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1. Introduction. Let T(x, t) be the temperature of a semi-infinite heat-conducting

solid occupying the half-space x > 0. We suppose that its surface radiates energy at a

rate proportional to [!T(0, r)]" and that the surface is heated by a source at a rate propor-

tional to a given function fit). Here n is a positive constant, the value n = 1 corresponding

to Newton's law of cooling and n = 4 to Stefan's radiation law. If T = 0 initially, then

for t > 0, T is determined by the following initial boundary value problem:

Tt(x, t) = T„(x, t), x > 0, t > 0, (1.1)

Tz(0, t) = ocT\0, t) - fit), t > 0, (1.2)

T(x, 0) = 0, x > 0, (1.3)

T —* 0 as x —* oo, t > 0. (1-4)

Here a > 0 is a given constant.

This problem has been considered by Mann and Wolf [1], Roberts and Mann [2]

and Padmavally [3], while Friedman [4] has considered more general problems of a

similar kind. From their work we can conclude that if /(f) is a piecewise continuous

bounded function then the above problem has a solution and it is unique. In addition

Padmavally [3] has shown that if fit) is nondecreasing in the interval 0 < t < r then

T(0, t) is also nondecreasing in this interval.

Our aim is to obtain more detailed information about the surface temperature

T(0, t) when fit) > 0 and fit) is integrable. First we shall obtain a sequence of upper and

lower bounds on Tix, t), which incidentally provide a constructive proof of its existence,

and we shall also show its uniqueness. Then we shall show that as t —* «=, T(0, t) ~

7r1/2i?(co)rI/2 where £"(o=) is the net energy flux into the solid through the surface.

Furthermore, we shall show that £*() > 0 for n > 3 while Ei°°) = 0 for n < 2. Thus

for n > 3 some of the energy which enters the solid remains there, while for n < 2 it is

all ultimately radiated away. We shall also examine the behavior of Ti0, t) for small

values of t as well as for large and small values of a.

2. Equivalent integral equation. A solution Tix, t) of (1.1)—(1.4) can be represented

in terms of T(0, t) by the formula

Tix, t) = f fis)GPix, t, s) ds
Jo
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+ [ [p(s) — aT"'\0, s)]T(0, s)G„(x, t, s) ds, t > 0, x > 0. (2.1)
Jo

This formula is obtained by applying Green's theorem to T(x, t) and the Green's func-

tion G„ defined by the following linear problem:

Gp.t = , x > 0, t > s > 0, (2.2)

Gp,z(0, t, s) = p(0<?p(0, t, s) - 8(t - s), t> s, (2.3)

Gp{x, t,s) = 0, t < s, x > 0, (2.4)

Gp(x, t, s) —> 0 as x —> co ; t > s. (2.5)

The nonnegative function p(£) in (2.3) is arbitrary, and can be chosen to facilitate the

analysis. Any solution T(x, t) of (2.1) satisfies (1.1)—(1.4).

We now set x = 0 in (2.1) to obtain a nonlinear integral equation for T(0, t):

T(0, t) = f f(s)G„(0, t, s) ds

+ f [p(s) - aT"-\0, s)]T(0, s)G„(0, t, s) ds, t > 0. (2.6)
* 0

Once T(0, t) is found from (2.6), it can be used in (2.1) to yield a solution T(x, t) of

(1.1)—(1.4). Thus the problem is reduced to solving (2.6).

Let us denote by u„{x, t) the first term on the right side of (2.1), i.e.

up(x, t) = / j(s)G„(x, t, s) ds. (2.7)
" 0

It is evident that u„ is the solution of the linear problem (2.2)-(2.5) with 5(t — s) replaced

by j(i). Now (2.6) can be written in the form

T(0, t) = «,(0, t) + [' [P(s) - ar'(0, s)]T(0, s)G,(0, t, s) ds. (2,8)
Jo

When p(t) = 0, (2.6) and (2.8) become the following simple-looking equation:

7X0, t) = x-,/2 [' [/(s) - cxT\0, s)](< - s)~1/2 ds. (2.9)
J 0

3. Bounds on T(x, t). Let us define the sequences of functions u, and p,- as follows:

Ui(x, t) uPi(xt {), j 1, 2, • ■ • , (3 1)

Po(t) = 0, Pi(t) = alUj-^0, <)]"_1, j = 1, 2, ••• .

