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COMPUTATION OF ROTATIONAL FLOWS*

By M. J. O'CARROLL (Lanchester Polytechnic, Coventry)

1. Introduction. It is well known that vector fields may be resolved into irrotational

and solenoidal parts

q = V$ + curl A (1)

where also

div A = 0 (2)

and so

V2<£ = div q, (3)

V2A = —curl q. (4)

<t> and A are respectively called scalar and vector potentials of q. In seeking to calculate

q from given distributions of div q and curl q by the use of (3) and (4) the boundary

conditions on <t> and A become complicated [1]. This paper presents a simpler alternative

method for computation of rotational flows.

The resolution (1) is not unique, unless suitable separate boundary conditions for 4>

and A are given. For example, a field q that is both irrotational and solenoidal may be

expressed either wholly as V<£ or wholly as curl A. Such a choice exists for irrotational,

incompressible flows in the Cartesian x, y plane which may be represented in terms of

a velocity potential <t> or alternatively by a stream function 4/ where A = \f/ iz. In polar

coordinates we may take A = — where is now Stokes' stream function for a

suitable axisymmetric flow. In these cases the alternatives are effected by appropriate

boundary conditions: d<j)/dn = q n, the normal velocity, and A = 0 for expression in

terms of <f> only; or 0 = 0 and = / q • n ds integrated along the boundary from some

fixed point for expression in terms of ^ only.

The situation for more general fields is described by the following for a three-dimen-

sional domain D with suitably smooth boundary surface D*.

2. Determination of the solenoidal part. The existence of a scalar potential satisfy-

ing (3) is well known for consistent boundary data for d<j>/dn. Subtracting the gradient

of 4> from q leaves a solenoidal field for which a vector potential is sought. Denoting

smoothness classes of functions by Cm(D) for the class of functions with continuous

derivatives of order m on D, and CJD + D*) for functions of Cm(D) with continuous

one-sided normal with derivatives and continuous tangential with derivatives on D

Hirasaki and Heliums [1] give a theorem:

7/ V is in CX{D + D*) and C2(D) and div V = 0 in D then there exists a vector potential

A such that V = curl A and div A = 0 in D.
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However, to find A or curl A is very difficult. While the theorem leads to the Poisson

equation (4), where curl q is taken as given, the boundary conditions for A are obscure.

It is easy to produce the correct boundary conditions for q by taking, say, A = 0 and

d4>/dn = q-n. Then A = 0 gives curl A n = 0, so that V<f> + curl A has the correct

normal velocity. It is also easy to solve (4) with these boundary conditions. But the

result will not satisfy div A = 0 and so fails to give curl (V<j> + curl A) = curl q. Taking

the divergence of (4) gives V2 div A = 0, and in order to maintain div A = 0 the boundary

conditions on A must be set accordingly. Only the tangential components of A affect

the normal component of curl A; these must be set to give the correct normal component

of q. Then the normal derivative of the normal component of A must be set to correspond

to div A = 0 on the boundary. Where d<j>/dn is set equal to q-n, the tangential com-

ponent of A may be set to zero, or otherwise it is difficult to obtain these tangential

components; Hirasaki and Heliums obtain them from the solution of an elliptic partial

differential equation on the boundary surface. In any case the attraction of (4) is lost

because of the complication of the boundary conditions.

A much simpler method is to find a solenoidal component of q directly by the Biot-

Savart law, and then to set appropriate boundary conditions for the irrotational com-

ponent. In doing this it is first necessary to extend the given vorticity distribution &>

in D piecewise continuously into the whole three-dimensional space so that div w exists

and is zero everywhere. We will call this a solenoidal extension. This may be done either

by closing the vortex lines by extending them outside D or by continuing them to in-

finity. The velocity induced at a point by a semi-infinite straight-line vortex starting

at a point with relative position r is obtained by direct integration as

— &) X r[l — (cor)_Io>-r][4:r jw X r|2 co-2]-1. (.5)

Theorem 1. Let u E C,(D + D*) be solenoidal in D. Then there is a vector field V

continuous on D + D* which is given by

4ttV = — f r 3g> X r dv (6)
J 00

where the integral is over the whole three-dimensional space on which « is extended sole-

noidally and r is the position vector oj the integration point relative to the point at which V

is determined, such that div V = 0 and curl V = o> in D.

