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Abstract. Comparison theorems for a nonlinear eigenvalue problem as well as a

Lyapunov type of inequality are derived. They are used to establish upper and lower

bounds for various integral functionals associated with real solutions of the nonlinear

boundary value problem y" + p(x)y2n+1 = 0, y(a) = y'(b) = 0, where a < b are real,

n is a positive integer and p is positive and continuous on [a, 6]. Some of the results

are analogues of a distance between zeros problem for the linear case of n = 0.

Characteristic value problems for various nonlinear differential equations have been

studied in recent years; a good bit of work has been done by Nehari, Moore and Moroney,

among others [8], [9], [12], [13]. Much of this work involves the study of oscillation and

nonoscillation of solutions of these differential equations.

The linear characteristic value problem

y" + \p(x)y = 0, y{a) = y'(b) = 0,

where a < b are finite reals and p is real and continuous on [a, b], has been studied for

the behavior of the least positive eigenvalue Xi(p) relative to the "shape" of p on [a, b].

This has been done for other boundary conditions as well as for other positive eigen-

values and this problem is related to the determination of the fundamental frequencies

of oscillation of a vibrating string. See for example Nehari [11], St. Mary [14], Fink [6]

and especially the bibliography in [6] for a background on this problem.

The purpose of this paper is to establish various extensions and analogues of the

linear theory to nonlinear differential equations.

Moore and Nehari [8] consider the nonlinear second-order differential equation

of the form

y" + P(*)y2n+1 = o, (l)

where n is a positive integer and p is positive and continuous on a compact interval

of reals [a, b] with a < b. Along with (1), Moore and Nehari consider the Rayleigh

quotient

J(y) = (fa y'2 dxj+1/ (j* py2*+2 dx (2)
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where the domain of J is

D[J] — \y £ D'[a, b]:y(a) = 0 and y ^ 0 on [a, 6]}

where D'[a, 6] is the set of all continuous real-valued functions having sectionally con-

tinuous derivatives on [o, b].

The following theorem is a portion of Theorem V of [8, p. 44] which deals with the

boundary conditions y(a) = y'(b) = 0:

Theorem (Moore and Nehari). For each pair of finite reals a < b, Eq. (1) has

at least one solution y £ C'[a, 6] which is positive in (a, b) and satisfies the boundary con-

ditions

yip) = y'Q>) = o. (3)

Furthermore this solution satisfies the property that

J(y) < J(u) for each u £ D[J\. (4)

Thus we see that (2) is minimized in D[J] by a nontrivial y £ C2[a, 6] which is a

solution of (1) and (3). Such a solution will be called a Moore-Nehari minimizing function

of (2) for the problem of (1) and (3).

The question of uniqueness of such a minimizing function is not in general answered.

In case the boundary value problem (1) and (3) has a unique nontrivial solution which

is positive in (a, b) we have, of course, uniqueness of the Moore-Nehari minimizing

function.

If for our case we would assume in addition that p is monotone increasing on [a, b],

then a result of Moroney [10] assures us of the desired uniqueness. It would be highly

desirable to have this result under less restriction on p. For our equation (1) together

with (3), Moroney's proof can be modified to provide uniqueness if we assume in addition

that [(x — a)p(x)]' > 0 on [a, &]. On the other hand, Moore and Nehari give an example

of a p where the boundary value problem of (1) together with the boundary conditions

y(a) = y(b) = 0 has two distinct solutions on (a, b).

It may first appear to the reader that the concept of a "Moore-Nehari minimizing

function" is somewhat artificial. Due to the above remarks concerning uniqueness

and certain relations to be established later, it will be shown that some of the most

important results of the paper are independent of the concept.

We are now ready for our first result, which is basically a Lyapunov inequality.

Theorem 1. Let Ai(p) be the least positive value of J(y) in (2) for y £ D[J}. Then

it follows that

(ib - a)n+\(p) J p dx > 1. (5)

Furthermore the inequality is sharp.

