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CONVERGENT INTEGRALS OF SOLUTIONS
TO A LINEAR DIFFERENTIAL SYSTEM*

By H. E. GOLLWITZER (Drexel University)

If q is positive, continuous, monotone and unbounded on [0, <»), then every non-

trivial solution of the second-order differential equation

y" + q(t)y = o (' = d/dt) (i)

is oscillatory and the corresponding conjugate energy

E(t, y) = ?(0~y«)2 + y(ty

is nonincreasing. Although lim,_„ E(t, ya) = E{<*>, y0) = 0 for at least one nontrivial

solution y0, it might be the case that E(,yi) > 0 for some solution yx. A more complete

discussion can be found in [1, p. 85], [2, p. 510], [3], [4], In light of this possible behavior,

Hartman and Wintner have shown that

f y = lim f y
J 0 t -►oo J 0

(2)

exists for every solution of (1). Their proof was largely geometric and the details were

outlined by Hartman in [2, p. 513]. This result, although plausible if q is of sufficiently

regular growth so that asymptotic integration techniques are available, is interesting

since J" Vi might exist and yet lim,_.„ sup \yi(t)\ might be positive for a certain solution

yi . A similar phenomenon is encountered when one studies the Fresnel integrals since

J" sin i1 dt exists and lim,„„ sup |sin t21 = 1. To continue, Hartman and Wintner did

not observe that

f r"V (3)
Jo

exists for every solution of (1). This follows from the identity

q y = ? y \o - y dq
J o •'O

since y is bounded, q'1/2 is of bounded variation and q is unbounded on [0, °°). If we

write (1) as a first-order system x' = A(t)x where

0 1
A(t) =

and define

r(<) =

x -
- 2(0 0.

1 0

.0 q(t)~w*.
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then the limits (2), (3) can be written in vector form as

Tx. (4)
/Jo

Our purpose in this note is to discuss the limit (4) as a special case of a similar property

of solutions of a linear system

x' = F(t)x. (5)

This approach, which contains the previously mentioned work of Hartman and Wintner,

is straightforward and does not rely on the geometry of the solution curves. We assume

throughout that

F(t) = -4(0 + Bit) (6)

where the d X d matrices A(t), B(t) are continuous and A(t) is nonsingular on [0, <*>)•

The matrix function F(t) is possibly complex-valued, and hence solutions of (5) are

generally complex-valued.

Before giving the main result some notation must be explained. For convenience,

we take the norm of any matrix M to be the sum of the absolute values of its components

and denote this sum by \M\. This should not cause confusion since it will be apparent

from the subsequent formulas how one should interpret the various norms. If M(s) =

(M,j(s)) and N(s) are m X n and n X p matrix functions defined on [0, =°), respectively,

then

f d(M)N = ( f' Z A"*,(s) dMik(s)) , f d(M)N = lim f d(M)N,
Jo >^0 fc-1 / Jq t—co Jo

provided that all indicated Riemann-Stieltjes integrals and limits exist.

Theorem. Let F and a nonsingular matrix junction r be such that |r(0^(0| is bounded

for every solution x oj (5). Assume that a d X d matrix function D can be chosen so that

the following conditions hold:

(i) \DTA~lBT'1\ is integrable on [0, =°);

(ii) iDIM~1r~Il -> 0 as t ;

(iii) the matrix function Z)rA-1 is continuous, locally of bounded variation and

Jo dfDrA^1)!^'1 is of bounded variation on [0, <»). Then

f DTx = lim f DTx (7)
J0 t— co J0

exists for every solution of (5).

Proof. Multiply (5) by DTA'1 and integrate by parts to obtain

DTA-'x \o = [ DTx + f (DTA~1BT~1)Tx + [ d(M)Tx (8)
J 0 J o *^0

where M(t) = j'a d(DTA~')T~l. The second and third integrals in the right member

of (S) have finite limits at infinity since |rx| is bounded, |DrA-15r-1| is integrable and

M is of bounded variation on [0, 00). The term in the left member has a limit at infinity

since |Z>rA_1a:| < IDIM-1]?"1! |rz| —> 0. The proof is complete.

In order to illustrate this theorem we will study one particular case. If the function
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q is real-valued and locally of bounded variation on [0, »), then q{t) - q(0) + q+(t) —

q-(t) denotes the Jordan decomposition of q. Further details concerning the Jordan

decomposition are given in any text on analysis, but we do mention that q+ , g_ are

nondecreasing.

Corollary. In the linear differential equation

y" + (?(0 + 1(t))y = 0 (9)

let f be complex-valued, and continuous on [0, °°) and let q be positive, continuous and

locally oj bounded variation on [0, °°).

(a) Let a, $ be constants which satisfy a, < h If lim,_„ q(l) = =o and

f q~l dq- < co, f |/| q~ui < co, (10)
Jo J 0

then the improper integrals

r iay, r (id
Jo Jo

converge (possibly conditionally) for every solution of (9).

(b) Let a, j3 satisfy a, If lim,_„ q(t) = 0 and

[ q'1 dq+ < co, [ |/| q'in < ® (12)
*>0 Jo

then the improper integrals

f qa+U2y f <fy' (13)
J o J 0

converge (possibly conditionally) for every solution of (9).

