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Abstract. The physical problem of steady-state heat conduction in a thin shell is

described by the "reduced wave equation" in which the differential operator is the

(generally noneuclidean) Laplacian for the surface. A similar equation gives the approxi-

mation for steady-state waves in a prestressed curved membrane. A modification of

the "geometric optics" asymptotic expansion, involving a Bessel function, is given for

the fundamental point source solution. This is proven to be uniformly valid in the large,

until a "caustic" is reached. Various features of the solution for a surface, which do not

occur for the plane, are discussed.

1. Introduction. The intention of this investigation is to increase the understanding

of the behavior of thin shells. In particular, wTe are concerned with the effects of geometry

in the large of some arbitrary, but smooth, surface. Since the equations from a complete

theory for the statics and dynamics of thin elastic shells are rather elaborate, a simpler

equation which retains many of the significant features is treated. This is the reduced

wave equation for a surface. The reduced wave equation for a plane is, of course, of

vital importance in many physical problems, and a great deal is known about the behavior

of the solutions, even for a nonhomogeneous medium, as in the text by Brekhovskikh [3].

The generalization to a surface, i.e. a two-dimensional noneuclidean space, is not,

however, devoid of physical interest. The problem of heat conduction in a thin shell

leads to the reduced wave equation on the surface, but with a change in sign due to the

dissipation of heat into the environment along the surface. The equation was derived by

Bolotin [2] and has been used for the investigation of the elastic stresses in a shallow

sphere due to a concentrated impulse of heat by Nordgren and Naghdi [8] and for a

general distribution by Nordgren [9]. An alternate derivation using a Legendre poly-

nomial expansion is found in the thesis by Yang [12], who determined the elastic stresses

due to impulsive line heating of a general surface using asymptotic methods. It should

be mentioned, however, that practical problems are infrequently encountered in which

the heating is so localized that the conduction along the surface is important. Generally

the shell just assumes the local environment temperature, or it is the conduction through

the shell wall thickness that is important.

As the obvious extension of the equation for a vibrating plane membrane, the

reduced wave equation on a surface provides an approximation for transverse waves in

a highly prestressed curved shell surface. Generally, however, the magnitude of the
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prestress will depend on the direction at each point. So not only is the surface geometry

encountered, but also an anisotropic wave speed.

Another instance in which the reduced wave equation, or rather "geometric optics",

on a surface arises is in the diffraction of three-dimensional waves due to a solid body,

as discussed by Lewis, Bleistein, and Ludwig [7]. These authors utilize a result obtained

independently by Ludwig and Kravtsov [5] for an asymptotic expansion which is uni-

formly valid in a region of E2 or E3 containing a caustic, a line on which the exponential

"geometric optics" expansion is singular. The geometric optics solution is also not valid

in the neighborhood of a source point. Avila and Keller [1] used the method of matched

asymptotic expansions to connect the Bessel function solution at a source point in E2 ,

similar to the solution used in [8], [9], to the geometric optics solution valid away from

the source.

In the present paper, a Bessel function solution is obtained which is uniformly

valid for a surface containing a source point. The difficulty in using the solution is, as

for the plane, in the determination of the rays, which are the characteristics of the surface

eiconel equation. For constant wave speed, the rays are the geodesies on the surface.

Once the rays emitting from the source point are known, however, all remaining parts

of the solution can be obtained by simple integrations.

In Sec. 2 an error estimate for the one-term solution for the heat conduction equation

(isotropic, but inhomogeneous) is obtained. This solution is valid everywhere on a surface

on which a function, involving the Gaussian curvature of the surface and the gradient

of the "wave speed", is nonpositive. When this function is positive, then an envelope

of the rays (a caustic) can occur at some distance from the source. On a caustic the present

solution becomes singular; however, the correction can be made with the Airy function

solution of [5], [7].

In Sec. 3 a formal asymptotic expansion is obtained for the prestressed membrane

waves (anisotropic, inhomogeneous). All terms in the expansion are shown to be well-

behaved in the region containing the source point.

For the notation used, the analysis of Sec. 2 can be done entirely in orthogonal

coordinates, so the Lam6 parameters are used, which make some things clearer. For

Sec. 3, however, the natural coordinates turn out to be nonorthogonal so tensors are

utilized, which clarify other aspects of the problem.