Proof. First, if y is any nontrivial solution of the problem (1) and (3), by integrating

(1) after multiplying by y it follows from (3) that

J y'2 dx = J py2n+2 dx. (6)

Consequently we have
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X,(p) < (f' V'2 dxj = (£ py2"+2 dxj (7)

where equality holds if y is a Moore-Nehari minimizing function of (2) for the problem

of (1) and (3). Also, since p(x) > 0 on [a, 6], if y(x) ^ 0 on (a, b\ then we have

\y(x)\ < |2/(6)| for x £ [a,b). (8)

Now assume y is a Moore-Nehari minimizing function of (2) for the problem of

(1) and (3). We have

ab \2n+2
y'dx)

ab \n"*" ^
y'2 dx)

= (b - a)"*\(p) f py2n+2 dx
J a

<(b- a)n+%(p)[y(.b)F+i fpdx
" a

from which (5) holds.

The sharpness can be established by a slight modification of an example found in [5]

which in turn is a modification of an example used to show that the Lyapunov inequality

for linear equations is sharp.

Corollary 1. For all y £ D[J] it follows that

(b - V'2 dxj+1 f* p dx > J' py2"+2 dx. (9)

Corollary 2. If y £ C2[a, 6] is any solution of (1) and (3) which is positive on

(a, b) then we have

(b - a)n+,Q: J pdx > 1 for 1 < i < 4, (10)

where

Qi = f py2n+2 dx, Q2 = [y(&)f+2 [' p dx

(11)

Q3 — f y'2 dx and Qt = (6 — a)[y'(a)]2.
J Q

Proof. As in the case of (9), (10)j and (10)3 are immediate from (8). For (10)2 and

(10)4, under our assumptions, \y\ is increasing and concave on [a, 6] and satisfies y(a) = 0.

Also y satisfies (6), (7) and (8) as well as

\y'(x)\ < 12/'(a) | for x £ (a, b].

Thus (10)2 and (10)4 follow from (10)! and (10)3 respectively.

We next wish to establish comparison theorems for eigenvalues. When p is assumed

to be positive and continuous on the whole real line, Nehari [12] has already established
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various results. In [12], however, the problem is not that of minimizing (2), but one of

minimizing

K(y) = f (y'2 - (n + 1)" V+2) dx, (12)
" a

subject to the condition that the domain of K be D[J] and

f y'2 dx = f py2n+2 dx. (6)
J a J a

(Nehari actually considers a more general equation than (1), but we shall state his

results as applied to our problem.) Nehari establishes the existence of a minimizing

function for (12) which is a solution of (1) and (3) and is positive on (a, 6]. By direct

computation, any minimizing function for (12) is also one for (2) and vice versa. Also

if vi(p) is the least positive value of (12) and \i(p) is the one for (2), then

Xi (p) = [n\n + lKGOr. (13)

We state two theorems of [12, p. 113-115] (again as applied to our problem), the

second being one we shall generalize. For notation we let vi(p; a, b) denote the least

positive value of (12) on [a, 6] when the interval itself is of importance. For simplicity

we assume p satisfies previously mentioned conditions.

Theorem I (Nehari). For reals a' < a < b < b' it follows that

y,(p; a', b') < Vl(p; a, b) (14)

unless a' = a and b' = b.

Theorem II (Nehari). For 0 < Pi(x) < p2(x) on [a, 6] it follows that

Viipi) > Vi(p2). (15)

This second result above has a Sturmian flavor and can be generalized by replacing

the condition 0 < Pi(x) < p2(x) by an integral condition, as is given for the linear

case of n = 0 by Nehari in [11], St. Mary [14] also considers this problem in the linear

case. The proof of the following theorem, and in fact a fair amount of the development

of parts of the whole paper, are adapted from a paper of Fink [6], who uses a Ravleigh

quotient together with a result of Banks [2] to study the behavior of Xi(p) for linear

differential equations.

Theorem 2. Let p1 and p2 be positive and continuous on [a, 6] and suppose

pL dx < p2 dx for each s £ [a, 6]. (16)

Then if Xj(p,) and Xi(p2) are the two corresponding minimum values of (2) for px and p2

respectively, it follows that

Xi(Pi) ^ Xj(p2) (17)

where equality holds if and only if pi(x) = p2(z) on [a, 6].

