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Abstract. Methods are developed to study the problem described in the title.

Improvable lower bounds for the first eigenvalue are obtained for the low velocity-thin

pipe wall case. It is shown that the eigenvalue changes from real to imaginary as the

fluid velocity increases through a "critical" velocity. It is the methods which we wish

to emphasize in that while we discuss them only for the present problem they are very

general and especially powerful when applied to differential equations with constant

coefficients.

1. Introduction. The problem we wish to consider reduces to the study of the

eigenvalue problem for the differential equation

uJV + kvV1 + ivfiv} — j9 2u = 0,

together with appropriate boundary conditions. At first glance one might think that

the problem is not very difficult in that the differential equation has constant coefficients.

However, the problem possesses several difficulties: (1) the problem is not self-adjoint;

(2) one coefficient is imaginary; and (3) the operator is a nonlinear function of the

eigenvalue parameter /3. The first two difficulties rule out the possibility of a variational

approach to the problem, as can be proven using the results of [2]. The third difficulty

is formidable and represents the novel feature of the problem.

The present paper is concerned with the method of integral equations only formally
different from the methods of [3].

From the symmetrization [9, pp. 145-150] of Green's function for the low velocity

case, one can deduce the existence of an infinite number of real eigenvalues from the

theorems of Iglisch [4], In the high velocity case, Green's function is a classical Schmidt

kernel and hence has only real eigenvalues, j32. We assume the existence of eigenvalues

in the general case; to prove this assumption is by no means a simple matter.

We concern ourselves here with a simply supported pipe but the method applies

to any of the boundary conditions for beams.

2. Historical background. The problem of determining the lowest frequency of

vibration of a pipe containing flowing fluid was first studied in connection with vibration

of the Trans-Arabian Oil Pipeline. The partial differential equation governing the

transverse vibration of a pipe considered as a beam was derived from Hamilton's prin-
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ciple by Housner [5]. The equation was separated assuming harmonic time dependence,

e'e', and put into the following nondimensional form by Long [6]:

■ulv + kv2u11 + ivfiu1 — 02u = 0, (1)

where u is the transverse deflection, v is the dimensionless flow velocity, and k is a

constant essentially determined by the geometry of the tube. Roman numerals indicate

differentiation with respect to x (0 < x < 1), and 0 is the eigenvalue. Niordson [10],

who studied the vibration of the plenstock tubes of the Aswan Dam, also derived (1)

from shell theory as the special case of a tube whose cross-section is unchanged in the

deformed state (i.e., a tube which vibrates as a beam).

Conventional power series solutions for (1) were investigated by Ashley and Haviland

[7] and Long [6]. Their work showed that it was necessary to use extreme care in evalu-

ating the resulting high-order determinants in order to obtain correct results. Long

found that flowing fluid caused a small decrease in the frequency of vibration but no

damping. Handelman [8] used perturbation techniques to determine the behavior of

the eigenvalues without first solving the differential equation. He found that at low

fluid velocity the eigenvalue remained real and decreased slightly as the velocity in-

creased, while at high fluid velocity the eigenvalue approached zero and then became

complex as the velocity increased. Thus, Handelman concluded that above a certain

"critical" velocity the tube will be unstable due to exponential time dependent terms.

Handelman's results also agreed with those of Niordson.

The purpose of this paper is to describe methods of integral equations which provide

improvable lower bounds for the eigenvalues of differential equations which are nonlinear

in the eigenvalue parameter.

3. Integral equation formulation. The transverse vibrations of a simply supported

pipe containing flowing fluid are described by the differential equation (1) together

with the boundary conditions

u(0) = u"(0) = w(l) = w"(l) = 0,

or by the equivalent integral equation:

u(y) = f G(x, V, P)u(x) dx. (2)
Jo

G(x, y, 0) is Green's function and is given by:

G(x, y, 0) = G.ix, y, i3), 0 < x < y < 1,

= G2(x, y, 0), 0 < y < x < 1,

where Gx and G2 satisfy the adjoint equation

d*G . , 2 d2G . . dG .
-r-i + lev —2 - ivp — = 0,
dx dx dx

and the boundary conditions

Gl(0' (0' y> & = °' G2(1' y' = ^ (1) V> = °-

dG d2G
G(x, y, 0), — (x, y, /3), and (x, y, 0) are continuous at x = y
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while

(y~, y, P) - (y+, y, $) = l.