2. Heat conduction equation. The equation we first consider is

L[u\ = Am - (X2C~2 + D)u = -\2C'2f (2.1)

where X is a constant, C, D, and / are prescribed functions, and A is the Laplacian operator

for a region 2 of a smooth surface imbedded in E3 . For the present investigation it is

sufficient to consider only orthogonal coordinate lines on 2, with parameters a! and a2 ,

for which the first fundamental form is

ds2 = A i dai -)- A\ da2 ,

in which Al and A2 are the Lame parameters [11]. The differential operators are then

1 f d (A2du\ . d /A, flu VI /OON
w \_dal \Ar da J + da2 \At daj J ' ( }

D 1 dB du 1 dB du /0 0, s
VB-Vu - A, ^ + A2 da2- (2.2b)
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The general problem is to find the solution of Eq. (2.1) with prescribed conditions

on u or its normal derivative on the boundary curve T of 2. Because of the obvious

difficulties with "exact" solutions, a result asymptotically valid as X becomes large is

sought. For the heat conduction problem X is inversely proportional to a power of the

shell thickness and therefore tends to be large for thin shells, for which the approximations

leading to (2.1) are valid.

Numerous investigations of asymptotic behavior of solutions of partial differential

equations have utilized an expansion due to Debye [Ann. Phys. 35, 1911] in which an

exponential function with a large argument is of dominant importance. However, a

satisfactory error estimate has apparently not been obtained, the leading term of the

expansion becomes singular on certain lines (caustics), and generally the particular

solution for only smooth functions / can be readily obtained. If the source function /

is nonzero only in a small region, the exponential expansion can be used to obtain the

solution at sufficiently far distances [1].

The problem of computing the fundamental solution for a point source is reminiscent

of the problem of the ordinary differential equation with a transition point resolved by

Langer [6]. At a transition point the ordinary differential equation loses all resemblance

to an equation with constant coefficients. The uniformly valid asymptotic solution is

formed with the solutions of the "comparison" equation which approximates the given

equation in the vicinity of the transition point. For the class of equations considered

in [6] the comparison equation is Bessel's equation. Similarly, near the source point the

"geometric optics" exponential approximation to the solution of (2.1) loses validity.

The correct solution must have the same behavior as (2.1) in the neighborhood of the

source. Hence one is led to the Bessel function K0((x2 + y2)U2) which is the fundamental

solution (in fact the Green's function for the infinite domain) for the equation — vxx —

v-.-j ~r v = 0, which approximates (2.1) in the neighborhood of a given point with the

proper choice of x and y.

Just as the solution for the transition point problem may be obtained, the coefficient

and argument of the comparison equation solution are replaced, for the moment, by

arbitrary functions and So we consider the function

v(al , oc2) = , a2)i^0[Xf(«! , a2)]. (2.3)

The operator (2.1) acting on this function gives

L[v] = 2^(Xf)[2XW- Vr + A^Af - *X(Vf-Vf)/f]

+ i£0(Xf)[— ' — Vf-Vf) + Ai/- — iD].
(2.4)

The functions f and \p are now chosen to reduce the magnitude of (2.4).

Eiconal equation. The function f is chosen to make zero the terms multiplied by

the highest power of X. This gives the first-order equation

Vr-Af = C~\ (2.5)

which is the familiar equation of geometric optics for light in a piedium in which the

velocity of light is C. The characteristics [4] satisfy the equation

u | dAi . 2 2 dAi , A2 dA2 , dC .

At w + 37te °'a' - "IfST"w - ~c»3rto M
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and the same equation with the subscripts 1 and 2 interchanged. Primes denote dif-

ferentiation with respect to a parameter a related to the change in f and arclength s

along the characteristic by

da = Cds = C2 df. (2.7)

Since (2.5) states that ds = C d£ along the gradient lines of the solution surface f =

f(a, , a2), the "gradient lines" must be characteristics.

Because of the analogy with geometric optics the characteristics, which for the present

problem turn out to be "temperature paths", will be called "rays". For C = 1, the rays

are the geodesies on 2, which when 2 is a plane surface are straight lines. Generally,

the ray passing through a point P of 2 at a given angle can be determined uniquely.

When using the exponential expansion, it is often useful to consider the rays which

intersect the boundary curve at a prescribed angle as indicated in Fig. la. For the

present solution (2.3), the rays emitting from a source point are considered, as shown

in Figs, lb and lc. It is convenient to form the polar coordinate system consisting of the

rays, on which f increases, and their orthogonal trajectories, on which f is constant.

