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asymptotic STABILITY AND INSTABILITY CRITERIA FOR SOME ELASTIC
SYSTEMS BY LIAPUNOV'S DIRECT METHOD*

By R. H. PLAUT (Brown University)

1. Introduction. Sufficient conditions for asymptotic stability and instability are

derived here for some elastic systems with dissipation. The systems are assumed to be

governed by autonomous partial differential equations which may be non-selfadjoint.

The method of analysis is Liapunov's direct method as generalized by Zubov [1] and

Movchan [2],

For elastic systems under conservative loading the energy is typically chosen as a

Liapunov functional. If the energy is positive definite, then the system may be shown

to be stable. With dissipation present the time derivative of the energy often becomes

negative semi-definite, and it is sometimes claimed in the literature that this implies

asymptotic stability. Such a conclusion is not warranted and requires verification.

This question is resolved here for some cases with the use of a new Liapunov functional

whose time derivative is negative definite. In addition, instability criteria are obtained

for some of these dissipative systems.

Consider a continuous system which occupies a bounded domain R in one-, two-

or three-dimensional space {a;}, and let C denote the boundary of R. Designate by

w(x, t) the displacement of the system from an equilibrium state which for simplicity

is taken as w{x, t) = 0, where t > 0 represents the time. For stability analysis, this

displacement is assumed to be governed by a linear partial differential equation of the

form

m(x)wtt + 3Dw, + £iw + £2w = 0, x (E R, t > 0, (1)

where > mix) > m0 > 0, with homogeneous boundary conditions

(£>w = 0, x E C (2)

and initial conditions

w(x, 0) = w°(x), w,(x, 0) = w°(x), x£S. (3)

Subscripts denote partial differentiation, m(x) represents the density of the system,

and £>, , £2 , and ® are linear, time-independent, spatial differential operators with

£i self-adjoint and £2 non-self-adjoint.

The functional space 11 is defined as the space composed of real vector elements

u — (4)
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whose components w and w, satisfy the boundary conditions (2) and certain smoothness

conditions. The equilibrium state under consideration is represented by the element

u = 0, the initial state is given by u" which has components w° and w], and the resulting

motion of the system (i.e., the solution of Eqs. (1), (2), and (3)) is denoted by u(t, u°),

t > 0. A metric p is defined on CU, and p(u, 0) gives the metric distance between a state u

and the equilibrium state (see [3] for details).

Stability, asymptotic stability and instability are defined as follows [1, 2]:

Definition. The equilibrium state u = 0 is said to be stable with respect to p if for

every 8 > 0 there exists a 5 > 0 such that p(u°, 0) < 6 implies that p[u(t, u), 0] < S

for all t > 0. If in addition p[u(t, u°), 0] —> 0 as t —> , then u = 0 is said to be asymp-

totically stable with respect to p.

Definition. The equilibrium state u = 0 is said to be unstable with respect to p if

there exists an 8 > 0 such that for any 5 > 0, no matter how small, there exists a/G H

for which p(u°, 0) < 5 and p\u(t, u°), 0] > S for some t > 0.

From the work of Zubov [1] and Movchan [2] one can state the following two theorems.

Stability Theorem. The equilibrium state u — 0 is stable with respect to p if there

exists a functional V(u) having the following properties for u £ 11, u £ 01:

a) jS2p2(u, 0) > V (u) > a2p2(u, 0) for some constants a, jS; (5)

b) (dV/dt)[u(t, w0)] <0 for t > 0. (6)

If in addition

c) V[u(t, m0)] —* 0 as t —» °° (7)

then u = 0 is asymptotically stable with respect to p. A sufficient condition for (c) is given by

c') (dV/dt)\u(t, w0)] < —v2p2(u, 0) for some constant v. (8)

Instability Theorem. The equilibrium state u = 0 is unstable with respect to p if

there exists a functional W having the following properties for u £ It, u° (E 11:

a) for any 5 > 0 there exists a«061l for which 0 < p(w°, 0) < & and W (it0) > 0; (9)

b) |IF(u)| < mV(w> 0) for some constant i±; (10)

c) (dW/dt)[u(t, w0)] > 0 whenever W[u(l, it0)] > 0. (11)

These theorems provide sufficient conditions for stability, asymptotic stability and

instability which are written in a form convenient for application to the systems under

consideration.