Proof. Let y^ be a Moore-Nehari minimizing function of (2) for the problem of (1)

and (3) relative to pj . We recall that t/i is positive and concave on (a, b]. Then we have



COMPARISON THEOREMS 395

ww - (/>^r/(frf"4)

" (/.^ / (/. p' ^ d")

> (I yi' dx) / (/t (/^ y, dx) dy

-([vi'dx) /([p,V?"dz)

= Xi(p2).

The second equation above is due to 2/1 increasing to y(a) = 0 and to an integral

equation of Banks [2] where M = [2/i(6)]2"+2 and o-:[0, M] —> [a, b] is defined by

<r(y) = inf {x £ [a, &]:[2/i(z)]2"+2 > y}.

By the continuity of pi and p2 it is clear that the first inequality above becomes

strict if the inequality in (16) is strict for some value of s. This is true whenever (16)

holds and pi ^ p2 on [a, 6] and consequently this implies X^pO > \i(p2)- On the other

hand, if = p2 we obviously have equality.

We have various corollaries of the theorem. Our first corollary is analogous to

Theorem 5 of [14], which in turn goes back to Beesack and Schwarz [4],

Two continuous functions p and q are said to be equimeasurable on a compact interval

[a, 6] if for each real y

m{x G [a, b] : p(x) > y\ = m{x £ [a, b] : q(x) > y),

where m denotes Lebesgue measure. Now for any such continuous function p there

are two continuous functions, p* and p~, which are equimeasurable with p and which

are monotone decreasing and monotone increasing respectively on [a, 6], With p+ and

p~ so defined it can be established that

/b /♦& /*b

p+ dx < J p dx < J p~ for each s £ [a, 6] (18)

and thus wre have

Corollary 1. Let p be positive and continuous on [a, 6] and let p* and p~ be defined

as above. Then we have

X,(p") < Xx(p) < Xa(p+). (19)

As a prehminary to the next corollary we go back to (7) found in the proof of Theorem

1. From this, for two positive continuous functions pi and p2 on an interval [a, 6] we

have

[X](pi)],/n - [X1(p2)],/" + fb(p2- Pdyln+2 dx < fb Pi(y!"+2 - yl"+2) dx, (20)
J a * a

where y1 £ C2[a, 6] is any nontrivial solution of (1) and (3) relative to px and where

y2 is a Moore-Nehari minimizing function of (2) for the problem of (1) and (3) relative

to p2 . Now the integral equation of Banks [2] can again be used to allow us to write
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/b / r>b \

(Pi — Pi)yl"+2 dx= [ (jp2 — Pi) dx) dx,
*>0 \J<r3(i/) /

(21)

where M2 = [y2(b)]2n*2 and a2 : [0, M2] —> [a, b] is defined by

cr2(y) = inf {x £ [a, b] : h/2(z)]2"+2 > y}.

Corollary 2. Let Pi and p2 be as in the theorem with yx and y2 being as described

above. Then it follows that

|t/i(x0)| > \y2(x0)\ for some x0 £ (a, b] (22)

unless yx = y2 on [a, fc] which in turn implies = p2 .

Proof. The conditions on pt and p2 allow us to conclude from (17) and (21) that the

left-hand side of (20) is nonnegative and indeed positive if pj jk p2 . Since Pi is positive^

(22) being false would yield a contradiction to (20) unless p1 = p2 and yx = y2 .

Finally we have a corollary which relates to Theorem 2 as well as the preceding

corollary. This result can be used to place an upper bound on the functional in (10)2

depending on the "behavior" of p in [a, 6],

Corollary 3. Suppose px and p2 are positive and continuous on [a, 6] with

/b f*b

Pt dx and P2(s) = I p2 dx

satisfying

Pi(s) > P2(s) on (a, So) and Px(s) < P2(s) on (s0 , b) (23)

for some s0 £ [a, b]. Also suppose y-L and y2 correspond to px and p2 as described following

(20) and satisfy

\yi(x)\ < \y*(x)\ for all x £ [a, &]. (24)

Then it follows that

/ px dx > / p2 dx. (25)
J a J a

Furthermore, strict inequality holds unless px = p2 on [a, 6].