Eq. (2) follows from Green's formula:

[ {G(x, y, P)Lx{u) - u(x)Lx(G(x, y, (8))} dx = P(u, G)|J

where

LM = S + kv° 5? + ivfi fx = +^u'

Lx is the operator adjoint to Lx, and P(u, G) is the bilinear concomitant of u and G. Since

Lx = d*/dxi + kv2d2/dx2 + ivfid/dx is not self adjoint, G(x, y, 13) will not be symmetric

in x and y.

Now, Lx is a differential operator with constant coefficients so Gx(x, y, 0) =

2i-i a.e"'1 and G2(x, y, /3) = bieaiX where a,- , i - 1, 2, 3, 4, are roots of a +

kv2a — ivfta = 0. Clearly = 0 and a2, a3 , and a4 are roots of the cubic a + kv2a —

ivfi = 0. These roots can be determined by radicals, and will be linear combinations of

? +

a. _i_ mu2\
' 4 + 27 / J

and

iv&_

2
(_vY fcvy
V 4 27 /

Calculations involving these radicals will be extremely cumbersome unless either ftV/27

can be neglected relative to ii2j32/4 or i>2/32/4 can be neglected relative to fcV/27. Thus,

we consider two special cases:

(1)
kV
27

« ^|- and (2)
kV
27

» \vjL
4

Since A: = (w + p)/4p where m is the mass of the pipe per unit length and p is the mass

of fluid per unit length, case (1) corresponds to pipes with (a) low fluid flow velocity

(small v), (b) thin pipe walls (small k resulting from small to), or (c) a combination

of relatively low flow velocity and relatively thin pipe walls. Case (2) corresponds to

pipes with (a') high fluid flow velocity (large v), (b') thick pipe walls (large k resulting

from large to), or (c') a combination of high fluid velocity and relatively thick pipe walls.

The data given by Ashley and Haviland [7] for the Trans-Arabian Pipeline show that

kS
27

3 X 10"
v2I32

thus pipelines of practical interest will clearly be covered by case (1), the low velocity-

thin wall case. It is important to note that for any particular pipe problem, both geometry

and fluid velocity must be specified before the appropriate special case can be selected.

The low velocity-thin wall case can be used only if 4&V/27 « :r4 for the particular

pipe under study.
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In the low velocity-thin pipe wall case, |fcV/27| <JC \v28?/4\, the roots of the cubic
are: a2 = (/3v)1/3e'l/6, a3 = (/3w)1/3e'5l/6, and at = (/3n)1/3e,9r/6, corresponding to the

differential equation

u7V + iv/31 — ftu = 0.

In the high velocity-thick pipe wall case, |fcV/27| » |w2/32/4|, the roots of the cubic
are: a2 = 0, a3 = ikl/2v, a4 = ik1/2v, corresponding to the differential equation

wIV + kv2uu — j3 2u = 0.

The rest of this paper will be primarily concerned with these two special cases.

4. Low velocity-thin pipe walls. For pipes with thin walls and low fluid velocities

we have

, kV4 27

so that the roots of the cubic a3 + kv2a — iv/3 = 0 are:

a = (flv)1/3eiT/\

b = 03y)1/VSr/6,

c = (fiv)U3eiiTn.

Most pipelines of practical interest will be covered by this case. For low velocities we

expect /3 ~ /30 where /30 = tt2, the lowest eigenvalue for a beam with simply supported

ends. If we define |4fcV/27| <5C |/32| to mean that |4fc3t,4/27| < (.01)tt2, we can compute

for a given pipe (i.e., a given value of k) the maximum dimensionless flow velocity for

which this case is valid. These results are given in Table I. The Trans-Arabian Pipeline

Table I

Maximum permissible v for application of

low velocily-thin wall case

0.3

4.0

0.4

3.2

0.5

2.7

0.6

2.4

0.8

1.9

1.0

1.6

2.0

0.95

4.0

0.56

10.0

0.29

[7] has k ~ 0.3 and v = 0.15; clearly the low velocity-thin wall case is applicable.

Green's function can be written:

G&, y, P) = (6, + c.) + (b2 + c2)e" + (6S + c3)ebI + (6, + c4)e",

0 < x < y < 1, (3)

G2(x, y, 0) = + b2e" + b3ehz + b^e", 0 < y < x < 1,

where c,- = a{ — , i — 1, • • • 4, and where c,(y, /3) are determined by the continuity

of G, dG/dx, and d2G/dx2 and the jump discontinuity of d3G/dx3 at x = y. We note

that the determinant of the coefficients of the equations used to determine c; ,

i = 1, • • • 4, is the Wronskian determinant
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W = abc(a — c)(b — c)(b — a).