By the maximum principle, G„ > 0 and then from (2.7) and the assumption that / > 0

we have w; > 0. Now for any two functions p(t) and pit), the functions up and us given

by (2.7) are related by the integral equation

u„(x, t) = up(x, t) + f [P(s) — p(s)]w5(0, s)Gp(x, t, s) ds. (3.2)
Jo

From (3.2) it follows first that ux < u„ and then that ut < u2 < u„ . By induction we
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find

0 < Mi < u3 < ■ ■ ■ < u2i-1 <■■■< u2i <■■■< u2 < u0 , x > 0, t > 0. (3.3)

The functions w2,-i form a monotone increasing sequence bounded above by u0 ,

while the w2, form a monotone decreasing sequence bounded below by zero. Thus both

sequences converge to limits, u and u', defined by

limw2,_i = u°, lim u2i = u°. (3.4)
3-.OD }-»«

By using (3.2) in a suitable way, we can show that u' = u = u(x, t), say, and that

m(0, t) is the unique solution of (2.9). Furthermore, u(x, t) is the unique solution of

(1.1)—(1.4). (See Appendix A for details.) Thus the sequence tt,(0, t) converges to the

unique solution T{0, t) of (2.9), providing a constructive proof of its existence, as was

shown by Mann and Wolf [1] for a different sequence. From (3.4) and (3.3) it follows

that the M2i_i form an increasing sequence of lower bounds on T(x, t) while the u2i form

a decreasing sequence of upper bounds:

0 < Mi < u3 < ■ ■ ■ < u2,'-i < • ■ • < T < • ■ ■ < u2i < • • • <u2<u0, x > 0, t > 0,

(3.5)

In particular, (3.5) yields T(x, t) > 0.

Another interesting lower bound on T(0, i) can be obtained by choosing p(t) = p*(t)

in (2.3) where

p*(t) = aMt~\ t > 0, M > 0. (3.6)

In Appendix B we show that as £ —-> <*>,

«,.(0, t) ~ C*t~U2, C* > 0. (3.7)

We now use p* and u„. in (2.8) to obtain

7X0, t) = «,.(0, t) + a f {Ms" - [T(0, s)rl}T(0, s)Gp.(0, t, s) ds, t > 0. (3.8)
Jo

Now T{0, t) is positive, bounded, and decays at least as fast as t~1/2 as t —* , as we see

from (3.5) and (4.8). Therefore it is possible to choose M so large that Mt'1 — [T(0, <)]n_1

> 0 for all t > 0 provided that n > 3. Then it follows from (3.8) and (3.7) that

7X0, t) > up.{0, t) ~ c*r1/2, C* > 0, n > 3. (3.9)

We now assume that 0 < /(<) < C where C > 0. Then we define p. and K by

n = anKn'\ K = (C/a)l/\ (3.10)

Upon setting p = p. in (2.8), we obtain

7X0, t) = ms(0, t) + a(n — 1 )K" [ G„(0, t, s) ds
Jo

- a f [(n - 1)/T - nK^TiO, s) + Tn(0, s)]G„(0, t, s) ds.
Jo

(3.11)

In (3.11) we use the easily proved inequality (n — l)Kn — nKn~lT + 7™ > 0 if n > 1,

T > 0, K > 0. We also use the fact stated above that (7M > 0, and then (3.11) yields
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T(0, t) < u„(0, t) + a(n - l)K" [ (?„(0, i, s) <2s
Jo

< [C + a(n - 1)2T] f G„(0, t, s) ds, n > 1. (3.12)
J 0

In Appendix C we show that the integral in (3.12) is bounded above by n'1, so (3.12)

becomes

T{ 0, t) <K = (C/a)1/n, n > 1. (3.13)

To obtain another lower bound we define y by

7 = alC'1 = a,/nC1_1/". (3.14)

Then we set p = 7 in (2.8) and then use (3.13) to obtain

T(0, <) = mt(0, £)

+ a f {Kn'1 - [T(0, s)]""l}r(0, s)(?7(0, s) ds > «7(0, 0, « > 1. (3.15)
Jo

The lower bound w7 in (3.15) is given by (2.7). For any constant 7 > 0, Gr is given by

(?T(0, <, s) = 7T-\t - s)'1/2 I - _ dj, t > s, 7 > 0. (3.16)

We now use (3.16) in (2.7) and evaluate uy for < large. Then (3.15) yields

7X0, t) > UT(I0, <) ~ C7r3/2, C7 > 0, n > 1. (3.17)

4. Behavior of ?Y0. <) for t —> <*>. By integrating (1.1) with respect to x from 0 to

co and with respect to t from 0 to t and using (1.2)-(1.4), we obtain

f [/(«) - aT"(0, s)] ds = f T(x, t) dx. (4.1)
J 0 J Q

The left side of (4.1) is E(t), the net energy flow into the solid up to time t, while the

right side is the energy in the solid at time t. We have shown above that if / > 0 then

T(x, t) > 0, and thus the right side of (4.1) is nonnegative. Therefore (4.1) yields

