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A NOTE ON THE DECOMPOSITION OF AN
ABSOLUTE-VALUE LINEAR PROGRAMMING PROBLEM*

By W. R. SPILLERS (Columbia University)

Introduction. There occurs in structural design a dual linear programming prob-

lem [1]

primal problem: minimize <p — ^ |F,| A° subject to = P;

dual problem: maximize \f/ = P 8 subject to |iV5| < A". (1)

In Eq. (1) the problem is to find the matrices F and 5 given the matrices A", P, and N.

(F and A" are &X1 matrices, 8 and P are j X 1 matrices, and N is a b X j matrix.)

Briefly, the primal problem is concerned with finding for a truss a set of bar forces F

which satisfy the joint equilibrium equations and minimize <p which is proportional to

the weight of the truss; the dual problem attempts to find a set of joint displacements

8 which maximize \j/ which is proportional to the work done by the joint loads P while

restricting the absolute value of the length change of each bar, i.e. |(iV6);| < A° . When

the same truss is subjected to two independent sets of joint loads [2] P1 and P2, Eq. (1)

generalizes to

primal problem:

minimize <p = ^2 A° max {|F{] , |F?|j, subject to ffF1 = Pl and ffiF2 = P2;

dual problem: (2)

maximize ^ = P1 81 + P" 8~, subject to jiV51 j + |iV52| < A°.

The superscripts in Eq. (2) refer to loading conditions in a rather obvious manner. Here

it is necessary to find the matrices F\ F~, 81 and 82 given the matrices P1, P2, A", and N.

Eq. (2) is remarkable in that it decomposes into two independent problems, each of

which has the form of Eq. (1). They may be written as

sum problem:

minimize <ps = 1^11 subject to NFS = Ps:
i

maximize <ps = Ps 8s subject to \N8s\ < A°;

difference problem:

minimize <pD = 1^1 ^ subject to NFD = PE;
i

maximize if/D = PD SD subject to |iV5D| < A°

(3)

(4)
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in which

ps = kp1 + P2), pd = kp1 - P2).

Fs = KP1 + P2), PD = KP1 - F2), (5)

5s = 51 + 52, 6° = 51 - S2.

In order to obtain Eqs. (3) and (4) from Eq. (2) it is only necessary to use the relationships

max {|z|, 12/|J = £ \x + y\ + I \x - y\ (6)

and

I a: | + Ml< 1 <=> \x + y\ < 1 \x — y\ < 1 (7)

together with some recombinations of terms. Having gotten this far it is natural to ask

about three or even n loading conditions. It is to these cases that this note is directed.

Three loading conditions. The generalization of Eq. (2) to the case of three loading

conditions is simply

primal problem:

minimize f = ^ K max (|PJ| , |F2| , |F<|}
t

subject to AT1 = P\ NF2 = P2, and RF3 = P1; (8)

dual problem:

maximize ^ = P1 81 + P2 52 + P3 <53 subject to \N51\ + |iV53| + |A^53| < A".

In Eq. (8) the problem is to find Fl, F2, F3, S1, 82, and 53 given P\ P2, P3, A", and N.

Of interest here is the question of the decomposition of this system.

Probably the most direct way to approach the case of two loading conditions, Eq. (2),

is through the dual problem using Eq. (7) which shows that the region indicated in Fig. 1

|x|+|yI < 1

Fia. 1.
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can be described as bounded by four straight lines. In a similar vein, Fig. 2 indicates

that the region inside the octahedron can be described as bounded by eight planes, i.e.

M + M + M < 1 + y + a;| < 1

«=> \-x + y + z\ < 1 (Q)

<=> \ — x — y + z\ < 1

«• \x — y + z\ < 1

This motivates rewriting the dual problem of Eq. (8) as

dual problem:

maximize \{/ — p1 d1 + p2 d2 + p3 d3 + p* d4

subject to \N<?\ < A", \Nd2\ < A", \Nd3\ < A", \Nd*\ < Aa, (10)

in which

p, = J(P' + P2 + P3), ^ = 51 + S2 + S3,

p2 = |(-Pl + P2 + P3), d2 = - Sl + 82 + 83,

p3 = K-P1 - P2 + P3), d3 = - 81 - 82 + 83,

p4 = HP1 - P2 + P3), = «' - 52 + 53.

Since neither the ps nor the rfs are independent, Eq. (10) does not decompose directly

as does the case of two loading conditions. As an alternative procedure, it can, however,

be embedded in a system in which they are considered independent (i.e. the decompo-

xl+lyMzl < 1

Fig. 2.
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sition of Eq. (10) into four problems of the form of Eq. (1) can be forced) which involves

the relaxation of constraints and results in an upper bound on \p. Since the solution

of these four problems is a relatively simple matter compared to the direct solution of

Eq. (8) and since, given these four solutions, it is a relatively simple matter to combine

them to produce lower bounds using the dual problem directly, this embedding has

interesting potential. As an aside, attempting to carry the form of Eq. (10) through

to the primal leads to the inequality

max {|x| , \y\ , |z|} < \[\x + y + z\ + |— x + y + z\ + \ —x — y + z\ + \x — y + z\]

(12)

which follows directly from the fact that

£[|z + y + z\ + |— x + y + z\ + |— x — y + z\ + \x — y + z\]

= 5 {max [|s + 2/| , \z\] + max [|z - y\ , |z|]}

using the fact that max [\x + y\ , |s|] > \z\ and the symmetry of the right-hand side of

Eq. (12) in x, y, z.

The case of n loading conditions is now fairly obvious but since the relationship which

corresponds to the right-hand side of Eq. (9) contains |(2") terms, the algebraic diffi-

culties compound themselves rapidly.
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