The parameters a, b, and c are always distinct in the low velocity-thin pipe wall case.

Thus, the integral equation (2) can be written as a nonhomogeneous Volterra integral

equation

u{y) + j32 f (cj + c2e" + c3ebx + c4e")u(x) dx

(4)

= ~/32 [ (&, + b2e" + b3ehl + biecx)u{x) dx,

where clearly the Volterra operator is well behaved as a function of /?. In the case of a

simply supported pipe, w(0) = w(l) = un( 0) = wn(l) = 0, the functions b< ,i = 1, • • • 4,

are determined from the boundary conditions:

bi + b2 + b3 + &4 = — (ci + c2 + c3 + c4) = C(y),

bi ~1~ b'/s" "I- b3e 64ec = 0,

b2a2 + b3b2 + &4c2 = — (c,a2 + c3b2 + c.,c2) = D(y),

b2aV + b,bV + b4cV = 0.

Thus, the integral on the right of (4) naturally assumes the form

f1 \C(y)E(x) D(y)F(x)~
J0 L A ^ A

where

E(x) = b2c2(eb - ec)(e" - e") + a2c2(ec - e°)(eiz - £) + a2b2(e" - eb)(e" - ec),

F{x) = e"[b2e\ec - 1) - c2e\eb - 1)] + ebx[c2e\ea - 1) - a2e'(ec - 1)]

+ e"[a2e"(eb - 1) - b2e\ea - 1)] - [(62 - c2)eh+c + (c2 - a2)e°+c + (a2 - b2)e°+b],

and

A = a2b2[(e° + O - (eb + e"6)] + aV[(ec + e~c) - (e° + e~a)]

+ b2c2[(.eb + e-") - (ec + «-)].

Eq. (4) considered as a nonhomogeneous Volterra integral equation has the solution

u(x) dx,

+ 4*.
(5)

Eq. (5) can be rewritten as a homogeneous Fredholm integral equation with degenerate

kernel, ZU X<(x, f})Y<(y, j8):

w(y) = ^C(y) + /32 j^ s, jS)C(s) dz]u{x) dx

- /?2 £ ~ \_D(y) + /?2 £ z, 0) Z)(z) &]«(*) rfz.

(6)
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Here H(y, z, p) is the resolvent kernel for G,(y, x, p) = G,{x, y, p) where

G,(x, y, P) = 0, 0 < y < x < 1,

= Cx + c2eai czehx c4eCI, 0 ^ i < j/ ^ 1.

and

_ bc(b — c) — acia — c) — ab(b — a) _ —bc(b — c)e
Cl ~ ^ ~ TF

ac(a — c)e iv ab(b — a)e
°3 ~ jy ) C4 —

The eigenvalue equation of (6) is

1 + /32(dii + a22) + /34(aiid22 — a21a12) = 0, (7)

where

*1

= f Xh(x, P)Yk(x, P) dx.
Jo

Only the first few terms of the eigenvalue equation expanded as a power series in p

are needed to obtain lower bounds for the first eigenvalue using Spiegel's formulae [11].

In order to obtain all of the terms of the eigenvalue equation of order /34, the terms of

an and a22 of order p2 and the constant terms of a12 and a21 were calculated from the

series expansions of C{y), D{y), E(x), and F(x) and inserted in (7):

1 + P m'ie, 132^1 6 =
V 90 A / _\3 11! 10!/ A + 10! a2 J + 0(/3} (8)

When v = 0, A = W and (8) becomes

1 + cc^- + a2(34 + 0(/36) = 0 (9)

where

a.i = —1/90 and a2 = 32/10!.

Application of Spiegel's first and second formulae [11] yields:

% (PS ai 90 ' (10a)

and

5 0304 ai 2a2 9450' (10b)

It is well known that the eigenvalues, 0h , for a simply supported beam are (Ht)2, h =

1,2, • • • .In addition, it is well known [12, pp. 19, 27] that

CO l J CD J ^£ (M1 = 90 and ,5 (MY = 9450'

Thus, when v = 0, application of Spiegel's formulae to (8) gives correct results. Lower

bounds for j3i obtained from (10a) and (10b), respectively, are
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ft > -s/90 = 9.487 and ft > 4a/9450 = 9.859.

The exact value of ft is 9.8696 which is very closely bounded by the result from (10b).