E(t) = f I/(#) - aT(0, «)] ds > 0 if / > 0. (4.2)
J 0

From (4.2) we obtain

/ 7n(0, s) ds < co if / /(s) ds < co. (4.3)
•J 0 J 0

We can now determine the behavior of T(0, t) for t —> 0= by utilizing (4.3) to evaluate

the integral in (2.9) asymptotically. We see at once that

7(0, 0 ~ 7r_l/2 f [/(«) - aT"(0, #)] dsr,/2 ~ x-1/2£'(°°)r1/2. (4.4)
Jo

Upon using (4.4) in (3.9) we obtain

E{co) > x1/2C* >0, n > 3. (4.5)
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By using (4.4) in (4.3), we see that when £"(<») > 0 the integral of 1" is finite only if

n > 2. It follows that

E( ®) = 0, n < 2. (4.6)

Thus (4.4) shows only that T(0, t) = o(t~1/2) for n < 2. On the other hand, (3.17) shows

that T(0, t) does not decrease faster than t~3/2 for n > 1.

When n = 1 the explicit solution of (2.8) is

r(0, t) = u„(0, 0 ~ CJ~3/2, Ca> 0, n = 1, a > 0. (4.7)

Thus for n — 1, T(0, f) decays at the fastest rate permitted by (3.17). However if a = 0,

which we have hitherto excluded, then (2.9) shows that T(0, t) is independent of n

and is given by

T(i0, t) = Wo(0, t) ~ C0r1/2, Co > 0, a = 0. (4.8)

Comparison of (4.4) with (4.8) shows that for n > 2, T(0, t) decays at the same slow

rate 0(t~1/2) as if the boundary were not radiating. To understand this we write the

radiation rate aTn as a'(t)T with the effective radiation constant a'(t) = aTn_1. Now

for n > 1, a (t) tends to zero as t —* ̂ , so the boundary tends to behave as a nonradiat-

ing boundary (a = 0) as t —» °°. Evidently for 1 < n < 2, a'(t) does not tend to zero

fast enough to make T(0, t) decay as slowly as t~1/2, but for n > 2 it does.

5. Perturbation expansions. To find T(0, t) for small values of a, we use (2.9) and

solve it by iterations. For a small we can write the results as

7X0, t) = U0(0, t) - oct~1/2 J 0
' «S(0,8)

(t - s)1/2 ds

■ 2—i r uo (o, s) f w0(0, r) , , . „, 3.
+ na7r Jo (t - s)1/2 Jo 7^Tr)^drds+0(a).

(5.1)

(t - s)1/2 Jo (s - r)

For t small, we require j(t) to be such that uo(0, t) has the expansion

Wo(0, 0 = ath + bt" + 0(ic), t —> 0, q > h. (5.2)

Then the iterative solution of (2.9) yields

T(0, t) = at4 + bt" + 0(f) - ar-Vr^Il + 0(f-")]

+ aW1o!-7,Jw.„1/2i<!'-,)l+,[ 1 + 0(r*)], t 0.

Here we have introduced Id , defined by

(5.3)

L ~ l (1 - s)1/2 ds' (5>4)

To find T(0, 0 for a large, we first use the Abel inversion formula to solve (2.9) for

V in the form

no, 0 = m - Ar2 4 [' a - Sy/2T(o, 8) ds. (5.5)
a ock at J o



564 JOSEPH B. KELLER AND W. E. OLMSTEAD

Then we iterate (5.5) to obtain

too, t) = «w"m}i/n

- cT2/"ri~1ir~1/2[f(t)]l/n~1 | f m\v\t ~ s)"I/2 ds + 0(a3/"), t > 0. (5.6)

The result (5.6) cannot be valid at t = 0 because /(0) may not be zero, whereas T(0, 0)

must be zero. It is not valid for t large if j(t) decays too fast. Thus an initial layer expan-

sion is required at and near t = 0, and another expansion may be needed for large t,

but we shall not determine it.

Appendix A. Existence and uniqueness. To show that u = u°, we consider (3.2)

with p(t) = a[u2j(0, 0]"_1 and p(i) = a[w2,-i(0, 0]n~l. Then taking limits as j —» <=

yields the equation

u'(x, t) — u°(x, t) = f [we(0, s) — w°(0, s)]9l(a;) t, s) ds, t > 0, x > 0, (A.l)
•>0

where

'■ * - "'<0' '• s) - <*•»