Proof. The result obviously holds if p, = p2, so assume otherwise. By our assump-

tions, if (25) does not hold in the strict sense we may assume from (23) that s0 = a

and consequently (16) is satisfied. Thus from (17) we have X^p,) > \i(p2). Now (20),

(24) and (21) lead us to a contradiction.

We remark here that the conditions (23) are weaker than the corresponding "one-

crossing" conditions on fi and p2 , namely

Pi(x) > p2{x) on (a, x0) and Piix) < p2{x) on (x0 , b) (23)'

for some x0 £ [a, b].

In order to place other bounds on the functionals in (5) and (10) which are sharper

than previous results for certain classes of functions we shall make comparisons with

solutions of constant coefficient equations.
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If yn is the real solution of the initial-value problem y" + y'n+1 = 0, y(0) = 0,

y'(0) = 1 then we let z„ denote the first positive zero of y'n . It follows from [1] that

= (n + l)1/2("+1> f (1 - v2n+2y
J 0

dv

(27)

= 2~\n + l)~(2n+lwl2"+2)B((2n + 2)~\ 2"1) (26)

= (ft + i),"2»+2)r(l + (2 ft + 2)_1)r(2-1)/r(2_1 + (2 n + 2)_I),

where B and T are the complete beta and gamma functions respectively.

When y is a real solution of the boundary-value problem

y" + Cy2n+2 = 0

y(a) = 0, y'(b) = 0, y(x) ^ 0 on (a, b]

where a < b and C > 0 are reals then

(6 - a)2[y(b)rC = zl(n + 1)""~»,

(Ib - d)2n+2[y'(d)]2"C = z2n'+2, (28)

(b - ar\(C)C = ((ft + 1 )/(ft + 2)TzT2.

Elementary computation yields

(ft + 1) < zl(n + < (ft + 1)t2/4,

(ft +1) < *r2 < W2)2n+2,

while fairly tedious computations with the aid of [1] yields

z2n(n + 1 )"/("+1) < {(ft + 1)/(« + 2)}nz2n"+2. (30)

Also from (26) we see that zn is asymptotic to (n + i)1/(2n+2) as n <».

Barnes [3] uses the concepts of "increasing and decreasing on the average" relative

to the density function when placing various bounds on the frequencies of oscillation

of a vibrating string.

We shall say that a continuous function p : [a, 6] —>• R is monotone increasing

(idecreasing) on the average from the right on [a, b] if

P(«) ̂ bh~s I Vdx (31)

is monotone increasing (decreasing) on [a, 6], We change the phrase "from the right"

to "from the left" when (31) is changed to

™-rhjT>*- <31>'
It follows that if p is continuous and monotone increasing on [a, 6] then it is also

true on the average from the right and the left. As an example we mention that p(x) =

(z — l)2 is monotone increasing on the average from the right, but not from the left

on [0, 3].

The reason for using (31) goes back to conditions (16) in Theorem 2. If we were

to change the boundary conditions (3) to



398 STANLEY B. ELIASON

y'(a) = y(b) = 0 (3)'

we would make changes in (16) and also use (31)' in the following theorem.

Theorem 3. Let p be positive and continuous on [a, b]. Then we have

(b - a)n+1\,(p) f pdx < ((» + 1)/(» + 2Wr2 (32)

ij p is monotone increasing on the average jrom the right on [a, 6], and

(ib - a)m+,X,(p) f pdx > ((» + 1)/(« + 2))V„n+2 (32)'
J a

ij p is monotone decreasing on the average from the right on [a, 6].

Furthermore, equality holds if and only if p is identically a positive constant on [a, b].

Proof. We provide a proof for (32) only.

Let p satisfy the hypothesis and let

C = (6 — a) 1 J p dx.

Then in Theorem 2, p2 = p and Pi = C satisfy (16) and consequently \i(C) > Xx(p)

with equality if and only if p = C. Now by using (28) for computing Xi(C) we obtain

(32) as an easy consequence.

We are now able to sharpen Corollary 2 of Theorem 1 in a similar fashion.