When » ^ 0,

A = Jf(l - + + 0(/36)j. (11)

Application of Spiegel's first formula to (11) shows that the first zero of A will occur

at (ift)2 > 8!/2. Since A ^ 0 in the low velocity-thin pipe wall case, (8) can be written:

1
_ 2(" 8(56) + 4^1 J 32 J 16_ 4 \

* L 8! J LlO! \6! 8! 3(11!)/

+ ̂ l4 +
a4! 1 8! 8!

Spiegel's first and second formulae yield the following lower bounds for ft :

90

(12)

+ 0(1f) = 0.

0: ,0089/J '
(13a)>r 91 - Li + j

/Sl - [l + ,0098d2 + .000183V4] ' <-13b)

The lower bounds given by (13a) and (13b) are analytic functions of a real variable

v (v > 0) which can be used to bound ft for all velocities for which the low velocity-thin

pipe wall case is valid. From (12) and (13a, b) it is clear that ft is real and decreases

very slightly as v increases. The maximum dimensionless velocity for which (13a) and

(13b) are valid is restricted by the parameter k, but the lower bound does not depend

on k explicitly. Thus, for sufficiently small dimensionless velocities all pipes will show

the same decrease in ft for a given dimensionless velocity. Handelman's low velocity

results [8] also show that ft decreases as v increases; however, his perturbation procedure

indicates a strong direct dependence of ft on k, namely:

~ (I+ TeV" (14)
Fig. 1 is a graph of ft versus v showing the lower bounds calculated from (13a)

and (13b), the perturbation estimates calculated from (14) for pipes with k = 0.4 and

k = 1.0, and experimental data given by Long [6] for a simply supported pipe with

k = 0.4. Fig. 1 also shows a lower bound for ft calculated by neglecting the v* term in

(13b):

£ [rrl»]'" (13c)
In the important case of k — 0.4, it is clear from Fig. 1 that both (13b) and (13c) provide

better lower bounds for the experimental data than that provided by the perturbation

estimate (14). (In this case the perturbation estimate apparently is also a lower bound

but this is not known a priori.) In particular (13c), which depends only on v2, provides

a very accurate lower bound for experimental values of ft for much larger values of v

than does (14), which also depends on v~. Previous experience [13], [14] has shown that
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9.5

8.5

Fig. 1. The first eigenvalue /3i plotted against dimensionless velocity v.

for problems with well-separated eigenvalues the bounds obtained by Spiegel's second

formula are generally accurate to two more decimal places than those obtained from

Spiegel's first formula. This is shown by comparison of the approximations to tt2 given

by (10a) and (10b). The bound on fa given by (13b) can be further improved by cal-

culating the terms of order f36 and applying Spiegel's third formula [11]. These calcula-

tions are not prohibitively difficult and can be expected to give extremely accurate

lower bounds for fa .

5. High velocity-thick pipe walls. In this case Green's function is independent of

/3 and is given by:

Gx(x, y) = (h + a2x + a3e°" + a4e-<", 0 < x < y < 1,

G2(x, y) = &! + b2x + b3e°x + &4e"°x, 0 < y < x < 1,

where a = ikl/2v and the eight coefficients are uniquely determined. Since the operator

L[u] — ulv + kv2u11 with boundary conditions, it(0) = u( 1) = wn(0) = «"(1) = 0,

is self-adjoint, Green's function will be symmetric and /31 will be real for each h [9].

Green's function is
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r (x ,a -x(l - y) 1 sinha(l - y) sinh ax - „ - i
bi(x, y) =  2 + — -r-r , 0 < x < y < 1,

a a Sinn a N
(15)

OJf, v) - -gn r X) + A — "(1 .V' SiPl - • 0 < y < x < 1,
a a Sinn a.

where G{x, y) is singular when a = mi; i.e., when k1/2v — mr, n = 1, 2, • • • . It is clear

that Green's function remains symmetric for kv2 > it so that the eigenvalues, , of

the integral equation

u(y) = — j32 [ G(y, x)u(x) dx (16)

cannot change from real to complex at this point. Thus, will either be real or pure

imaginary for all h. For arbitrary a, a inir, the hypotheses of Mercer's Theorem

[9, p. 125] are satisfied and

t; (a)1' g(a;' *) **— <3 ~ fa,) 6tvcot ' w

For k1/2v near it,

1 —3 cot (k1/2v)

r ~ e kv

When kU2v —> t—, ^ 1//3J > 0 while when kI/2v —> 7r+, ^ 1 /< 0. Thus, /3» is real

for v < irk~1/2 and at least some 8h are pure imaginary for v > irk~1/2. These results