The effect of variable C on the rays for the plane is extensively discussed by Brekhovskikh

[3]. A similar effect occurs for a surface; the rays diverge more rapidly than the geodesies

in the direction of increasing C.

For completeness, we note that the rays connecting points P and Q of 2 also satisfy

the variational problem of finding the paths which provide stationary values of the

integral

= £ r wC

On such a path fPQ =7.

Polar ray coordinates. A natural choice for coordinates is f and /S which is the

angle, measured from a reference line, at which a ray passes through P. The metric

at a point Q in terms of the coordinates with origin at P is

ds% = Cl(dfPQ + G\o dffPQ). (2.9)

When C = 1 this is the metric of the geodesic polar coordinate system, and the lines

of constant f are the "geodesic parallel circles" [11], When only the single coordinate

system with origin P is considered, the P and Q subscripts will be omitted.

The function G = G('C, 0) can be computed from the equation for the Gaussian

curvature of the surface

  1_^ ~ C2G
A (dGC\ . A ( dC

\C d$) + d/? \C(7 3/3
(2.10)

which is, however, a nonlinear partial differential equation. The Laplacian of C, in the

coordinates (2.6), is

AC = Wj[k (r;^) + ̂ (^).3/3/J

So the explicit dependence on f} may be eliminated by taking the sum

GC{CK + AC) = + GVC- VC.
of
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a. Rays from a Boundary Curve

Increasing C

b. Rays for C=1 (Geodesies) C. Rays for Variable C for Plane

for Plane

Fig. 1. Rays on a surface.

Thus the ordinary linear differential equation for the variation of G along a ray is obtained:

+ X*G = 0, (2.11)

where the coefficient 3C* = C'SZ + C AC — VC-VC has a value at each point of 2

which is independent of the choice of coordinate systems. Since (2.11) is the equation
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discussed in [11] for the "geodesic radius" of the geodesic parallels of a surface 2* with

Gaussian curvature X* and the metric

(.ds*)2 = df- + G~ dp2, (2.12)

it follows that there is a conformal mapping of 2 onto 2* such that the rays on 2 become

geodesies on 2* and the polar coordinates ('(, 6) become polar geodesic coordinates on 2*.

The behavior of geodesic polar coordinates is well known [11]. The function G has

the power series expansion along a given ray

g„ = r - x? £ + £ + o(rt,

so the direction of the ray affects the fourth-power term. Since G dO is the "distance"

between two "adjacent" rays, the adjacent rays intersect at the points at which G = 0,

the locus of which is an envelope of the rays from P, i.e. a caustic. No caustic forms

if X* is nonpositive in 2, since G would be an increasing function of f. Whether or not a

caustic forms, the rays from P will generally intersect away from P, and may even return

to pass through P.

However, there is a neighborhood of P in which the coordinate representation (2.9)

is unique. Furthermore, Whitehead's theorem [11] states that there is a neighborhood W*

of any point R* of a smooth surface 2* that is convex, i.e. any two points of W* may be

joined by a geodesic lying in W*, and simple, i.e. the geodesic is unique. It follows that

there exists a neighborhood W of any point R of the surface 2 for which the polar co-

ordinates (2.9) provide a unique representation of W if the origin P is any point in W.

If the entire surface 2, with the boundary curve r, is a IF-neighborhood, then the be-

havior of the solution of (2.1) will be seen to be similar to that for a plane region with

C and D constant. If 2 is not a IF-neighborhood, then complications arise because of

the multiplicity of ray paths between points.

Since coordinates with origins at different points P and Q will be needed, we note

that Gpq = G0P . This follows from the initial conditions

r - r - n ^Kjpp — yjQQ — u,
p

d(?QR

dfos
= 1,

R-Q

gives

and the (self-adjoint) equation (2.11) which G satisfies. Let R be a point on the ray

between P and Q. Then dfPR — —d'gQR , so that

0 = 6o/'(l§7 + K%Gp«) ~ Gp«(^Wu + K%G°»)

n — d p dG pr „ d(?qR~l

" dtp** L °K df™ J '

The bracketed term must be constant; the difference in its value at R = P and R = Q

gives the result that GP0 = GaP .

