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TEMPERATURE OF A NONLINEARLY RADIATING SEMI-INFINITE SOLID*

By JOSEPH B. KELLER (New York University, University Heights, and Courant Institute)
AND

W. E. OLMSTEAD (Northwestern University)

1. Introduction. Let T'(z, t) be the temperature of a semi-infinite heat-conducting
solid occupying the half-space £ > 0. We suppose that its surface radiates energy at a
rate proportional to [T(0, r)]" and that the surface is heated by a source at a rate propor-
tional to a given function f(¢). Here » is a positive constant, the value n = 1 corresponding
to Newton’s law of cooling and » = 4 to Stefan’s radiation law. If T = 0 initially, then
for ¢t > 0, T is determined by the following initial boundary value problem:

Tz, t) = T..(z, ¥, >0, £t>0, (1.1)
T.(0, &) = aT7(0, &) — 1(D), t>0, (1.2)
T(z, 0) = 0, z 20, (1.3)
T—0 as z— o, t>0. (1.49)

Here o« > 0 is a given constant.

This problem has been considered by Mann and Wolf [1], Roberts and Mann [2]
and Padmavally [3], while Friedman [4] has considered more general problems of a
similar kind. From their work we can conclude that if f(f) is a piecewise continuous
bounded function then the above problem has a solution and it is unique. In addition
Padmavally [3] has shown that if f(f) is nondecreasing in the interval 0 < ¢ < 7 then
T(0, t) is also nondecreasing in this interval.

Our aim is to obtain more detailed information about the surface temperature
T(0, t) when f(£) > 0 and f(¢) is integrable. First we shall obtain a sequence of upper and
lower bounds on T'(z, £), which incidentally provide a constructive proof of its existence,
and we shall also show its uniqueness. Then we shall show that as ¢t = «, T(0, t) ~
7' ?E(=)t""* where E(») is the net energy flux into the solid through the surface.
Furthermore, we shall show that E(«) > 0 for n > 3 while E(») = 0 for n < 2. Thus
for n > 3 some of the energy which enters the solid remains there, while for n < 2 it is
all ultimately radiated away. We shall also examine the behavior of T(0, ¢) for small
values of ¢ as well as for large and small values of a.

2. Equivalent integral equation. A solution T'(z, ) of (1.1)-(1.4) can be represented
in terms of 7'(0, {) by the formula

TG, ) = [ 166, 1,9 ds
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+ [ @ = o0, OO, 96,z 1,9 ds,  £20, 220, (D)

This formula is obtained by applying Green’s theorem to T'(z, ¢{) and the Green’s func-
tion G, defined by the following linear problem:

G..=0G,.., >0, t>2s2>0, 2.2
G,..0, t,8) = p())G,(0, t,s) — &(t —s), t=s, 2.3
Gz, t,s) =0, t<s, 220, 2.4)
Gz, t,8) >0 as z— =, t>s. (2.5)

The nonnegative function p(¢) in (2.3) is arbitrary, and can be chosen to facilitate the
analysis. Any solution T'(z, t) of (2.1) satisfies (1.1)—-(1.4).
We now set z = 0 in (2.1) to obtain a nonlinear integral equation for T'(0, ¢):

10,9 = [ 1960, 1,9 ds

+ [ 166) = a0, 9170, 96,0, £, 9 ds,  t20.  (26)
V]
Once T(0, t) is found from (2.6), it can be used in (2.1) to yield a solution T'(z, t) of

(1.1)-(1.4). Thus the problem is reduced to solving (2.6).
Let us denote by u,(z, {) the first term on the right side of (2.1), i.e.

up(x) t) = ft f(s)Gp(xr ¢ 'S) ds. (27)

It is evident that u, is the solution of the linear problem (2.2)-(2.5) with §(¢ — s) replaced
by f(t). Now (2.6) can be written in the form

TO, 9 = %0, &) + f [o(s) — o«T"7(0, 9)]T(0, 5)G,(0, t, s) ds. (2.8)
]
When p(t) = 0, (2.6) and (2.8) become the following simple-looking equation:
T, ) =« [ 1) — aT"(0, 9lt — 97" ds. 2.9)
0

3. Bounds on 7'(z, {). Let us define the sequences of functions u; and p, as follows:

. = X T 2 ..
u’(x’ t) upl(x’ t)’ ] l, ) ) (3‘1)
Po(t) = Oy P,‘(t) = a[ui—l(oy t)]n—ly .7 =1, 27 e

