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ON THE WEAKLY DAMPED HARMONIC OSCILLATOR*

By HOWARD R. BAUM (Aerodyne Research, Inc.)

Abstract. The initial-value problem for the differential equation

u"(t) -(- e[d -f- (tt')V u — 0

is studied under the assumption that a and e are positive constants and e is small. Per-

turbation methods are used to obtain a first approximation to the solution that is un-

iformly valid in t. For any non-zero a the solution ultimately decays exponentially with

a time scale (ea)-1. For sufficiently small a, however, the damping is dominated by the

cubic damping term for times of order e-1 and is thus algebraic in character. The frequency

of the oscillations is reduced by an amount \{ta)2 and is unaffected by the cubic damping

to the order of approximation considered.

The initial-value problem for the equation

u"(t) + t(u')3 u -(- 0 e« 1

is often used as an illustration of the multi-time scale perturbation technique [1], [2],

The first approximation to the solution for u(0) = 1, u'{0) = 0 is well known and given

by
U = (1 + -fr) cost -+■ 0(e); r = tt.

The solution is so different in character from that associated with the linearly damped

oscillator that it is instructive to consider the initial-value problem

u"{t) + t[a + (w')2]w'(0 + u(t) = 0,

u(0) = 1; m'(0) = |S.

This reduces to the cubic damped oscillator when a = 0 and approaches the linear case

as a approaches infinity. The method of analysis is as described in the references. Write:

u == u(s, t, e); r = et;

t = s(l + e2X2 +•••)> X2 = constant.

Note that the variable s is suggested by the fact that the solution to the linear problem

shows a frequency shift of order t, while the variable t characterizes the time scale on

which the amplitude of the solution decays. The introduction of the extra variable is,

of course, the key to the multi-time scale method. The problem in the new variables

becomes:

(1 — 2«2X2 H- • • - )u,, + 2tu„ + t2urr + u

+ «[a + (u. + tUr)2]^, + euT) + 0(e3) = 0, w(0, 0, e) = 1, (2)

(1 — e2X2)«X0, 0, e) + tuT(0, 0, «) + 0{t) = p.

* Received April 9, 1971.
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Now expand u in a power series in « as follows:

u = u<0)(t, s) + 6UU)(t, s) + e2w("' (t, s) + 0(e3)

The equations and boundary conditions through 0(e2) are given by

ulV + um = 0, + tt(1) + 2 u[V + [a + («:0))2]^0) = 0,

u\v + w(2) - + 2«;»+ uiv + [a + 3(ow0> +o = o,
uto)(0, 0) = 1 u(."\0, 0) = 0,

wa)(0, 0) = 0 m.("(0, 0) + u(r°\0, 0) = 0.

The zeroth-order equations and boundary conditions in (3) are satisfied by:

w<°) = Am (r) cog s + jgto) w gin S) A<o,(0) = 1( B(o>(0) = $

Substituting this in the equations and boundary conditions for uw yields:

«»> + uw = — cos s{2B'0)(t) + B(0'[a + f(A<0)2 + B'°>2]}

+ sin s{2A""(r) + A""[a + f(A(0>2 + B(0>2)]j

+ ^ (3A<0)2 - Bt0'2) cos 3s + ~ (3B'0,2 ~ A(0>2) shl 3s'

ua)(0, 0) = 0, ul"(0, 0) = — Aco>'(0).

In order that ua> be uniformly as small as u'°' it is necessary that the coefficients

of cos s and sin s in (4) be zero. This leads to the following systems for Aw: and B'a):

2 Bw' = -B(0,[a + f(At0)2 + £(0)2)],

2AC0)' = -Aw[a + f(A(0'2 + 5(0>2)], (5)

AfO)(0) = 1, B'°\ 0) = 0.

The solution is easily obtained by considering the function z = A<0)2 + B'm2. Adding

the two equations together gives:

dz/dr = — z(a + f z), 2(0) = 1 + /S2.

Thus

(4)

z =
1/(1 + £2) + (3/4o)(l - e~")

Now notice that both of Eqs. (5) are identical linear equations with initial conditions

/S and one respectively. It then follows that B{a) = 0AW. Hence:

z = (1 + P 2)A(0)2 = (1 + 1 /l32)Bm\

A<°, = r/2fl + (3(1 + ^)/4a)(i _ e~aT)}~I/2, (6)

B(0) = $Am.

The above equations show clearly the roles played by the linear and cubic damping

terms. For sufficiently large a (but small ea) the solution approaches that of the linearly
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damped oscillator:

u = <Tw"|cos (1 - (ea/2)2)1/2t + (0 + ea/2)[l - (ea/2)2]"1/2 sin (1 - (ea/2)2)U2t}.

When a is small the situation is more interesting. For times such that r is 0(1), ax-

is small and A<0) is approximately {1 + f(l + /32)r}_1/2. This is the first approximation

to the cubic damped case. It does not represent the solution accurately when r is 0(a_1).

The damping is thus initially controlled by the cubic term. However, when ar is 0(1)

A(0) is 0(a1/2) in magnitude and the linear and cubic terms are approximately equal

in size. As r increases the linear damping becomes predominant and ultimately:

Am ~e~°T/2{4a/3(l + 02)i1/2.

