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Introduction. In a recent paper [1] we derived an expression for the mean square

error in stresses obtained from the solution of a boundary-value problem in the classical

theory of plates with respect to the solution of a corresponding problem in the theory

of elasticity. Further, the relative mean square error was bounded by a quantity propor-

tional to the plate thickness. The derivation in [1] employs the hypersphere theorems

of Prager and Synge [2], [3] in elasticity which lead to the equations of plate theory via

energy minimization techniques.

Subsequently, Simmonds [4] bounded the relative mean square error by a quantity

proportional to the plate thickness squared for isotropic plates. The derivation of this

improved bound is based on a direct application of the main hypersphere theorem [2]

with a specially constructed kinematically admissible stress field of a more elaborate

form than in [1],

In the present note we derive an expression for the mean square error and a bound

on the relative error for Reissner's theory of plates [5] which includes the effect of shear

deformation. The derivation is similar to that of [1], although we employ a kinematically

admissible stress field of nearly the same form as in [4]. The relative error is again bounded

by a quantity proportional to plate thickness squared. This lack of essential improve-

ment over the error bound for classical theory is not surprising in view of the well-known

fact that Reissner's theory offers improvement over classical theory only near the edge

of the plate.
Of particular interest is the value obtained here for the numerical constant in the

constitutive equation for the shear stress resultant, namely f. This value is in agree-
ment with Reissner's original derivation [5] and most subsequent derivations,1 e.g.,

the direct derivation of Green [7]. In the present derivation the value f follows from

minimization of both the potential energy and the complementary energy whose sum

is the mean square error in stress [1], [3], Therefore, f can be regarded as the best value

for the shear constant within the context of mean square error minimization for static

problems. Also, we find that the constitutive equation for stress couple need not include

a term proportional to the normal surface load, as in [5] and [7], Finally, the error bound

of Simmonds [4] for classical theory of isotropic plates is extended to anisotropic plates

with midsurface elastic symmetry.

For brevity we do not repeat Sees. 1 and 2 of [I] which deal, respectively, with

function space concepts in elasticity and the statement of a class of boundary value

* Received March 6, 1971.

** Currently on assignment in The Hague, Netherlands.

1 An exception is the value jrJ/12 proposed by Mindlin [6] for dynamic problems. The present

results are restricted to statics by the nature of the function space concepts in [2], [3].
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problems for plates in elasticity. Instead reference will be made to results from [1]

as needed in what follows.

Potential energy. The equations of Reissner's theory will be derived here by min-

imization of potential energy using a kinematically admissible stress field.

Guided by solutions to plate problems in elasticity [8], we begin with a displacement

field of the form

~ ft aX3 ~f" f a(.X3 5^ ^3)1 (l)2

u3 = w + g{x3 - \h2),

where jS0 , /„ , w and g are independent of the coordinate x3 normal to the middle surface.

The x3 coefficients in (1) are chosen in view of the relations

J x3(xl — %h2x3) dx3 = J (1 — xl/h2)(xl — |A2) dx3 = 0. (2)

Thus, j3a and w may be interpreted as resultant displacements3 since

3 rh 3 fh
J ^ uax3 dx3 = /3a , J h(1 ~ x»/^)u* dx* = w■ (3)

In order to be kinematically admissible, the displacement field (1) must meet the bound-

ary conditions of the elasticity problem on the portion of the boundary S. . For this

to be possible, a slight modification of the displacement boundary conditions in [1]

is required. Specifically, (2.4) and (2.5) of [1] must be replaced by

u* = /3*x3 + j*a(xl - lh2xz), uf = w* + g*(x\ - |AJ). (4)

Then (1) satisfies the boundary conditions on Su provided that

Pa — fit , w = w* on , (5)

U = it , g = g* on C„ . (6)

Proceeding from (1) as in [1] we obtain the following expression for the potential

energy:

V* = + / (Wo ~ ih2pg) dx, dx2 , (7)

where

V{v0) = J + ihzBaB33pa,^g

+ ihzB3333g2 + Ba363[h(J3a + w.a)(fi6 + w,B) + -rsh3(pa + w,a)(3fe + g.e)

+ rsh\3fa + g.a)(3je + g.e)] ~ Vw\ dxi dx2 - f (paM% + wQ*) ds.
•'Cr

On minimization of F° by the calculus of variations, the Euler equations can be written

2 This form for the displacement field differs only slightly from that of Simmonds [4]. The essential

difference from the displacement field of [1] is the fa term. Here Greek indices take values 1 and 2 and

repeated indices imply summation.

3 These same resultants or weighted displacements appear in the direct derivation of Reissner's

theory given by Green [7].
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as

and

where

u = ~*9-" ~ + w-a) (8)

- Qa = 0, Qa . a = V, (9)

t3

Map ^2 BaPy bfiy , 5 ) Qa 6^B 03^3(^0 ~~f~

^ = 2A, BaPyb = Ba0yl B ap33Byl33/B3333 . (10)

Here t is the thickness of the plate. Further, the natural boundary conditions are

= M* , Qana = Q* on C, . (11)

Eqs. (9), (10), (5) and (11) are the equilibrium equations, constitutive relations and

boundary conditions of Reissner's theory of plates [5]. The functions f* and g* in the

displacement boundary conditions (4) of the elasticity problem are determined by (6)

and (8) after solution of the plate problem. From a practical viewpoint this is a minor

defect since resultant displacements (3* and w* are specified on Cu .

