity of <y(x1)y(x2)> with q(x)<0. Let

Lxy(x) = —(p(x)y'(x))' - r,{x)y(x) = /(z),

2/(0) - ay'(0) = 0 = y( 1) + by'(l) (38)

and

L2u(x) = —(p(x)u'(x))' — r2{x)u(x) = j(x),

«(0) - cra'(O) = 0 = «(1) + bu'(l). (39)

We want to investigate the relationship of the covariance of the solution y(x) of problem

(38) and the covariance of the solution u(x) of problem (39) where f(x) is a random

function with nonnegative covariance and rt(x) > r2(x) > 0 for all x in I.

For the inverse operators L71 and 1, we have

y(x) = L~lj(x) (40)
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and

u(x) = (41)

so that

(y(x1)y(x2)) = (Lr,(x1))(L71(x2))(/(x1)/(x2))

and

(u(xi)u(x2)) = (-Lj'(x1))(l'j1(a:2))(/(a;1)/(x2))

since L^1 and Lj1 are linear. But

Lr1 = (Li)'1 = (Lj - r2{x) + r2(x))~1

= (L2 - (rj(x) - r2(x)))_I (42)

= L;\I - (r.(x) - r2(x))L;ri.

Since the operator (r,(x) — r2(x))L~l maps L°(/) into L"(I) and is complete under the

sup norm (||»(:c)|| = sup |»(x)|, for v(x) £ L~(I)), the Neuman expansion gives us

LI1 = L~A t (r,(x) - r2(x)T(L-2y)
\ n-0 '

if

Il(r,(®) - r2{x))L?\\ < 1. (43)

Furthermore,

(yMyix*)) = (L^ixJXL^ixMMfM)

= (L2'(x1))(L2l(x2))(X (nfe) - r2(x1))m(i21(^i))m)
\m-0 '

* (g (nfe) - T2{x2))\Ll\x2))^]{x,)]{x2)) (44)

= L21(x1)L2\x2)(i(x1)f(x2))

+ X) (ri&i) ~ r2(x1))m(r1(x2) - r2(z2))n
m + n>0

* (L^ix^iL^ixjrXKxJKxJ).

Thus,

{yix^yfa)) = (ufx^ufa)) + X) (rife) ~ r2(a;1))m(r1(a;2) - r20r2))n
m + n>0

* (L21(xl))m+1(L2l(x2))n+1(f(x1)j(x2)). (45)

Therefore,

(jj(xi)y(x2)) - (uOrOufo)) > 0

if rt(x) > r2(x) for all x in I and if
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(L21(xl))m+1(L21(x2)y+1(j(x1)f(x2)) = T T ••• f ,*iMxul ,xu2) •••
J o J 0 Jo

* G(xUm , xUm+i)G(x2 , x2,1)G(x2,1 , x2,2) ■ ■ • ^

* G(x2,n , x2,„+i)(f(x1 ,m+1)f(x2,n+1))

* dx1A ■■ ■ dxi.„+1 dx2,i • • • dx2,n+1

> 0

where G(x, z) is the Green's function corresponding to problem (39). But G(x, z) is non-

negative under the restrictions of Theorem 1. Consequently, we have proved the follow-

ing theorem.

Theorem 2. Under restrictions (8), the covariance of the solution of problem•, (1),

acted upon by a random function f with nonnegative covariance, is monotone nondecreasing

as r(x) increases from r2{x) to rx(x) provided

(1) r^x) > r2(x) > 0,

(2) ||r,(a-)11 < max (R(1>, i?(2'), for z = 1,2, (47)

(3) ||(ri(x) — r2(x))L~2l(x)\\ < 1 for all x £ I.