Transport equation. The function i/ of (2.3) is chosen to make zero the terms of (2.4)

multiplied by X. This gives a first-order partial differential equation but, if the coordinate

system (2.9) is used, an ordinary differential equation is obtained for the variation of ip

along a given ray
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= o,d* [ldG I

2w + *iGTri.
which has the solution

"Apq = (£pq/GpqY/2 = iPqp • (2.13)

This solution is well behaved in the neighborhood of the origin, i.e. as Q —> P, and only

becomes singular at a caustic, at which G = 0 but f > 0. In particular, the quantity

is bounded, except at the caustic, and, near the coordinate origin P, has the expansion

A*PQ = (^)p ~ + 0(rt0).

When X* is constant the solution of (2.11) is G = (X*)~1/2 sin (X*1/2f), which gives

= [X*1/2f/sin (3C*1/2f)]1/2, which has the Laplacian

^ A"^ ~ 4C5 [* + sin2 (X*1/2f) ~ 3C*p]'

For 3C* < 0, A\p/\p is bounded for all f. For X* > 0 the caustic is at f = irX*~1/2; for

0 < j" < 7rX*~1/2 the quantity A$/\p is bounded.

Error estimate. The choice of f and \p has reduced (4) to

L[vPq\ = Jpq vPq (2.14)

where

fpQ = —Dq -| 'j'*'0 , Vpq = \pPqK0Q^£pq)/27T.
Y PQ

The difference will now be estimated between vPQ and a function uPQ (the fundamental

solution) which has the same logarithmic singularity at P and satisfies the equation

L\upq\ — 0.
We consider first a region of a surface 2 C W, so that , ^pq , and hence vPQ exist

and are unique for every pair P, Q t 2. The function vP0 satisfies the requirements of a

"parametrix". Thus, following the discussion in [4], uPQ may be written in the form

UpQ = Vpg + J pprVRq dHR , (2.15)

where pPR is an unknown function and dllR is the differential surface element at the

point R,

dH R — (^4.1^4.2 doi\ doc^)r

= CrGpr d£PR d& pr ■

The operator L reduces this equation to an integral equation for pPQ :

PPQ — fpQVpQ + I PprIrqVrQ
■> 2

dHR

If a function zP0 is introduced, pFQ = zPqVpq , then the equation for p becomes an equation

for z:

ZPQ = fpQ + f fRQZpR 1dHR .
J 2 VPQ
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If t is a bound on the quantity, for all pairs P, Q t 2,

e > 1jpQ [max
WprVrq

VpQ
dHr;

then we obtain |2Pq| ^ \fpo\ !/ PQ | max e \zpq\ ma* • So, if t < 1, \z\ max < l/l max /(I - 6).

The relation between the fundamental solution and the parametrix can be written

^ = 1 + [ zPX V^«o dHR
VpQ Jz VpQ

from which the estimate is obtained

UpO

I VpQ

1 < |«|.„ TTj < y— (2-16)
|7 I max -*• '

Therefore, if e is small, the fundamental solution uPQ is approximated by vPQ uniformly

for all P, Q in 2.

To show that t is small, in fact is 0(X_1) as X —» <», it appears to be necessary to go

through the usual saddlepoint analysis of the integrals with integrands of exponential

behavior. The significant behavior of the integral I = jz \vPRvRQ/vPQ\ dHs is retained,

however, if the limiting case of the homogeneous plane is considered. Then this integral

becomes (for X real)

Pr)Kv(\£ rq)*7 /"^7T J o J o
v t\ V \ $PR<lfid$PR
-"-o(Xf pq)

where fso = [fPR + tpQ ~ 2£pr?pq cos /3] . From the formulas in Watson [10], the

result for the first integration is

/»2 T

J 0
rq) dft — 27riiLo(Xfpo)/r)(XfpS),

when £Fq > i^r-K , and with the £>a and <!>B interchanged when $rQ < $PR . Thus I is

/ = r° Kn(H)i0(u)t dr + f Kipitk d$.
Jo \Airo) j{*q

Since we have the estimates

K0(x) < (ir/2xY/2e-x, h(x)K0(x) < l/2x,

I is easily found to be bounded by I < (fPq/2\) + (t2/4X2).