The kinematically admissible stresses corresponding to (1) can be written as

&aft ^affyi^y,6^3 Bapysfy^(x3 $}l X3),

V33 = B33ysfy .s(X3 5 k X3), (12)

fa3 = iBamiP.e + w.oXl ~ xl/h2),

where, by (8), (9) and (10),

ja,0 />n fiy.b aS 3-^- y hfiy , iJ/5 •
O-D3333

Complementary energy. The equations of Reissner's theory are derived here by

minimization of complementary energy using a statically admissible stress field. The

approach is similar to that of Reissner [5].

Guided by solutions to plate problems in elasticity [8], we begin -with a stress field

of the usual form

/   3%3 , , , _ _3_ (.
2h3 °e ' a"3 4fcV h2na '

(1 o)

= h. (2 - #)*3P + ?'

where p and q are related to the surface stresses as in [1] by

V ~ + <*% > ? = K°"s+ — 0-3).

This stress field is statically admissible; i.e., the equilibrium equations and the stress

boundary conditions of the elasticity problem are satisfied provided that M and Qa

satisfy (9) and (11). By (13), (4) and (1.18) of [1] the complementary energy can be

written as
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yc = ^0) + ^ [j^ AaB33MaeP + A3333h(j^ p2 + g2) dx, dx, , (14)

where

Fj0) = £ ^3 ^ Aa3^QaQsJ dx, cte2 — ̂  + io*Qan„] ds.

On minimization of F^0> with (9) enforced by Lagrange multipliers (3a and w, we obtain

the constitutive equations (10) as Euler equations and the natural boundary conditions

(5). Thus, we again have the equations of Reissner's theory of plates.

Approximate stress field and error. According to the hypersphere theorem [2],

[3], if d' and d" are statically and kinematically admissible stress fields, respectively,

for a boundary value problem in elasticity with exact stress field d, then the approximate

stress field

d, = + O (15)

has a mean square error E; i.e.,

||dA -4\\ = e (16)

where E is given by

E = ||§(d' - Oil (17)

and further

E = VC + V„. (18)

Here ||d|| denotes the mean square norm defined in [1], [2] and [3]. By the bound (1.16)

of [1], the relative error is of the form

E/M = n + ©(n2), n = £/(d'-d")1/2, (19)

where the inner product (d'-d") is defined in [1], [2] and [3]. In the present case, the

error in the approximate stress field given by (12), (13) and (15) is

E2 = I Jy.s + hA3333(^p2 + q2) dx i dx 2 , (20)

which can be deduced from (17) using (12), (13) and (1.4) of [1], or from (18) using

(7), (14) and the easily verified relations

y<0, + yco, = 0; ZAa„33Ma, = 4 h'g. (21)"

Further, by (12), (13) and (1.9) of [1]

f 3 3 6 j
• d J ^^3 A apyqMapMy 5 ~j~ 20^ Aa@33Mapp "I- A a3p3QaQ(}J dx\ dx2 . (22)

Thus, by (9), (10), (19), (21) and (22), we obtain the following estimate for the relative

error:

E/M = Ch2 + 6(h*), (23)

4 In view of the second of (21), the p terms in VP + Vc cancel whether or not they are included in

TV°> and W0)- Therefore, it is not necessary to include these p terms in Fp<0) and which would

lead to a p term in the constitutive equation for MaS as in [5], [7],
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where

° = I. [l75 + (140 + 7 ) 9 ^3333

* (^ajSyS^a ,Pys) dXi dx 2 j J" Q $a0y6fia.tl@y .5 dX\ dx% , y = ty/P'

Further, an explicit bound on the relative error follows immediately from (20), (22)

and (1.16) of [1],
Classical plate theory. We indicate how the foregoing derivation can be modified to

obtain results for classical plate theory. The derivation from complementary energy is

the same as in [1] and need not be repeated here. In the derivation from potential energy

using the displacement field (1), I3a must be related to w before the potential energy is

minimized, for otherwise Reissner's theory would result as in the foregoing. As suggested

by Simmonds [4], a suitable relation between i3a and w follows from setting

<r'J3 = = J- (1 - xl/ti)Qa ■ (24)

i.e.,

12
fia ~ W.a "1" '77 Aa3p3Qp ,

(25)

1a ~ jT3 -A <*303Qg •

Further, in order to make 0-33 small we set

9 = B a^33w %ag/2B3333 . (26)

Then the equations of the classical theory of plates follow from minimization of the

same T^0) as in [1]. In particular, the constitutive equations read

f f
aP ^• Y * » Qa ^ agy 6^ S • (27)

The kinematically admissible stress field is

<r'a'e = a'<*ts + Bag^l[ii-Ay3Tl3Q,,iX3 + fy,s(x33 — f h2x3)],

v'a3 ~ <*'a3 J °"33 = B33 T s[~£ A y 3v3Qv . lX3 + fy.l(x3 5^X3)].

(28)

By (17), (25), (27) and (28), the mean square error in the approximate stress field given

by (13), (15) and (28) is

& ~hT l + jy - B aBy ,pj y . S

+ ^=333(^ + 72) | (S^w.^,)2] dx, dx2 , (29)

fi This equation can also be obtained as an Euler equation on minimization of part of the potential

energy.
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where

"Ao = Aa3giBp„ySW %ny5 .

Further

h3 f
d'd" = — J Sai3ysW,af)W,yj cfoj rfx2 , (30)

and thus an estimate for relative mean square error of the form (23) follows from (19),

(29) and (30). The foregoing results for classical theory of plates agree in essence with

the results of Simmonds [4] for isotropic plates.
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copy of his manuscript [4],
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