2. Asymptotic stability. The operator £, is self-adjoint so that, for example,

/ w,£iw dx= w£iw, dx (12)
J S J R

where w and w, are components of a vector u £ 11. The energy E for the conservative

part of the system is defined by

E(u) = 7; [ [mw2 + u?£,w] dx. (13)
Z J R

With the use of integration by parts and Eqs. (1) and (12), one can show that the time

rate of change of E during motion of the system is given by
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^ [u(t, m0)] = —J w,[2Dio, + £2w] dx. (14)

Even if the functional E satisfies the stability conditions (5) and (6) for some metric p,

where p(u, 0) depends both on w and wt , its derivative given by Eq. (14) is at best

negative semi-definite and cannot be negative definite. It is not obvious, therefore,

that condition (7) for asymptotic stability is satisfied. In some cases one can show that

Eq. (7) does indeed hold by applying sophisticated mathematical techniques, such as

the invariance principles derived by Hale [4] and Slemrod [5], An alternate procedure for

demonstrating asymptotic stability involves construction of a new functional for which

conditions (5), (6) and (8) are satisfied. This approach -wall be used here. The new func-

tional depends on the operator £>, and two cases wall be treated.

A. For the first case the damping is assumed to have the form

S)wc = 2%(x)w, , > |(z) > $0 > 0, (15)

and. it is assumed that for all u £ 11

/ w£yw dx > c'i I w2 dx for some constant cL . (16)
J It J R

The functional to be considered is

Y(u) = r f [mwi + w£,w + 2%w,w + 2(g/m)w2} dx (17)
■I J K

which reduces to the energy E if no damping is present. Let the metric p be defined by

/ = E. (18)

Any metric equivalent to p also could be used [3],

It can easily be verified that condition (6) is satisfied, and the time rate of change

of V is given by

^-7 [u(t, w0)] = — f l£w] + wt£2w + (S/m)u>(£,w + £*«>)] dx. (19)
dt J r

For £2 = 0 it is seen that Eq. (8) is satisfied, and inequality (16) is then a sufficient

condition for asymptotic stability. If the system is non-self-adjoint and £2 ^ 0, however,

additional conditions may be required in order to satisfy Eq. (8). This is illustrated in

the following example.

Consider an elastic column of length I, mass per unit length m(x), and bending

stiffness s(x), s, > s(x) > s0 > 0, which is subjected to a compressive load P. The equa-

tion for the displacement w(x, t) is assumed to be

m(x)wu + 2£(x)wt + s(x)wIXII + Pwxx = 0, 0 < x < I, t > 0. (20)

Under certain boundary conditions the system is conservative when £ = 0; for instance,

one end may be clamped (w = wx = 0) or simply-supported (w - swxz = 0) while the

other is either clamped, simply-supported, or sliding (wx = (swxx)x = 0). One then obtains
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£iZC = s(x)wXXIX + Pwxx , £2 = 0,

p(u, 0) = j| [mw] + sw2xx — Pwl] dxj ,

V(u) = p2(w, 0) + [ [£w,w + (f /m)w2] dx,
" 0

[m(<, w°)J = ~Jo + (t/m)[swIXXX + Pwxx]w} dx,

and the equilibrium state w(x, t) = 0 is asymptotically stable with respect to p if for

all u £ U.

(21)

/ [su'L — Pwl]dx > c,'2 / w2 dx for some constant Ci .
J 0 J 0

(22)

If the column is clamped at one end and free at the other, with the load P acting

tangentially to the column at the free end so that swxx = (swxx)x = 0 there, the system

is nonconservative. In this case

£iW = s(x)wXIZX , £2w = Pwxx ,

p(u, 0) = ^ [mw2 + sw';x\ dzj , (23)

V(u, 0) = p2(u, 0) + f l(w,w + (£/m)w2] dx,
Jo

and

[u(t, u')} = ~~fo + Pwtwxx + (z/m)(swxxxx + Pwxx)w] dx. (24)

With the calculus of variations one can show that

f w'„ dx > (0.125tt4/I4) [' w2 dx (25)
J o J o

for these boundary conditions, so that condition (16) is satisfied and condition (8) be-

comes the governing one. Inequality (25) can be used with Eq. (24) to bound dV/dt

from above by an integral involving a quadratic form in wxx and w, and a quadratic

form in wxx and w. It then can be shown that these quadratic forms are negative definite

and Eq. (8) is satisfied if

P < mm (2$/x2m)[(8^2 + Wsm)U2 - 81/2l2^], (26)
0 <x<l

where X = (m/J)(maxo<,<i (£/?n)}. Thus Eq. (26) gives a sufficient condition for asymp-

totic stability with respect to p. Since V and p do not involve the load P, one can see

that the analysis is also valid if P varies with time and if Eq. (26) is satisfied at all

times t > 0.