For the general surface with variable C, the integral on the contour fPS = const, is

performed first; the significant contribution comes from the saddlepoint at =

|i>« — • Then the integral for 0 < $PR < <*> gives the result similar to that for the

plane, that I = 0(fPa/X). Thus, for an finite region 2, e will be small for a sufficiently

large value of X, if VjP0 is bounded in 2. The details of the estimation are tedious and

follow the usual saddlepoint procedure, and so are omitted. The result may be shown

to hold for complex X, for |arg X| < ir/2. When arg X = tt/2, the "saddlepoints" become

points of "stationary phase", so the point of maximum fR0 gives the same contribution

as the point of minimum , but the result is the same.

Thus we have

Upq = vPq[ 1 -f- 0(X )] (2.17)
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for all P and Q in 2. Thus vPQ is much more than a parametrix, since it provides a uni-

formly valid approximation to the fundamental solution despite the exponentially

decreasing behavior at large values of Re \£P0 .

Regions of multiple ray covering. If, instead of the actual surface, the Riemannian

differential manifold with the metric (2.9) is considered, then the result (2.17) will hold

for any simple, convex region 2 of the manifold. However, a simple, convex region of

the manifold, if referred back to the surface, may provide a multiplicity of coverings of the

surface. For an example, consider a cone with C = 1. The difference between the cone

and the plane is indistinguishable in Eq. (2.1), which depends only on the metric of

surface, and in the raj' coordinates (2.9), which are, for this case, simply the polar

coordinates in the plane. However, the ray coordinates provide a unique representation

for the plane, which corresponds to the Riemannian manifold. The ray paths on the

cone may be visualized, as in [11], by mapping the cone on the plane by rolling the cone

on the plane with the vertex fixed, as indicated in Fig. 2. Point Q of the cone touches

the plane first at Q, then at Q, , Q2 , • • • as the cone is rolled in one direction and at

Q-1 j Q-2 ; • ■ • as the cone is rolled in the opposite direction. Straight line rays on the

plane correspond to rays on the cone which spiral inward to some minimum distance

from the vertex, then spiral outward. Any straight line between P and Q, on the plane

will correspond to a ray path on the cone between P and Q, which is different for each

different Q{ .
Now the solution (2.17) is valid for any ^-neighborhood 2i of the cone, such as that

with the boundary curve T, in Fig. 2. For a region 22 of the cone which is not simply

connected, such as the complete vertex portion cut by a closed curve r2 at a constant

distance L from the vertex, the solution (2.17), obtained by expanding the contour I\

so that 2, covers 22, will be discontinuous on the generator, the opposite sides of which

two portions of I\ will approach. However, the solution (2.17) is valid for a ^-neighbor-

hood of the plane such as the circle generated by the contour r2 in Fig. 2.

Fig. 2. Mapping of cone on the plane.
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If sec <p, where <p is the angle between the normal to the cone and the axis, is equal to

an integer, then the multiplicity of the mappings of 22 on the plane will exactly cover

the circle of radius L. A solution for the plane which satisfies continuity and symmetry

for each of the sectors can be obtained by placing equal sources at P and its image points.

Equivalently, we may take the solution for the plane with the single source at P, and then,

for the cone, add the solutions for all of the sectors. Thus for the plane the fundamental

solution is uF0 = iv0(XfPO)/27r, but for the cone uPQ = SJ^0(XfPOi)/27r, where the summa-

tion is over the distances £POi on all the geodesic paths connecting P and Q.

Generally when the region 2 of the surface is not simply connected, but free from

a caustic, the fundamental solution is

UFQ = 7T E <Apo^o(Xfp0i)[l + 0(\-2)] + fP0 (2.18)

where the summation is over all the ray paths connecting P and Q. If the number of

paths is the same for all points Q of 2, such as for the cone with sec <p equal to an integer,

the term jPQ may be set equal to zero. But when the number of paths is different for

different regions of 2, such as for the cone with sec <p not equal to an integer, then jPQ is

needed to satisfy the continuity conditions. The boundary value problem for fPQ may be

solved by dividing 2 into ^'-neighborhoods and using the analysis in [4],

There is also the question of convergence of the sum (2.18). A general classification

of the totality of ray connections between points, which would be needed, does not seem

to have been done. It does appear that for most surfaces that come to mind, the sum

(2.18) is rapidly convergent and the term fPQ is negligible, because of the exponentially

decreasing behavior of the Bessel function.