agree with Handelman's perturbation results [8]. For pipes of practical interest (k = 0.4),

we expect unstable vibration at fcriticai = irk~1/2 — 5.0 (dimensionless). This result

conflicts with experimental data given by Long [6] which show stable vibration for pipes

with k = 0.4 up to v = 10.0 (dimensionless). We note that (1) was derived under the

assumptions of small transverse deflection [5] and nondistortion of the cross-section

of the pipe [10]. It would appear that at high velocities these assumptions are no longer

justified and that (1) fails to provide a good description of the transverse vibration

of the tube.
If Green's function (15) is written in the "natural" unsymmetric form discussed

in Sec. 4, (16) can be written as a nonhomogeneous Volterra equation of the convolution

type which can be solved by means of the Laplace transform [9]. Thus (16) becomes:

u{y) + /32 f \\{y ~ x) ~ \ sinh a(y - x) w(x) dx
J o La a J (18)

= —/S2 f [£>! + b2x + b3e"x + 64e_I"c]w(a;) dx.
Jo

The Laplace transform of u, £[w] is:

m -m_S) _„■){<«■-«i£^''-''I'4
(19)

and the inverse Laplace transform of (19) is a homogeneous Fredholm integral equation

with degenerate kernel which depends on the four roots, a, b, c, and d, of the quartic
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equation s4 — s2a2 — /32 = 0. Thus it is possible to obtain the exact eigenvalue equation

of (16):

1 /3 (dn "I- Q22) /3 (ctlld22 ^12^21) = 0, (20)

where

1 (a2 - a2) , . , s (c2 - a2) , . ,
an = —7-5 57 \ 3 (sinh a — a) 5 (smh c — c)

a (a — c ) I a

1 J (sinh a — a) (sinh c — c)
2/„2 1 „a (a - c J 1 a c

1 J a2 ( a sinh a\ c2 ( a sinh ca\ c2

°22 ~ a2(a2 - c2) \(a2 - a2) ~ sinh a / ~ (c2 - a2) ~ sinh

1  U _ a sinh a

— c2) \ \ sinh a ,

a sinh c

0,21 a (a2 — c2) IV" sinh a / V sinh 1

and where

a = -b = — K«2 + 2z/3)i/2 - |(a2 - 2$)1/2,

c = —<i = —i(<*2 + 2z/3)1/2 + f(a2 — 2 i(3)1/2.

Since a22 and a2i are singular when sinh a = 0, i.e., when k1/2v = rnr, n = 1, 2, • - • ;

the eigenvalue equation (20) will be satisfied if and only if

lim /32 = 0 and lim j32on = 1.
«-»»" x 0a—»0

Since lim^0 a2 = a2, the first term of an clearly approaches 0, and since c = — if}/a

for small (3, and lim3^0 sinh (—if}/a) = 0, the second term approaches — 1/aV = 1//32.

Thus, lima=„0 /32On = 1 and the eigenvalue equation is satisfied exactly by 0 — 0 at

v = nirk~l/2, n — 1, 2, , and again we find that wcriticai = irk'1'2. Unfortunately,

further analysis of (20) will not provide useful information concerning the transverse

vibration of a pipe because (1) no longer provides an accurate description of the physical

system in the high velocity case.

6. Arbitrary flow velocities. The method used to obtain the eigenvalue equation

for the high flow velocity-thick pipe wall case can also be used, in theory, to obtain the

eigenvalue equation for the general case of arbitrary flow velocity. Green's function

will have the form:

G,(x, y, (3) = (b, + Cl) + (t>2 + c2)e" + (b3 + c3)ebz + (&4 + ct)e", 0 < x < y < 1,

G2(x, y, 0) = + b2e'" + b3ebx + &4e", 0 < y < x < 1,

where a, b and c are roots of a3 + kv2a — ivj3 = 0 and &,■ and c< , i = 1, 2, 3, 4, are

uniquely determined by the conditions on the Green's function. As before, the integral

equation can be written as a Volterra equation of the convolution type which can be

solved by use of the Laplace transform. The four roots, X, , X2 , X3 , X4 , of the quartic

equation, s(s + o)(s + b)(s + c) — /32 = 0, must be found in order to invert the Laplace

transform. The inverted equation will be a homogeneous Fredholm integral equation

with degenerate kernel consisting of four terms:
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(y) = P2 f {Z Yi(y, P, Xi , X2 , X3 , \i)Xi(x, P)\u(x) dx,

and eigenvalue equation of this integral equation can be written down as the determinant

of a 4 X 4 matrix. Although general application of the method is straightforward, the

most useful results will be obtained when the roots a, b, and c are such that the roots

Xi , X2, X3 , \4 are relatively simple. Although the roots of a quartic equation can always

be obtained by radicals, these roots -will generally be very complicated.