The remaining task is to ensure that un> is uniformly small compared with w<0) for all

times. Eqs. (5) ensure that this is true for times such that r is 0(1). In order that this

be true for all r it is necessary to proceed further with the calculation of ua). In so

doing the necessity for a frequency shift will become apparent.

The solution of Eq. (4) is given by:

tt(I) = Aw{t) cos s + B<u(t) sin s + Bw/32[S(0)2 - 3A(0)2] cos 3s

+ A(°732[A<0)2 - 3£'0)2] sin 3s. (7)

The coefficients of cos 3s and sin 3s decay like A(0's for large t. Thus, if A(1> and Bw

decay at least as rapidly as A{0>, then w(0) approximates u for all t.

A(1) and Ba) are determined by substituting the expressions for u"" and u<u into

the third of Eqs. (3). Equating the coefficients of cos s and sin s to zero yields the following:

2Bnv + [a + |(3Bm2 + A<0)2)](Bm + 4<or) + 2\2AW + Aw"

- %AwBmAw + t#s-A<0)(^(0}2 - 3B{0)2)(BW2 - A<0)2)

+ %AWB'0)[BW' + &BW(BW2 - 3A<0)2)] = 0; ,c.
(8)

2A(1>' + [a + |(3A<0)2 + 5<0)2)](A<U - B(0)') - 2\2BW - Bw"

+ |A(0)5<0>J5(1) + thBw(Bm2 - 3A<0)2)(£(0'2 - A(0)2)

+ f A(0)B(0,[AC0)' - AA(0)(A(0)2 - 3£(0)2)] = 0.

First consider the case when a ^ 0. When ar is large, Eqs. (8) can be written as:

2 Bw' + [a + 0{e~")]Bw + 0(e~")All) + ((0(e-Zar/2)) + aA(0)' + 2X2A<0> + A(0)" = 0;

(9)
2Aay + [a + 0{e~")]Aw + 0(e'") + 0(e-3<,T/2) - aBwy - 2X2B<0) - Bw" = 0

The solutions to the homogeneous equations for large time are thus proportional to

exp (—ar/2). However, the explicitly displayed inhomogeneous terms in (9) are also

proportional to exp (—or/2) for large r unless —a2/2 + 2X2 + a2/4 = 0; X2 = a2/8.

The variable s is then given in terms of t by

« = t(l - ((ae)2/8) + 0(e3)). (10)

Note that this is exactly the amount by which the frequency is reduced in the linearly

damped oscillator. This must be the case since the only terms in Eq. (9) involved in

the determination of X2 arise from the linear terms in Eq. (1). The cubic damping term
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then plays no role in the frequency shift to this order in e for a = 0. Indeed, Eq. (10)

predicts no shift at all for a = 0. While this result will turn out to be true, the above

analysis is not applicable when a = 0 and a separate study is required.

When a = 0, Eqs. (5) and the relation B"" = j3A(0) can be used to reduce Eqs. (8) to

2Bny + |(1 + 2/32)AW2BW - %/3AW)2Am

= —2\2A(0) + T-fs(02 + 1)(15/S2 - 1)A<0,S, (11)

2Aay + |(3 + p2)Aw)2Am + %pA(0)2Bm = 2\2pAw + rh/3(l + /f)2 A<0)5.

First consider the inhomogeneous solutions to Eq. (11). These consist of two terms.

The terms independent of X2 contribute a particular solution of the form

B"' = cA'0}3, A"' = dA""3.

Substitution into (11) gives:

c = (3/64) (/32 + 1)(1 - 7/32), d = - (3/3/8) (1 + /32).

These inhomogeneous solutions decay faster than A<0). Moreover, a non-zero X2 contrib-

utes inhomogeneous solutions proportional to (A (0>yl/'\ Such solutions actually grow

with r, and it is clear that if um is to be the uniformly valid first approximation, X2 must

be zero.

Finally the homogeneous solutions are obtained as follows. Define a new independent

variable 6 by:

de/dr = |Am2, e = 1/(1 + 32) log [1 + 1(1 + 02)r],

The homogeneous version of (11) is then:

2{dBm/dd) + (1 + 2,tf)BL1) - 2M<u = 0,

2 (dAm/dd) + (3 + p2)Am + 2/3Bm = 0.

Solutions of the form exp (pd) give values

V = -(1 + 02) ± §(1 - 6/32 + /34)I/2; 1 - 6/52 + /34 > 0,

p = -(1 + /32) ± K|1 - 6/S2 + /S4|)1/2; 1 - 6/32 + /34 < 0.

The homogeneous solutions are thus:

[1 + f(l + P2)t]~1±w/2, 1 - 6/32 + /34 > 0, a) = (1 - 6/32 + /S4)1/2/(l + /32);

[1 + !(1 + P~)t] 'jcos (Q/2) log [1 + f(l + /32)t], sin (S2/2) log [1 + |(1 + /32)r]j,

1 - 6/S2 + /34 < 0,

0 = (6/32 - 1 - /34)1/2/(l + 02).

Since oi < 1 for all (3, the homogeneous solutions always decay as fast as or faster than

A<0). Thus, when a = 0, the choice X2 = 0 will insure that tuw is uniformly smaller

than uw for all t.
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