Regions not covered by rays. The opposite situation can arise where, instead of the

coordinates (2.9) overlapping 2 several times, the coordinates (2.9) may only partially

cover 2. For example, consider the surface of revolution which has the metric

ds2 = dp2 + r2 dd2,

where p is the meridional arclength, 6 is the circumferential angle, and r = r(p). If C is

a function only of p then the rays can be obtained by quadrature. From (2.6) the ray

equations are

<fp _ ,(ddY dC d2$ r' dd dp _ dC
j2 ^ \da) C3 dp ' da2 r da da-da2 \daj C dp ' da r da da C r 66

When C = C(p), the second equation gives dd/da = Ar~2 where A is a constant. Then

the first equation is

V2 = iVV - (T3C",
A A. (iR
2 dp \da.

which yields a = (C~2 — A2r~2)~1/2 dp. It is convenient to introduce a, the angle

between the rays, and the meridian tan a = r dd/dp, from which is obtained, with the

obvious identification of the constant A,

(r sin a)/C = A = (r0 sin a0)/C0 ■ (2.19a)

This reduces to the theorem of Clairaut for C = 1, when the rays are geodesies. In terms

of a = a(p), we have
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r = f C~* da = j' (C cos a)-1 dp, (2.19b)

d = d0 + f tan a.dp/r. (2.19c)
J Po

For the ray coordinates (2.9) from the point P at (p0 , 90), we have = a0 and, after

some manipulation,

n r cos a 66 , f , 2 dp
(j = —-x— -— = cot a0 cot a / tan a 77- 

C da0 JC cos ■

= cot an cot a / tan2 a d$.
Jo

(2.19d)

A particularly simple reduction of (2.19) occurs for a one-parameter family of variation

in C. If we set

dd _ tan a dp C

da r da r2(d/dp)(C /r)

equal to a constant —k, then C must have the variation

C = C0(r/r0) exp ^ — k dp/rj. (2.20)

For this variation the equations for the rays (2.19) become

„ _ Sin (tto - «)
sin a = sin a0 exp \ —k J dp/r) , £ = — , (2.21)

1 rC sin OL

8=6 0 + k(a0 — a), G = £.

Incidentally, since \p — (f/(?)1/2 = 1, the remainder term of (2.17) is identically zero

when D = 0, so the asymptotic solution turns out to be an exact solution for a non-

trivial class of problems.

For a dome with r(p) an increasing function, the rays (2.21) spiral around the dome

inward to the apex, when k is negative, and so give a multiplicity of ray connections

between points. However, when k is positive a decreases from the initial angle a0 to zero,

which gives the rays shown in Fig. 3. The rays from P are all contained in the sector

C increasing

Fig. 3. Rays 011 a surface of revolution with increasing C.
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— ir/fc <6—6o < Tr/k. Since there is a unique ray from P to every point in the sector,

there is no caustic. Any sector 0 < 6 < 0maI , where 0maI < ir/k, is a W-neighborhood.

For a sector 2 with > ir/k, an additional function must be added to (2.17) which

removes the discontinuity at \6 — 60| = ir/h to provide an asymptotic fundamental

solution for 2.

3. Wave equation. Under static loads, the stresses in a curved membrane satisfy

the equilibrium equation T V-N + p = 0, where T is a constant giving some average

membrane force per unit length, N is the symmetric dimensionless stress tensor, and p

gives the prescribed vector force per unit area of the surface. If small-amplitude, trans-

verse vibrations of this prestressed membrane are considered, then an approximate

equation for the waves has the form1

L[u] = V • (N ■ Vu) + OrC-* - D)u = 0, (3.1)

where m is the frequency parameter. For a membrane under an isotropic state of tension,

the dimensionless stress tensor is just the identity dyad N = 5 = a' (x) aa , in which

aa and a" are the base and reciprocal base vectors, respectively, and ® denotes the

tensor product [11]. Then (3.1) reduces to the equation studied in the previous section

(2.1), except that X2 has been replaced by — yu2, so that we now obtain oscillatory rather

than exponentially-decreasing solutions. Thus the objective of this section is to determine

the effect of a general N, giving an anisotropic speed of sound. Furthermore, rather than

repeat the error estimate of the one-term solution of the preceding section, we obtain

the formal asymptotic expansion for the solution.