We recover the original results of Hartman and Wintner by taking a = (3 = 0 and

/ = 0 in part (a) of the corollary. It should be mentioned that a certain type of duality

is exhibited in the statement of these results. This duality is most evident when one

compares the range of the constants a, & and the limiting behavior of q. Other duality
relationships were discussed by Hartman in a slightly different context [2, p. 512].

The improper Riemann-Stieltjes integrals in (10), (12) need some explanation. Since

9(0)g(Z)-1 = exp q'1 dq^j exp (^-q'1 dq+^j (14)

and q+ , q- are nondecreasing, we see that q~l is of bounded variation on [0, ») and

Urn,-.,* q(t)(< ™) exists if /„ q~l dq~ is finite. In the same manner one can show that

q is of bounded variation on [0, =>) and lim,_„ q(t)(> 0) exists if J™ q~l dq+ is finite.

If 8 > 0, then qs is of bounded variation on [0, ») if J"" q~l dq+ is finite and q~s is of

bounded variation on [0, «) if Jo q"1 dq. is finite. This follows from (14).

Before giving the proof of the corollary we need to state a useful lemma which isolates

certain properties of solutions of (9).

Lemma. The functions

exp q 1 dq_ - J \f\ qE(t) exp <- / q 1 dq- - \f\ q~1/2> (15)
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and

G(t) exp q 1 dq+ — |/| q 1/2 J, (16)

where

W) = ?(0_1 \y'(t)\2 + \y{t)W G(t) = q(t)E(t), (17)

are nonincreasing on [0, <») for every solution y of (9).

Proof of Lemma. Let n denote the exponential factor in (15) and define X = Ep..

Since

X(0 - X(r) = f n dE + J' E dn, 2q'U2 \yy'\ < E

and (9) holds, it is not difficult to show that \(t) < X(t) if t > r > 0. A similar com-

putation was indicated by Hartman and we omit the details [2, p. 510]. The function

defined in (16) is nonincreasing since X is nonincreasing and (14) is an identity. The proof

is complete.

Proof of Corollary, (a) In the notation of the theorem, let

x - A =
0 1

-q 0.
B = r = l o

.o <fI/2

D =
qa 0

0 <f.

0 0

[-/ 0,

We conclude from (10) and (15) that |Ta:| is bounded for every solution of (9). Since

o -9a_1/2,1
DTA^V1 =

{<f~U2 0

we see that |Z>rA_1r_1l —» 0 as t —> <» if «, /3 < Also,

DTA-'BT'1 = ~iq" 1 0

. 0 0,

and hence [£>r.4_1Br_I| is integrable since a < | and (10) holds. But

o a -«)(«- irqa-i/2~

(18)

[ d(DTA"^r-1 =
J 0

0
+ c

where C is some constant matrix, and the entries in the right member are of bounded

variation on [0, ®) since /" q~l dq_ is finite and a, (3 < f. The proof of (a) is complete,

(b) The proof of part (b) is similar if we take A, B and D as in the proof of (a) and let

r = q1'2 0

. 0 1.

The only point one must verify is hypothesis (iii) of the theorem. But

0 -q"-1'2
[ d(DTA_1)r_1 =

Jo m - Wqe-in o
+ c
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for some constant matrix C, and hence the matrix function in the left member of the

last formula line is of bounded variation on [0, =°) since a, /3 > \ and Jo ql dq+ is finite.

The proof of the corollary is complete.

One might question if the restrictions "a, 0 < J" or "a, 0 > §" are apparent or

intrinsic in the problem The following argument shows that they are in general necessary.

Returning to the equation which was discussed in the opening paragraph, let q be such

that (1) has a solution yl with J5(«>, yi) > 0. This is always possible [4], It follows that

the oscillatory solution y1 has the property that yx and q~l/2y[ do not have limits at

infinity. Hence the matrix in the left member of (8) (see (18)) will not have a limit

at infinity if a = § or 0 = f. It is easy to check that the second and third integrals in

the right member of (8) converge in these cases. Consequently the improper integrals

given in (11) do not converge in general if a = § or 0 =

The restrictions "a, 13 > §" are in general necessary in part (b) of the corollary.

Suppose that a = § or 0 = If q and yY are as in the previous paragraph, then v(s) =

y'i(t(s)) is an oscillatory solution of the ordinary differential equation

(<d"v)/(ds2) + Q(s)v = 0, 0 < s < co

where s = s(t) = Jo q, t(s) is the inverse function of s(t) and Q(s) = l/g(£(s)). The

function Q is nonincreasing, lima-.„ Q(s) = 0 and dv/ds = —yi(t(s)). This transformation

is discussed by Hartman [2, p. 512], The solution v has the property that dv/ds and

Q1/2v do not have limits at infinity although they are bounded on [0, =°). If a = § or

i8 = 5, we can mimic the arguments used in the previous paragraph to show that the

term in the left member of (8) does not have a limit at infinity. In either case the second

and third integrals in the right member of (8) have limits at infinity and hence the

improper integrals /" Qv, Jo <2'/2 dv/ds do not converge.
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