By setting x = 0 in (A.l) we obtain

u'(0, t) - w°(0, <) = f [w'(0, s) - u°(0, s)]3l(0, t, s) ds, t > 0. (A.3)
Jo

This can be viewed as a homogeneous integral equation of the second kind for w'(0, t) —

m°(0, t) with 31(0, t, s) as the kernel. If we choose a t such that |we(0, s) — tt°(0, s)| <

|m'(0, t) — u°(0, 01 for 0 < s < t, then (A.3) yields

|u"(0, t) ~ u(0, «)| < W(0, t) - u°(0, 0! [ 91(0, t, s) ds. (A A)
Jo

For t sufficiently small, say 0 < t < t, the integral in (A.4) is less than unity, which

implies that w'(0, t) = w°(0, t) for t < e. Using this fact in (A.3), we can show that

u'(0, t) = w°(0, t) in a larger interval. This procedure can be repeated to show that

wc(0, t) = w°(0, t) for all t > 0. Then (A.l) shows that u'(x, t) = u°(x, t) for all x > 0,

t > 0. Thus there is a common limit u(x, t), so

u(x, t) = u'(x, t) = u{x, t), x > 0, t > 0. (A.5)

It follows from the definition (3.1) of u, and from (3.2) that u ■ and u,-t satisfy

Uj(x, t) = u„(x, t) + f {p(s) — a[w,-_,(0, s)r_1}w,(0, s)Gp(x, I, s) ds. (A.6)
Jo

Then since w, —► u and w-,-i ~^ u> it is clear from (A.6) that u satisfies (2.1).

To show that the nonnegative solution constructed above is unique, we assume that

there are two solutions T} and T2 . By subtracting (2.9) for T, from (2.9) for Tl we

obtain
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r,(o, t) - t2(o, t)

( n',(o,«) - T,( 0, {1 _ (A.7)-1/2
7T a:

Now by the same arguments used above to show that u'(0, t) — w°(0, <), it follows that

7\(0, <) = T2(0, t). Then from (2.1) it follows that Tx(x, t) = T2(x, t).

Appendix B. Asymptotic behavior of up.(0, t). Tor establish the asymptotic pro-

erty (3.7) for mp.(0, t), we consider the initial boundary value problem (2.2)-(2.5) for

u„. with p(t) = p*(t) — aMt'1 and with 8(t — s) replaced by /(<)• Applying the Laplace

transform to this problem yields

up.IX(x, p) + pup.{x, p) = 0, X > 0, (B.l)

(0, p) = aM f e~7"t~1ul,.(0, t) A — /(p), (B.2)
J 0

u„.(x, p) —> 0, a; —*■ (B.3)

Here ■&r,.(x, p) and ](p) are defined by

up.(x, p) = f e~vtu,,.(x, t) dt, j(jj) = [ ) dt. (B.4)
Jo Jo

The solution of (B.l) satisfying (B.3) is

Ms, p) = Mp)e-pV'1. (B.5)

Here A(p) = u,.(0, p) must be determined from the boundary condition (B.2). Upon

substitution of (B.5) into (B.2) we obtain

—pU2A(jp) = aM f e~"t~1u„.(k0, t) dt — j(p). (B.6)
Jo

Differentiation of (B.6) with respect to p yields

[p,/2A(p)] = -*MA(p) - ± /(p). (B.7)

The solution of (B.7) which satisfies (B.6) is

A(p) = -p"1/2 exp [2aMpW2] f exp [-2aM$1/2]f© <fc. (B.8)
J-D

As p —> 0, (B.8) implies that

A(p)~p"/2[ exp [ — 2aM(1/a] f tf(t)e~*'dt d£ as p -> 0. (B.9)
Jo ^0

Then a classical asymptotic result on Laplace transforms shows that

«,.(0, 0 ~CTI/2 as <-» ®, C > 0. (B.10)

Appendix C. Estimation of an integral. To estimate the integral in (3.12) we con-

sider (2.2)-(2.5) with p(t) = p. = constant. Upon integrating the differential equa-
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tion (2.2) we obtain

/ / G»,,{x, t, s)dsdx= / G„,xx(x, t, s) ds dx = — GM I(0, t, s) ds (C.l)
Jo- J o J0- J o J0~

By virtue of the boundary condition (2.3) we then have

[ [ G„.,(x, t, s) ds dx = 1 — n f G„(0, t, s) ds. (C.2)
Jo- Jo Jo

Since G^ix, t, s) depends on the difference t — s, G„wt = — and (C.2) becomes

0 < [ GJx, t, 0) dx = 1 — n f G„(0, t, s) ds, t > 0. (C.3)
J 0 Jo

This gives the desired inequality

C'

GJiO, t, s) ds < n'1. (C.4)
/•'o

References

[1] W. R. Mann and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions<

Quart. Appl. Math. 9, 163-184 (1951)
[2] J. H. Roberts and W. R. Mann, A certain nonlinear integral equation of the Volterra type, Pacific J.

Math. 1, 431—145 (1951)
[3] K. Padmavally, On a nonlinear integral equation, J. Math. Mech. 7, 533-555 (1958)

[4] A. Friedman, Generalized heat transfer between solids and gases under nonlinear boundary conditions,

J. Math. Mech. 8, 161-183 (1959)