Corollary 1. If y £ C2[a, 6] is any solution of (1) and (3) which is positive on (a, 6]

and if p is monotone decreasing on the average from the right on [a, 6] then

(b - a)n+1Q? f pdx > ((n + 1)/(» + 2))*2r2, (33)
J a

for i = 1, 2, 3, 4 where Qi is defined by (11).

(Ib - a)n+1QJ f pdx < ((n + 1 )/(n + 2)TzT, (34)
J a

If y is a Moore-Nehari minimizing function of (2) for the problem of (1) and (3) then

fori = 1, 3 when p is monotone increasing on the average from the right on [a, b].

The proof of Corollary 2 of Theorem 1 can be easily modified to provide a proof

here. In the case of (34) we need equality in (7) which will be the case for a Moore-

Nehari minimizing function. An interesting question is whether p being monotone

increasing on the average from the right on [a, 6] is sufficient to assure uniqueness of

the solution of (1) and (3) which is positive on (a, b).

We have not yet obtained upper bounds for the functional in (10)2 and (10)4 .

Our next theorem will provide one for (10)2 . First we have a lemma.

Lemma. Let y be a solution of (1) and (3) which is positive on (a, 6]. Then there are

positive constants Cx and C2 satisfying

zl(n + ir/Cn+u[2/'(a)r2"(& - a)"2""2 < C. < C2 < zl"+*[y(b)]-2n(b - a)~2, (35)

and such that when 0 < C < Ci . Then the solution u of (27) satisfies
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0 < y(x) < u(x) on [a, 6] (36)

and when C2 < C it satisfies

0 < u(x) < y(x) on [a, 6], (37)

Discussion oj a proof. It can be shown by a straightforward argument that the

constants Ci and C2 exist. This basically is due to the fact that when x £ (a, 6] is fixed

and u is a positive solution of (27) then u(x) is a decreasing function of C with u(x) —» 0

as C —* °° and u{x) —> « as C —> 0.

The constant C2 is thus the infimum, and in fact the minimum, of the values of C

for which (37) holds, and Cx is the maximum of the values of C for which (36) holds.

It can also be shown that when C is such that the solution u of (27) satisfies the

initial condition

u'(a) = (b — a)"V(&)

then u is dominated by y on [a, 6], This value of C is from (28) the largest constant

in (35).

Similarly when C is such that the solution u of (27) satisfies the terminal condition

u(b) = (b — a)y'(a) then u dominates y on [a, 6]. Again (28) provides the value of the

least constant in (35).

We now state our final result on bounds.

Theorem 4. Let p be positive, continuous and monotone increasing on the average

from the right on [a, 6]. Let y be a corresponding Moore-Nehari minimizing function of (2)

for the problem of (1) and (3). Then it follows that

(b-a)[y(b)F f"pdx<zT+2. (38)
J a

Proof. We are in position to apply the lemma and Corollary 3 of Theorem 2. We

let p2 = p, y2 = y, Pi = C2 (given by the lemma) and yi be the corresponding solution

of (27) on [a, 6], which is denoted by u in (37). Now (37) yields (24), and since p is

monotone increasing on the average from the right on [a, 6] we have in Corollary 3 of

Theorem 2 that

(ib - s)_IP1(s) - (b - s)"1P2(s)

is monotone decreasing on [a, fe]. This is sufficient to establish (23). For on the one hand, if

(b - aY'P^a) - (b - a)~lP2(a) < 0,

then it certainly follows that

(b - sy'P^s) - (6 - s)_IP2(s) < 0 on [a, b),

which implies

Pi(s) < P2(s) on [a, 6]

and s0 = a applies in (23). On the other hand, if

(b - a)_1Pi(a) - (b - a)_1P2(a) > 0,

then
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So = sup {s £ [a, b):(b — g)"1P1(s) — (b — s)-1P2(s) > 0}

will apply in (23) to establish Pj(s) > P2(s) on (a, s0) and Px(s) < P2(s) on (s0 , 6).

Consequently we have

[" pdx < (b - a)C2 < z2nn+2[y(b)]~2n(b - a)'
J a

from which (38) follows.

A similar upper bound for (10)4 does not appear to be as easy to obtain.