The Bessel function is the solution for waves on the isotropic plane membrane

emitting from a source point [1]. As in the preceding section, we take a function

a0(x°)J(rt(xa)) and find that

Lfa0J(Mf)] = - Vf-N- Vf)a, + V-(N- Va.) - Da0]

+ J'(Mf)M[2Va„-N-Vf + ao(V-(N-Vf) - (Vf-N-Vfl/f)].

Setting the term multiplied by p.' to zero gives the eiconal equation

vf-N-vr = rs, (3.3)

while the coefficient of y. gives the transport equation

2 Vao-N-Vr + «o(V-(N-Vf) - (Vf-N-Vf)/f) = 0. (3.4)

To cancel the remaining term of (3.2) it is necessary to add another term to the function

a0J(n{). As in the case of the ordinary differential equation, the proper term to add is

the derivative of J(juf)- For a function a, + 1 undetermined at this point,

Z,[ai + 1fJ'(Mf)]

= -J(M fMai + ,Vf-N-Vf + f(a, + 1V-(N-Vf) + 2Va, + 1 -N • Vf)] (3.5)

+ J'(Mf)f(V-(N-Va( + ,) - Dai + ,).

Thus the appropriate expansion is found to be

u — X + f</'(Mf)a. + iM-*~1]- (3-6)
1-0.2.4 , • • •

1 The validity of this equation does not seem to have been established, except for the plane surface;

but it has at least some of the features of the more exact equations which include the coupling with

tangential motion.
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Taking L[u] = 0 and setting the coefficient of each power of n to zero gives the equations

for the coefficients

2Va,-N-Vf + «4[V-(W-Vf) - Vr"^"Vr] = - V• (N• Va,•_,)], (3.7a)

2Vat+1-W-Vf + + Vr"^"Vr] = j [~Dai + V• (N• Va.)],(3.7b)

for each value i = 0, 2, 4, • • • . Thus if a_i is set equal to zero, with i = 0, (3.7a) is the

transport equation (3.4) and (3.7b) gives . Then with i = 2, (3.7a) gives a2 and (3.7b)

gives a3 ; and so on. The properties of the solution of the eiconal equation (3.3) and the

system (3.7) will now be discussed.

Eiconel equation. Eq. (3.3) for the phase function is, as before, a first-order nonlinear

partial differential equation

F = Vf-N-Vf — C~2 = 0. (3.8)

The canonical form of the equations for the characteristics is [4]

dx°/da = dF/dpa, (3.9a)

dpa/dc = —dF/dx", (3.9b)

d$/do = pa(dF/dpa) (3.9c)

where a is the appropriate proportionality factor and where Vf = a"pa. A more lucid

form can, however, be obtained. The tangent to the (projection of the) characteristic

on the surface is obtained from (3.9a)

dr/da = 2ia(dx"/d<j) = dF/SVr (3.10a)

where r is the position vector to a point on the surface. The strip condition (3.9b) gives

the change in the gradient along the characteristic

£Z£_— (VF)„ + (vf.b.|a,) (3.10b)

where (VF)vf is the gradient of F with Vf held constant. For the actual calculation of

the characteristic on the surface, only the intrinsic part of (3.10b) is needed: 5- (dV^/de)

= — CVF)vr . For the variation in the solution along the characteristic, (3.9c) is

! = (310c>

Using (3.10), the characteristics of Eq. (3.8) are found to be described by

^ - 2N-Vf,  (vr— -vr)a\
d' d° K ' (3.11a-c)

|-2V r-H-vf. J,.

From (3.11a) the relation between a and the arclength along the characteristic is obtained:

(dr/dcf = 4Vf-N-NVr. (3.11d)
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If Vf is prescribed at a point on the surface, (3.11a) gives the direction of the char-

acteristic, and (3.lid) gives the increment in distance with an increment in c, then (3.11c)

gives the increment in Vf. Thus a direct step-by-step numerical procedure can be used

for the computation of the characteristic curve on the surface, after which the value

of the solution f requires a simple integration (3.11c).

Polar coordinates. It now is obvious that each of the set (3.7) also reduces to a

first-order ordinary differential equation along a characteristic. The physical interpreta-

tion is that energy is propagated along the characteristics (rays). Thus an obvious choice

for coordinate curves on the surface are the rays emitting from the source point P,

as was done in the previous section. Now, however, the rays are not orthogonal to the

contour lines, i.e. the lines of constant f. Thus the rays and wave fronts are not or-

thogonal, as before, but still provide the natural coordinate system to use.