We want to see how large our change in r(x) may be and still retain the monotone

property of the covariance of the solution. We know that if we take our initial r(x) as

r0(x) and change to r„(x) with r„(x) > r0(x), then by condition (47.2)

Rn = ||r„(x)|[ < max (R(1), R<2)). (48)

Condition (47.3) imposes the only restriction on ||r„(a:) — r0(aO||. Therefore, we want

to change from r0(x) to rjx) through a sequence of functions; viz., r0(x) to r^x), r^x) to

r2(x), • • • , r„_j(x) to rn(x) so that

Ti{x) < ri+1(x), for i = 0, 1, • • • , n — 1

and

||r,(x) - r,_,(x)|| < min (B(1)(r„), B(2)(rn)) (49)

where 5U)(rJ and B<2)(r„) are the reciprocals of the upper bounds of G(x, z; r„). Indeed,

\rt \I - (vM/K + P(0)y[(0)K)(-y2(l)/K + y(X)y'2{\) / K) •
Z' r ~ p(0)(1 - RJK)/M + b(p(0) - Rn(a + p(0)/K))/p(l)

= 1/Bm(r„)

and

,rr M < (?/,(0)/g + p(0)ymK)(-y2(l)/K + y{\)y'2{l)/K)
' Ji S p(l)(l - RJK)/M + a(p( 1) - Rn(b + p(l)/tf))/p(0)

= l/Bi2\r„).

If condition (49) is satisfied and if L% represents the operator L of problem (1) with

~-q(x) = r{(x) for i = 0, 1, • • • , n, then

||(r,(x) - ri_1(a:))L71(a:)||
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will be bounded above either by

Ky(O)p(l) + bKMpj0) - Rjp(0)p(l) + abMK + bMp(0))

or by

Kp(0)p(l) + bKMp(0) - 2?,(p(0)p(l) + abMK + bMp(0)) ~ l'

Kp(0)pq) + aKMp(Y) - Rn(p(0)v(l) + abMK + aMp( 1))
Kp(0)p(l) + aKMp{ 1) - ^,(^(0)^(1) + abMK + aMp( 1)) ~ '

since 22. = ||»\(®)|| < R„ . Therefore, even though |[r0(x) — rn(x)|| may be too large for

Theorem 2 to be applicable, we can still obtain the result of this theorem by finding

a sequence {r,(x) }<!, with the properties

(1) ||r,(x) - r,_i(z)|| < £'"(?•„), for j = 1, 2 and i = 1, 2, • • • , n,

(2) r,_i(x) < Tiix), for i = 1, 2, • • • , n, (50)

(3) R{ < K, for i = 0, 1, • • • , n.

Indeed,

r{{x) = Ti-^x) + (rn(x) - ri.1(x))B(rn)/Rn (51)

will be such a sequence if B(rn) = min (BU)(r„), £><2)()"„)). Thus, repeated application

of Theorem 2 to this sequence yields this theorem without restriction (47.3).

4. The monotonicity of ( y(xl)y(x2) ) with q(x) > 0. We shall extent our mono-

tonicity result to include all continuous functions q{x) > 0 in I. Since an increase in

r(x) corresponds to a decrease in q(x), we anticipate that the relation will be as stated

in the following theorem.

Theorem 3. Under restrictions (8) with q(x) > 0 in I, the covariance of the solution

cf problem (1), acted upon by random function f(x) with nonnegative covariance, is mono-

tonically nonincreasing as q(x) increases from qiix) to q2(x) provided that

l|(<Zi(z) - q2(x))L;\x)\\ < 1 (52)

for all x in I.

Proof. We know that the Green's function for problem (1) is always nonnegative

when q{x) > 0; therefore, we do not have to impose extra restrictions on q(x) to guarantee

a nonnegative Green's function. Mimicking our proof of Theorem 2, we have

{y{xi)y{x2)) = ((.L~l1f(x1))(L~l1f(x2)))

— (Li ~f" q2(.Xi) q2(xij)

* (L;1 + q2(x2) - q2(x2))~1(f(x1)f(x2))

= LzXx^il - {q2{xl) - qiix^LT,1 (x,))'1

* L2\x2){I - (q2(x2) - qi(x2))ir2x{x2)yl

* (i(.x1)f(x2))