By the maximum principle, G, > 0 and then from (2.7) and the assumption that f > 0
we have u; > 0. Now for any two functions p(¢) and 5(¢), the functions u, and u; given
by (2.7) are related by the integral equation

wie, ) = w0+ [ 166 = 0, G, 49 ds. (3.2)

From (3.2) it follows first that ﬁ, < wu, and then that 4, < u, < %, . By induction-we
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find
0fu; fus L SUp < - LUy £ - Supe S %,220, £ 200 (3.3)

The functions u,;-, form a monotone increasing sequence bounded above by w, ,
while the u,; form a monotone decreasing sequence bounded below by zero. Thus both
sequences converge to limits, 4’ and u°, defined by

lim s, = u°, lim u,; = u’. (3.4)
By using (3.2) in a suitable way, we can show that u° = u° = wu(x, t), say, and that
u(0, £) is the unique solution of (2.9). Furthermore, u(z, t) is the unique solution of
(1.1)-(1.4). (See Appendix A for details.) Thus the sequence u;(0, t) converges to the
unique solution T'(0, f) of (2.9), providing a constructive proof of its existence, as was
shown by Mann and Wolf [1] for a different sequence. From (3.4) and (3.3) it follows
that the u,;_, form an increasing sequence of lower bounds on T'(z, t) while the u,; form
a decreasing sequence of upper bounds:

0y € - LU - ST< - Ly < Lup Lu, 220,620,
(3.5)

In particular, (3.5) yields T'(z, ) > O.
Another interesting lower bound on T'(0, t) can be obtained by choosing p(t) = p*(¢)
in (2.3) where

p*(@t) = aMt™?, t>0 M>O0. (3.6)
In Appendix B we show that as{ — o,
ue (0, 8) ~ C*% C* > 0. (3.7)

We now use p* and u,. in (2.8) to obtain

t
T, t) = u,.(0, t) + af {Ms™" — [T(0, s)]""'}1T(0, $)G,.(0, t, s) ds, t>0. (3.8
0
Now T(0, ¢) is positive, bounded, and decays at least as fast as {™'* as t — «, as we see
from (3.5) and (4.8). Therefore it is possible to choose M so large that Mt~ — [T(0, t)]*~*
> 0 for all t > 0 provided that n > 3. Then it follows from (3.8) and (3.7) that

T, t) > u,.(0,1) ~C**  C*>0, n>3. (3.9)
We now assume that 0 < f(t) < C where C > 0. Then we define x and K by
u = anK"?, K = (C/a)'™ (3.10)

Upon setting p = u in (2.8), we obtain

70, &) = 4,0, §) + a(n — DK f 6.0, ¢, 5) ds
0 (3.11)
— a[ [(n — DK* — nK"'T(0, 5) + T*(0, )]G.(0, t, s) ds.

In (3.11) we use the easily proved inequality (n — DK — nK*'T + T" > 0ifn > 1,
T > 0, K > 0. We also use the fact stated above that G, > 0, and then (3.11) yields
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70, §) < 4,0, ) + aln — DK f G.0, t,5) ds
0o

<(C+ale — DK [ (60,4 9ds, n>1. (312

In Appendix C we show that the integral in (3.12) is bounded above by z7*, so (3.12)
becomes

T0O,t) <K = (C/a)'™, n > 1. (3.13)
To obtain another lower bound we define v by
v = oK = °CH, (3.14)
Then we set p = v in (2.8) and then use (3.13) to obtain
TO,d = u, (0, 9

+ f‘ (K™ = [T, 9]"}T(0, G50, t,8) ds > 4,0, ), n > 1. (3.15)

The lower bound u, in (3.15) is given by (2.7). For any constant v > 0, @, is given by

oy s £/%¢
G,00,t,s) =7 (t —5s) . E——————-——_l_ =39 dt, t>s, v20. (3.16)

We now use (3.16) in (2.7) and evaluate u, for ¢ large. Then (3.15) yields
T, t) > u,0,t) ~ C,t7%2 C,>0, n>1. (3.17)

4. Behavior of T(0, t) for t — «. By integrating (1.1) with respect to z from 0 to
o and with respect to ¢ from 0 to ¢ and using (1.2)-(1.4), we obtain

f () — aT"(0, )] ds = f T(z, 1) dx. 4.1)
o 0
The left side of (4.1) is E(f), the net energy flow into the solid up to time ¢, while the
right side is the energy in the solid at time ¢. We have shown above that if f > 0 then
T(z, t) > 0, and thus the right side of (4.1) is nonnegative. Therefore (4.1) yields