7. Conclusion. The integral equation methods discussed in this paper and applied

to the specific nonlinear eigenvalue problem which describes the transverse vibrations

of a tube containing flowing fluid are quite general. Green's function for a fourth order

differential operator Lx,p which is an entire function of P can always be written:

4

GAx, y, 13) = X [b,(y, p) + Ci(y, P)]Ui(x, p), 0 < x < y < 1,

(21)
4

G2(x, y, P) - X bi(y, P)Ui(x, P), 0 < y < x < 1,
t-1

where ujx, p) are a fundamental set for the adjoint operator, Lx,p . This means that

the differential equation, Lx^[u] + /J2[w] = 0, and appropriate boundary conditions

can be written as a nonhomogeneous Volterra integral equation

u(y) - P2 fo [2 Ci(y, P)Ui(x, /3)Ju(a;) dx = p2 ̂  b{(.y, P)Uf{x, /3)Jw(z) dx. (22)

Since the denominator of Ci(y, p) is the Wronskian determinant, (22) can be solved

and the first few terms of the eigenvalue equation obtained by the methods of [3], If

Lx,fi has constant coefficients, (22) will be a Volterra integral equation of the convolution

type which can be solved by means of the Laplace transform. It is sometimes possible

to obtain the exact eigenvalue equation of the problem by this method. Finally, we

note that one of us has shown [15] that the eigenvalue equation obtained from the

Volterra formulation discussed in this paper has the same roots as that obtained from

the Fredholm formulation described previously [3], and that the lower bounds obtained

from the Volterra formulation are either the same or better than those obtained ac-

cording to [3].

Refebences

[1] L. H. Jones, The transverse vibrations of a pipe containing flowing fluid, Master's Thesis, University

of Delaware, Newark, Delaware

[2] E. P. Hamilton and B. E. Goodwin, The inverse problem of the calculus of variations, in Analytic

methods in mathematical physics (ed. R. P. Gilbert and R. G. Newton), Gordon and Breach,

New York, 1970
[3] B. E. Goodwin, On the realization of the eigenvalues of integral equations whose kernels are entire or

meromorphic in the eigenvalue parameter, SIAM J. Appl. Math. 14, 65-85 (1966)

[4] R. Iglisch, Uber Linear Iniegralgleichungen mit vom Parameter abhangigem Kern, Math. Ann. 117,

129-139 (1939)
[5] G. W. Housner, Bending vibrations of a pipeline containing flowing fluid, J. Appl. Mech. 19, 205-208

(1952)
[6] R. H. Long, Jr., Experimental and theoretical study of transverse vibrations of a pipe containing flowing

fluid, J. Appl. Mech. 22, 65-6S (1955)



374 L. H. JONES AND B. E. GOODWIN

[7] H. Ashley and G. Haviland, Bending vibrations of a pi-peline containing flowing fluid, J. Appl.

Mech. 17, 229-232 (1950)
[8] G. H. Handelman, A note on the transverse vibration of a tube containing flovring fluid, Quart. Appl.

Math. 13, 326-330 (1956)
[9] F. G. Tricomi, Integral equations, Pure and Appl. Math., vol. 5, Interscience, New York, 1957

[10] F. I. Niordson, Experimental and theoretical study of transverse vibrations of a tube containing flowing

fluid, Trans. Roy. Inst. Tech., Stockholm 1953, 73 pp.

[11] M. R. Spiegel, The summation of series involving roots of transcendental equations and related appli-

cations, J. Appl. Phys. 24, 1103-1106 (1953)
[12] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of

mathematical physics, 3rd ed., Die Grundlehren der math. Wissenschaften, Band 52, Springer-Verlag,

New York 1966
[13] B. E. Goodwin and W. E. Boyce, The vibrations of a random elastic string: The method of integral

equations, Quart. Appl. Math. 12, 261-266 (1964)
[14] W. E. Boyce and B. E. Goodwin, Random transverse vibrations of elastic beams, J. Soc. Indust. Appl.

Math. 12, 613-629 (1964)
[15] L. H. Jones, Improved lower bounds for the eigenvalues of a class of boundary value problems, SIAM J.

Appl. Math. (Submitted)