= (ufo)^)) + (q.ix,) - qi(xi))m(q2(x2)
m + n> 0

- g1fe))"(L2-1(x1))m+1(LJ1(x3))"+1(/(a:i)/(x2))

(53)
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where q2(x) corresponds to the solution u(x) of L2u{x) — f(x) and q,(x) corresponds to

the solution y(x) of L^yix) = j(x). Therefore, if q2{x) > q^{x) > 0 for all x in I, then

(y(x\)y(x2)) > (u(x,)u(x2)) provided ||(g2(z) — ql(,x))L2\x)\\ < 1 for all x in I. This

proves our theorem.

Again we want to see how small ||g2(z) — q\ (x) j | must be for this theorem to apply.

We write the Green's function of problem (1) in the familiar form

J yi(x)y2(z)/(-p(x)W(y1 , y2){x)), if 0 < x < z,

i yi(z)y2(x)/(-p(x)W(yl , y2)(x)), if z < x < 1

where now yi(x) satisfies

Ly(x) = 0, 2/(0) = a, y'{0) = 1, if 0 < a < 1, (54)

or yi(x) satisfies

Ly(x) = 0, 2/(0) = 1, y'(0) = 1 /a, if 1 < a < , (55)

and where y2{x) satisfies

Ly(x) = 0, y(l) = -b, 2/(1) = 1, if 0 < 6 < 1, (56)

or y2(x) satisfies

Ly(x) = 0, 2/(1) = -!> V'(X) = 1/h> if 1 < ^ < ro- (57)

In the following lemma we shall establish that y^x) is always positive and that y2(x)

is always negative.

Lemma 4. The solution of

Ly(x) = 0 (58)

2/(1) = -c < 0, 2/(1) = d > 0 (59)

is negative in I under restrictions (8). Correspondingly, ij (59) is replaced by

2/(0) = c > 0, 2/(0) = d > 0

then y(x) > 0 in I.

Proof. Suppose y(z) is not always negative. Since 2/(1) < 0, there must be some

a in [0, 1) such that y(a) = 0. Under the transformation x = (z — a)/(1 — a), we have a

nontrivial solution to

— (p(x)y'(x))' + (1 - a)'q(x)y(x) = 0,

2/(0) = 0, 2/(1) = -c.

But 2/i(l) = 2/*(l) dz/dx = (1 — a) d so that

a _ = J° (p(x)y'(x)Yy(x) dx
Jo q(.x)y\x) dx

- p(l)(l - a) d(—c) - Slp(x)(y'(x))2 dx

JJ Q(x)y\x) dx

thus, a contradiction if 0 < a < 1. Hence, y{x) < 0 in 7.
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Again we would like to see whether restriction (52) can be removed from Theorem 3

by means of repeated application of this theorem to a sequence {<?;(£) }?.0 where qa(x)

is q(x) initially and qn(x) is q(x) at the end. Since

||(g,(a;) - g.-i(a:))L71(a:)|| < ||g<(a:) - ^-,0)11 ||G(x, z] qt)\\

where is the operator L of equation (1) with q(x) = q,(x), we see that we need an

upper bound on G(x, z; qt) in order to determine Kg,-(a;) — jj-^a:)!! so that restriction

(52) is fulfilled. Our objective then is to obtain an explicit upper bound for G(x, z) in

terms of Q = max xe,q(x).

We denote this upper bound by D(Q). Let Q, = ||g,(a:)11 and consider D(Q) for

Qo < Q < Qn ■ Let QmttI be that Q G [Q0 , Q«] such that D(Q) is a maximum. Then by

choosing

I kite) ~ 3<-x(«)|| < l/-D(Qm.x),

we have

!!(?<(*) - 9i-i(x))L-\x)\\ < Dm \\qi(x) - q^(x)\\ < 1.

From our expression for Green's function we see that

IG(x, «)| < y1(l)(-y2(0))/(minp(x)W(.y1 , y2)(x)).