B) = [ 6 — aT"0,9)ds 2 0 i |2 0. 4.2)

0
From (4.2) we obtain
f T0,5) ds < o if f Hs) ds < . (4.3)
1] /]

We can now determine the behavior of T'(0, ¢) for t — = by utilizing (4.3) to evaluate
the integral in (2.9) asymptotically. We see at once that

TO, t) ~ =z fm [f(s) — aT™(0, 5)]) dst™"* ~ x B (=)t %, (4.4)

Upon using (4.4) in (3.9) we obtain
E(w) > «*C* >0, n>3. (4.5)
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By using (4.4) in (4.3), we see that when E(e) > 0 the integral of T™ is finite only if
n > 2. It follows that

E(o)=0n<2 (4.6)

Thus (4.4) shows only that T(0, {) = o(t™"’%) for n < 2. On the other hand, (3.17) shows
that T'(0, ¢) does not decrease faster than ¢™** for n > 1.
When n = 1 the explicit solution of (2.8) is

T, 1) = u,(0,8) ~ C.t7? C.>0, n=1, a>0. 4.7

Thus for n = 1, T(0, t) decays at the fastest rate permitted by (3.17). However if « = 0,
which we have hitherto excluded, then (2.9) shows that T(0, ¢) is independent of =
and is given by

T(O, t) = UQ(O, t) ~ Cot-l/z, Co > 0, a = 0. (4.8)

Comparison of (4.4) with (4.8) shows that for n > 2, T(0, t) decays at the same slow
rate O(t™'%) as if the boundary were not radiating. To understand this we write the
radiation rate aT" as o’({)T with the effective radiation constant o/(t) = «T"*. Now
for n > 1, &/(¢) tends to zero as { — =, so the boundary tends to behave as a nonradiat-
ing boundary (¢ = 0) as t —» «. Evidently for 1 < n < 2, &/(t) does not tend to zero
fast enough to make T'(0, ¢) decay as slowly as ¢7/%, but for n > 2 it does.

5. Perturbation expansions. To find 7(0, ¢) for small values of «, we use (2.9) and
solve it by iterations. For a small we can write the results as

T, 1) = u(0, ) — e [ 809
o (=) (5.1)
+ nela f U ((i)f,)z f (“°(° )’?,2 dr ds + 0@).

For ¢ small, we require f(¢) to be such that 4,(0, ) has the expansion
(0, 1) = at® + bt° + 0(°), t—0, g¢g> h. (5.2)

Then the iterative solution of (2.9) yields
T, &) = at’ + bt* + 0(°) — ax *a"T W™ 2[1 + 0(°7Y)

(5.3)
+ aznT-lazn—]InhIznh_),+l/gt(zn‘”h*.l [1 + O(tq_h)], t i O-
Here we have introduced I, , defined by
f (1 1/2 ds. (5.4)

To find T(0, ¢) for « large, we first use the Abel inversion formula to solve (2.9) for
T" in the form

0, §) = f(—‘) - 1.4 f (t — 9'T(0, 5) ds. G.5)
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Then we iterate (5.5) to obtain

TO, ) = & O
— a_2/nn-l7f_l/2[f(t)]1/n—l a /;‘ [)((s)]l/n(t _ s)—l/Z ds + O(a—i!/n), t > 0 (56)

The result (5.6) cannot be valid at ¢ = 0 because f(0) may not be zero, whereas 7'(0, 0)
must be zero. It is not valid for ¢ large if f(¢) decays too fast. Thus an initial layer expan-
sion is required at and near ¢t = 0, and another expansion may be needed for large ¢,
but we shall not determine it.