By using the lemma again when p is monotone decreasing on the average from the

right on [a, b] we can place a lower bound of z'i(n + l)n/Cn+1) on the functional in (10)4 .

By (30), however, the bounds in (33) are better.

Other authors have results which we may compare with ours. Hooker [7] considers

a more general equation than (1), but his Theorem 3.1 as applied to (1) is given as

Theorem (Hooker). Suppose P* = max {p(x):x £ [a, 6]} and m > 0 satisfies

the condition

P*m2n(b - a)2n+2 = tt2/4. (37)

Then for all p £ (0, m) the solution y„ of the initial value problem

y" + p(x)y2"+1 = 0, (1)

y{a) = 0, y' (a) = n, (38)

exists on [a, fc] and y'^ix) > 0 on (a, b); in particular, y^(x) ^ 0 on (a, 6] for all such values

of n.
We may use (10) 4 to obtain a similar result as indicated below. Whenever

P* < x"

4(6 - a)
f V dx,

J a

Hooker's result is better, and our result is better when the inequality is reversed. Our

result may be stated by simply changing the first sentence of Hooker's theorem to

read: "Suppose > 0 satisfies the property that

(6 - a)2n+lmln f pdx = 1", (37)'
J a

where m is changed to m1 in the second sentence of Hooker's theorem.

Now if the conclusion does not hold that yjx) > 0 or y[{x) > 0 on (a, b) then there

is a least value of c £ (a, b) such that yfc) = 0. We may now apply (10)4 on [a, c] to

reach the contradiction

1 = (b - a)2n+1mf fb pdx > (c - a)2n+l[y'u(a)]2n f p dx > 1.
J a J a

When p is monotone decreasing from the right on [a, b] and n is such that

{(» + 1 )/(n + 2) }nz:n+2 > it2/*,

from (33), our results are always better since

P* < (b — a) 1 f p dx
^ a
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is impossible.

Moore and Nehari [8] also place some lower bounds on the functional J(y) when

p is quite specific, but they do not discuss our general situation.

In closing we wish to point out that by using differential inequalities some of the

bounds we have obtained will work for other nonlinear differential equations. For

example, if

Hy) = y" + py2"+1,

we may in Corollary 2 of Theorem 1 assume only that y £ C2[a, 6] satisfies

yh(y) >0 (1)*

and (3) as well as being positive on (a, 6],

The same remark is true for our inequality (2) where p is assumed to be pi and y

to be 2/1 ; which, of course, has application in Corollaries 2 and 3 of Theorem 2.

Again, rather than Eq. (1) we may, by change of independent variable, consider

the equation

{r(t)u'}' + q(tWn+1 = 0, (1)'

where n is a positive integer, q £ C[a, 6], r £ C'[a, 6] and r and q are positive on [a, 6].

By letting

= [' [r(s)]_1 ds = g(t),
J a

it follows that (1)' can be written in the form of (1) on an interval [0, cZ], where d = g(b),

and where

p(x) = r(g~\x))q(g~l(x)) = r(t)q(t),

y(x) = u{g'l{x)) = u(t).

In this case we let X1(g, r) denote the minimum of the functional

J*(u) = ^ ru'2 dtj ! gw2"+J dtj (2)'

where D[J*] = D[J], Then by change of variable we have

dn+\(p) ^ p(x) dx = ^ [J-O)]-1 dtj Xi(g, r) ^ q(t) dt, (39)

as well as identities for other functionals in (10). We shall not present the details except

to say that in Theorem 3, (32) is valid with the new functional in (39) replacing the

old if r(t)q(t) is monotone increasing on [a, 6], A corresponding situation develops in (33).

Finally, St. Mary [14] considers a linear equation such as (1)' above where n = 0

and with the assumption that q(t) be nonnegative on the average from the right, i.e.

Q(s) - ^ g q dt > 0 on [a, 6],

rather than assuming q{t) > 0 on [a, b]. Intuitively we feel our results should be true

as well under these relaxed conditions, but due to the dependence of our results on
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Theorem V of Moore and Nehari where they assume a positive condition, we have not

attempted to generalize our results.
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