This follows because y^x) > 0 in I and because

(p(x)y'1(x))' = q(x)y1(x) > 0

implies p(x)y[(x) > p(0)y[(0) > 0 or y[{x) > 0 in I. Similarly, y2(x) < 0 in

I and y'2{x) > 0 in I.

We proceed to bound ?a(1) above. Let S = M minl6/ p' (x)/p(x). S may be any

finite real number. Consider the solution of the problem

u"(x) + (S/M)u'(x) - (Q/K)u(x) = 0

u( 0) = a, u'{ 0) = 1,

which will be

u(x) = T'1 exp (-Sx/2M)((1 + aS/2M) sinh (Tx) + aT cosh (Tx))

where T = (S2/AM2 + Q/K)1/2. Furthermore, both u(x) and u'(x) are nonnegative

in I. But

u"(x) + (jp'(x)/p(x))u'(x) - (q(x)/p(x))u(x)

= u"(x) + (S/M)u'(x) - (Q/K)u(x)

+ (p'(x)/p(x) — S/M)u'(x) + (Q/K — q(x)/p(x))u(x)

> 0.

Thus, applying Theorem 13, page 26, from Protter and Weinberger [15], u(x) > y,(x)

for all x £ / if Vi(x) satisfies problem (54); i.e., if 0 < a < 1. Hence,

S/i(l) < T'1 exp (—jS/2M)((1 + aS/2M) sinh (T) + aT cosh (T))

if 0 < a < 1. Similarly, if 1 < a < °°, we find that yx(x) is bounded above by
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T~l exp (-Sx/2M)((\/a + S/2M) sinh (Tx) + T cosh (Tx))

= a'1!1'1 exp (—Sx/2M)((l + aS/2M) sinh (Tx) + aT cosh (Tx)).

Thus, for all a

I/i(1) < T~l exp (—S/2M)((l + aS/2M) sinh (T) + aT cosh (T)).

Of course, if 1 < a < m we are able to obtain a smaller upper bound as indicated above.

In an analogous manner we find that

2/2(0) > - T-1 exp (S/2M)((l - bS/2M) sinh (T) + bT cosh (T))

for 0 < b < 1 and

1/2(0) > -T'1 exp (S/2M)((\/b - S/2M) sinh (T) + T cosh (T))

for 1 < b < 00. Thus,

|G(x, z) | < K~lT~\( 1 + aS/2M) sinh (T) + aT cosh (T))

t ((1 - bS/2M) sinh (T) + bT cosh (T))
min W(yx , y2)(x)

We assume that a and b are not both °°, say a ^ °° . Then

v(x)W(yx , y2)(x) = p(l)W(yx , y2)( 1)

2/i(l) 2/2(1)
= p(l)

y[(i) 2/2(1)

> K\yi(i), if 0 < b < 1,

[2/1(1)) if I < b < co.

But (v{x)y[{x))' — q(x)y-i(x) > 0, which yields after integrating from 0 to a;

y[(x) > p(P)yl(0)/p(x) > p(Q)y[(Q)/M = p(0)/M, if 0 < a < 1,

= p(0)/aM, if 1 < a < 00.

After a second such integration, we obtain

2h(x) > 2/i(0) + p(0)y[(0)x/M = |o + p(0)®/Jlf, if 0 < o < 1,

ll + p(0)x/aM, if 1 < a < .

Thus, 2/i(l) > p(0)/M for all a. Hence, for all a and b

|G(x, z) | < K^T'XO. + aS/2M) sinh (T) + aT cosh (T))

* ((1 - bS/2M) sinh (T) + bT cosh (T))

* M/p(0).

If a = b = co, we can obtain a positive lower bound on W(2/1 , 2/2) since /J q(x) dx > 0.

Consequently, we obtain the following theorem.

Theorem 4. Under restrictions (8) with q(x) >0 in I, the covariance oj the solution

of problem (1), acted upon by random Junction / with nonnegative covariance, is monotonically

nonincreasing as q(x) increases jrom qx(x) to q2(x).
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