Appendix A. Existence and uniqueness. To show that u* = ’°, we consider (3.2)
with p() = ofu.;(0, )" and 5(t) = afuz;-,(0, £)]"”". Then taking limits as j — o
yields the equation

u'(z, ) — u'(z, t) = f ‘ L, s) — u°(0, )|z, t,5)ds, t>0, >0 (A

where

[w' (0, 9] — [0, 9]
uc(o) 8) - uO(O’ S)

Nz, t,s) = u(0, 8)Gy(z, t, s) = 0. (A.2)

By setting z = 0 in (A.1) we obtain

u(0, t) — «%0, t) = f‘ [ (0, ) — %°(0, s)]91(0, ¢, 5) ds, t>0. (A.3)

This can be viewed as a homogeneous integral equation of the second kind for »°(0, t) —
%°(0, £) with 91(0, ¢, s) as the kernel. If we choose a ¢ such that |u*(0, s) — «°(0, s)| <
[4°(0, t) — u°(0, £)| for 0 < s < ¢, then (A.3) yields

W@, & — w0, 0] < [, ) —u0, )| [ 0, 4,9 ds. (a9

For ¢ sufficiently small, say 0 < t < ¢, the integral in (A.4) is less than unity, which
implies that »°(0, t) = 4°(0, t) for ¢ < e Using this fact in (A.3), we can show that
u*(0, t) = u°(0, t) in a larger interval. This procedure can be repeated to show that
u(0, t) = u°(0, t) for all ¢t > 0. Then (A.1) shows that u*(z, £) = u’(z, ¢) forallz > 0,
t > 0. Thus there is a common limit u(z, ¢), so

wz, t) = u'(zr, t) = v’ t), =z>0, t>0. (A.5)

It follows from the definition (3.1) of u; and from (3.2) that »- and u,-, satisfy

ui(z, 1) = w(z, ) + f {p() — al;-1(0, 91" Ju;(0, 9)G,(x, t.5) ds.  (A.6)

Then since w; — u and u;_; — u, it is clear from (A.6) that u satisfies (2.1).

To show that the nonnegative solution constructed above is unique, we assume that
there are two solutions T, and T, . By subtracting (2.9) for T, from (2.9) for T, we
obtain
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T!(Oz t) - TZ(O,‘ t)

Y S N T70,8) — T:0,9) ,, _ -2
= [ 1120, 9 TQ(O.s)]{Tl(O’s)_Tz(o’s)(t 9 }ds. @A

Now by the same arguments used above to show that u*(0, £) = u°(0, ), it follows that
T.(0, t) = T.(0, t). Then from (2.1) it follows that T, (z, t) = T.(z, ?).

Appendix B. Asymptotic behavior of u,.(0, {). Tor establish the asymptotic pro-
erty (3.7) for u,.(0, t), we consider the initial boundary value problem (2.2)-(2.5) for
u,» With p(t) = p*(t) = aMt™' and with §({ — s) replaced by f(¢). Applying the Laplace
transform to this problem yields

dﬂ‘zt(xf P) + pﬁp~(ﬂ$, P) = 0: z > O: (Bl)

Gye. (0, p) = aM f ¢, (0, ) dt — J(p), (B.2)
0

U,e(z, p) — 0, T — @, (B.3)

Here 4,.(z, p) and F(p) are defined by
i) = [ e dt, @) = [0 d B.4)

The solution of (B.1) satisfying (B.3) is
tpe(z, p) = A(p)e™ . (B.5)

Here A(p) = ,.(0, p) must be determined from the boundary condition (B.2). Upon
substitution of (B.5) into (B.2) we obtain

—pA(p) = oM f (0, 8) dt — J(p). (B.6)
o
Differentiation of (B.6) with respect to p yields
_d _ _4a
dp P ”"A®] = —aMA(p) p i®. ®B.7

The solution of (B.7) which satisfies (B.6) is
A@) = —p~"* exp [2aMp'?] f exp [—2aME°17 (%) dt. B.9)
As p — 0, (B.8) implies that

A(p)Np-'“fo exp [-%M{”]fo (e dids as p— 0. (B.9)

Then a classical asymptotic result on Laplace transforms shows that
Upe(0,8) ~Ct7% as t— o, C>0. (B.10)

Appendix C. Estimation of an integral. To estimate the integral in (3.12) we con-
sider (2.2)-(2.5) with p(f) = p = constant. Upon integrating the differential equa-
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tion (2.2) we obtain

f‘_ f: Guilz, 8, ) ds dz = fol_ f: G,.=(x, t,8) dsdx = —fO‘_ G,.0,ts)ds (C.1)

By virtue of the boundary condition (2.3) we then have

f [ Gty 9dsaa=1~u f G.(0, 1, 9) ds. ©2)
Since G,(z, ¢, s) depends on the difference t — s, G,., = —@G, ., and (C.2) becomes
ogf:c;,‘(x, L, 0) de = 1—#f0‘ G.0, 4 9ds, t>0. C.3)
This gives the desired inequality
fot G0, ¢, 8 ds < . (C4)
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