Proof. Since u G Ci(f + D*). a bounded, solenoidal extension exists. Define A by

4xA = / r_1o> dv;
J os

then A has continuous first derivatives everywhere and has second derivatives satisfying

V2A = —<o wherever « is Holder-continuous, in particular in D [2, p. 150 etc.].

Now

div A = / div (r-1o>) dv,
J oo

the divergence being with respect to coordinates of the point P at which A is determined.

I.e.,

4t div A = J r 'a) dsj ,
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where integration is over suitable surfaces transverse to the vortex lines and the square

brackets denote changes along the vortex lines. These surface integrals exist for bounded

<o even when the surface contains P, and tend to zero as all points of S tend to infinity

since Js odS is constant. Since u is a solenoidal extension its lines are either closed,

end where <o is zero or run to infinity so that div A = 0 everywhere. At points where «

is Holder-continuous, curl curl A exists and

curl curl A = V div A — V2A = — V2A = <o.

Now

4ir curl A = / curlp (r"'w) dv = — / X r dv = 4jtV
J CO J CO

and the theorem is proved.

Remarks. 1. One such extension is to continue vortex lines to infinity and amend

(6) by a surface integral of (5):

4xV = — f r~3cj X r dv

(7)

— f u X r[l - (cot-)—^-r]c^2 {u X r|-2 dS,
J £>•

allowing overlapping of the semi-infinite extensions provided that they are smooth

enough for the integral in (6) to exist.

2. The solenoidal extension will admit transverse discontinuities in oj. Where o

lies along D* no extension is necessary. Then at such points V will be continuous but

not differentiable.

3. The condition a> £ C\(D + D*) could be relaxed provided a solenoidal extension

exists.

Theorem 2. Let q £ C2(D + D*). Then there exist <t> and V, determined as in Theorem

1, such that q = V<f> + V in D.

Prooj. Taking o> = curl q, which satisfies the condition of Theorem 1, we may

construct V so that curl V = o and div V = 0 in D, and V n is continuous on D*. Then

V20 = div q in D,

d<j>/dn = qn — Vn on D*

determine a function <f> (within an arbitrary additive constant), since div q £ Ci(D)

and q-n is continuous on D* and the boundary data are consistent by applying Green's

theorem to q — V, as essentially follows from Kellogg ([2], p. 150 ff. and p. 314). Now

consider

q, = q — V<f> - V.

Then in D,

curl q1 = curl q — curl V = 0,

so that qj = V</>i and

V24h = div q! = div q — V2<#> = 0.
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OnD*

dfa/dn = qj-n = q-n — d<t>/dn — V-n = 0,

and 4>\ is constant in D. Thus q! is zero and the theorem is proved.

Remarks. 1. The condition q £ C2(Z) + D*) is not minimal.

2. The solution of (7) and (8) is much simpler than the procedure of Hirasaki

and Heliums and provides also for the computation of a non-solenoidal q with known div

and curl.

3. Computation schemes. A suitable computation scheme would involve the

iterative coupling of the calculation of irrotational and solenoidal parts. From a given

approximation, the iterative step would be essentially:

1. Solve the linearised vorticity transport equation for w.

2. Calculate a suitable solenoidal component V as above, using the Biot-Savart law.

3. Use boundary data q n — V-n to solve the continuity equation X72<$> = 0 for

the irrotational component V<?.

For compressible flow part 3 involves a more complicated equation representing

div pq = 0, and in this case an alternative is to use a mass-flow potential $ defined so

that m = pq = V<3? + M, div M = 0. This retains Laplace's equation in step 3, and

instead of using boundary data q-n it is generally equally realistic to set m-n. A minor

penalty occurs in step 2 where curl M = curl pq = pu + Vp X q must be calculated

from a) and the velocity field before the Biot-Savart law is used.

Such a scheme is especially suitable for almost irrotational flows, where simplifying

assumptions can realistically be made about the vorticity. For example, a flow may

carry only streamwise vorticity with little viscous dissipation, with corresponding

simplifications of vorticity transport and energy equations. Such a case occurs in flow

in turbomachinery blade rows receiving shed vorticity from upstream blade rows.

Postscript. Hirasaki and Heliums [3] have recently simplified their previous work,

recognising that "it is advantageous to use both potentials". They set d<f>/dn = q-n

with boundary conditions on A simpler than before: both tangential components are

zero and a third-order normal-derivative condition on the normal component corresponds

to div A = 0. The present note is yet simpler with explicit representation of solenoidal

parts.
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