B. For the second case consider a one-dimensional system governed by the equation

m(x)wt, + 2i]Wtxxxx + £iiu = 0, 0 < x < I, t > 0 (27)
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where 77 is a positive constant. Here £2 = 0 and S) = 2rj d*/dx*. Assume that for all

aGIl

I w£,w dx > cl / w2„ dx for some constant c2, (28)
Jo Jo

/ w,wxxxx dx — wtxxwxx dx, (29)
Jo J 0

and that one has an inequality

f w'tx dx > (c\ + |) f w2 dx for some constant c3 (30)
J 0 J 0

for w and therefore also for w, . The functional V is chosen to be

1 r'
V(u) — 7, / [mwl + io£1w + 2r]wtw + 2(i?2/m)w2xx] dx (31)

Z J 0

and the metric is defined by Eq. (18).

Condition (6) is satisfied and one can write

^37 [u(t, w0)] = —v f \2w~txx — w2t + (1 /m)w£1w] dx. (32)
dt J 0

It follows from Eq. (30) that condition (8) is satisfied, and therefore inequality (28)

is sufficient for asymptotic stability. For example, if £j and p are given by Eqs. (21)

for a column with conservative loading and if Eq. (27) governs the motion, then the

equilibrium state w(x, t) = 0 is asymptotically stable with respect to p if for all u £ CU-

f [swL — Pwl] dx > cl [ wxx dx for some constant c2. (33)
J 0 J 0

3. Instability. In this section assume that £2 = 0 and that 2D is self-adjoint and

positive semi-definite. Generalizing an example of Movchan [2], define

g(u) = / [mwtw + |w2Dto] dx (34)
J R

and

W(u) = -E(u)g(u) if E(u) < 0, ^

= 0 if E(u) > 0

where E is defined by Eq. (13). Let there be an initial displacement w° for which

f w03dw° dx > 0, f w°£1w° dx < 0. (36)
J r Jr

Then for u° = (fw°, 0)r one has E(u°) < 0, g(u°) > 0, and W(u°) > 0, so that condition

(9) of the instability theorem is satisfied by a sufficiently small choice of f. The metric

p is chosen so that inequality (10) holds. For condition (11), when W[u(t, w0)] > 0 one

has E[u(t, u0)] < 0, g[u(t, ■u0)] > 0, and

(dW/dt)[u(t, u )] = -g[u(t, u)](dE/dt)[u(t, u°)} - E[u(t, u°)](dg/dt)[u{t, u0)]. (37)



540 R. H. PLAUT

From Eq. (14) with £2 = 0 one sees that dE/dt < 0 and the first term of dW/dt is non-

negative. For the second term, one can show that

(dg/dt)[u{t, w0)] = / [mw] — dx (38)
J R

which must be positive when E is negative. Therefore dW/dt is positive along solutions

when W is positive. It follows that inequalities (36) give a sufficient condition for in-

stability with respect to p.

As an example, consider again a column with

m(x)w„ + 2£w, + 2r)Wlxxxx + s(x)wxxxx + Pwxx = 0, 0 < x < I, t > 0, (39)

where £ and tj are positive constants and the loading is conservative. Then

1 fl 2 2 2
-&'(«) = 9 / [mw] + Stt'L — Pw]\ dx,

/ (40)
ff(u) — / [miVtW + £w2 + r]wlx\ dx,

J 0

and one can choose

piu, 0) = |J" [mw] + swL] dx^j • (41)

The equilibrium state w(x, t) = 0 is unstable with respect to p if there is a displacement

w° for which

fJ 0
[s(w>ix)2 — dx < 0. (42)

With the choice of any admissible iv° one obtains a sufficient condition for instability.

For instance, if one end of the column is clamped and the other is sliding, then the choice

w° = 1 — cos (irx/l) (43)

yields the sufficient instability condition

P > 2(7r/l)2 f s COS2 (ttx/1) dx.
•>0
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