Therefore we choose

x1 = f, x2 = 0, (3.12)

where /3 is some measure of the angle between the rays from the source point P and some

fixed line. The constant of integration in (3.11c) and the sign of a are chosen so that

f = 0 at P and increases with the distance from P. The base vectors are

where

and where the tensor

a2 = aVf-t,

a = \_0-i\O-22 &12] = |ai X £2!,

z — a [&! (x) a2 3-2 (x) a>],

when dotted with a tangent vector, gives a 90° rotation of the vector. The reciprocal

base vectors are

a1 = Vf, a2 = -CVVN-Vf = cT'art.

To obtain the correct choice for the second coordinate yS, the local behavior of the

solution at the point P must be considered. The stress tensor at P is

N = (x) e, + N2e2 ® e2 , (3.14)

where TNX is the maximum tension in the direction of the unit (tangent) vector e! ,

and TN2 is the minimum tension in the orthogonal direction e2 . Thus on the local

tangent plane, with coordinates xx and x2 in the directions ei and e2 , Eq. (3.1) is

*.j d u , -\j d XL . 2—2 f\
Nj + iV2 —o + /1C u = 0.

uX1 OX2

In terms of a "stretched" coordinate system

= x^r172, x2 = x,N;U2

the equation becomes the reduced wave equation, giving the source solution

u = j(g [x? + xir)
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and the polar angle /3 = tan-1 x2/xi. Returning to the local physical coordinates, we have

f = C-'lN^xl + N^xl]1'2, 0 = tan"1 g • (3.15a, b)

The transformation from the rectangular cartesian coordinates to the polar coordinates

gives

«" (ffe!)" - (wet; 0.150
while the base vectors of the polar coordinates are, from

a: = a2 = — N^x^n^C'2, (3.15d,e)

and the reciprocal base vectors are

a = Vf = + iVJ1x2e2), a2 = (af)-1^, — x2eO. (3.15f, g)

Thus (3.15) gives the local behavior of the f, /8 coordinate system at the point P and so

provides the appropriate initial conditions for the computation of the effects in the large.

As shown by (3.15d), the rays do emit radially from the source point. For the geodesic

curvature of a ray in the large

d (dr\ . JdaY dv di"•-SW'5-2W

which is not particularly illuminating. However, for isotropic tension N = 6, this form

readily gives k„ = C'1 VC-t-dr/ds, which was obtained more awkwardly in the preceding

section (2.8).

Transport equation. With the ray polar coordinate system computed, the solutions

of the transport equations (3.7) are very easily obtained. The equation for a0 (3.4) is

|^ + a„[V-(C-2ai) - c-2rl] = 0.

But V -&i = da/a dxl, so the solution is

do = (<r1C2rr1/2. (3.16a)

Because of the behavior at the source point (3.15c) a0 is well-behaved, and becomes

singular only at a caustic, on which a = 0, which must be a finite distance away from

the source point. The nonhomogeneous form (3.7a) readily gives

a; = ba0 [' (fitfryiDctt-i - V-(N•«,_,)] df. (3.16b)
Jo

Thus if a,_! is well behaved, so will be a, .

The equations for ai , a3 , ■ ■ ■ (3.7b) have only a change in sign, which makes the

complementary solution singular. However, only the particular solution is needed, which

is well behaved:

«1+1 = KC"2«f)"1/2 f (CT'arn-Da, + V-(N-Va,)] df.
Jo

Thus if the metric coefficients and the prestress are analytic, then all the a, are analytic
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in a finite region around the source point. If the coefficients and prestress have a bounded

high derivative, then the a, will be well-behaved until a certain unbounded aN is en-

countered. Presumably, as in the case of the ordinary differential equation, it would

be possible to truncate the series (3.6) and then proceed through an error estimation

similar to that of Sec. 2, with the result that the error is of the magnitude of the

first term in the series neglected. For practical purposes, however, if the second term

in the series is not reasonably small in comparison with the first, then this entire approach

is useless.

The one feature of the isotropic that has not been generalized to the case of anisotropic

tension is the simple equation for the direct calculation of a = |ax X a2| along a given

ray. For the isotropic case a = C"G, and G satisfies (2.11). A similar simple equation

for the anisotropic case has not yet been found.
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