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1. Introduction. The problem discussed in this paper has its origin in a paper

"Dynamic buckling of elastic structures" by B. Budiansky [1], In the course of formu-

lating certain generalized criteria for dynamic buckling in [1] a conservative two-degree-

of-freedom problem is considered where the potential energy function exhibits a topog-

raphy shown in Fig. 1. A unit mass particle is located initially at the bottom of one of

the two bowis and subjected to an initial velocity. The question is then what combination

of initial velocity components will cause the particle to go over into the second bowl.

Obviously the kinetic energy imparted must be at least equal to the saddle-point energy

but much larger energies might be expected if the velocity were directed obliquely from

the saddle direction.

The problem concerning escape from a potential well arises also in astronomy.

Galactic models having a time-independent two-dimensional potential function and

an axis of symmetry have been studied ([2] to [5]). In these papers the potential functions

used permit escape for energies only slightly higher than that of the saddle point nearest

to origin. The model developed here permits trapped motions in the potential well with

energies far exceeding that of the nearest saddle point.

2. Model formulation. We will consider a Hamiltonian, H, for a system of two

coordinates:

H = + v(Xj ; ^ = + a* + 2X1 + | + xl - | (yxlz2 + vx\), (2.1)

where (') indicates time derivative, and the corresponding differential equations

(efzi/dr) + Xi = tiyxi + yxxx2), (2.2a)

(<d2x2/dt2) + 4x2 + 3x1 = (ey/2:)a£ . (2.2b)

The parameter y indicates the strength of the nonlinear coupling between (2.2a) and

(2.2b). It is taken to be symmetric in xx for simplicity. To permit appreciable energy

exchange for small-amplitude oscillations the linearized frequencies in the coordinates

Xi, x2 are taken in the ratio of 1:2. The parameter v permits detuning of the xx oscillation.

Throughout e will be kept fixed at 0.1. The equilibrium points of V and their respective

energies are listed in Table I.

* Received January 8, 1971.
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Fig. 1. Contour plot for two bowls.

Note that the model considered has in general three saddle points with the point (b)

being invariant in the parameters v and 7. The saddle point (b) will be henceforth denoted

as the "hp" and the energy at the "lip" defined as EL . Fig. 2 shows a plot of the equi-

potential energy contours in the x, — x2 plane for the indicated values of the parameters.

3. Preliminary Studies. The solution of (2.2) for a particular initial condition and

fixed parameters v and 7 lies on a three-dimensional constant-energy manifold of the

four-dimensional phase space. The projection of this solution on the xl-x2 plane consists

of a trajectory which may be of two kinds: (a) the solution trajectory remains confined

within the potential well and the solutions Xi(f), x2(t) describe oscillations whose ampli-

tudes remain bounded, and (b) the trajectory "escapes" from within the well with

increasing amplitudes in one or both coordinates. For case (a) the trapped trajectory

will generally fill in an "envelope" in the 11-2:2 plane as, for example, in Fig. 7. In the event

that the frequencies of oscillation in the two coordinates are in some integral ratio the

"envelope" degenerates to a closed path in the xx-x2 plane as in Fig. 13 or Fig. 23.

Preliminary experimental results were obtained by simulating Eqs. (2.2)

TABLE I

Data for equilibrium points of V(x\, x«)

No. Coordinates Potential Energ\- Nature

Stable

-4/3 i 32/27 Unstable

(saddle)

Xi =
(4£2 + 3£o1

ey

1 - (
x«. =  2x1+^ +xi-^ (yxlx, + vx\)

Unstable

(saddle)
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on an analog computer. There are some experimental difficulties in determining the

exact demarcation between trapped and "escape" solutions. The solution corresponding

to the threshold energy level could execute an innumerable number of oscillations

before "escape" and this could be influenced by factors such as extraneous phase shifts

and dissipative elements in the computer components. Accordingly, a time span corre-

sponding to about 100 cycles of the x2 oscillation was chosen for ascertaining the nature

of the solution.

The first such study was devoted to the determination of the threshold escape energy

as a function of the angle 4>0 defined by

tan = fe(0)/Xi(0)] . (3.1)

Fig. 3 shows the results obtained for selected v and y. The variable <t>0 is shown only in

the interval —90° < <t>0 < 90° since the potential energy function is symmetric in xy .

The maximum value of the escape energy occurs for angles close to zero degrees and the

loci of the escape energies are not widely different for opposing signs of y. The locus

cosec2 <t>a shows the energy required for escape in the absence of coupling and it is observed

that except for |<£0| greater than 40° the action of the coupling is to decrease the energy

required for escape. Since —20° < <f>0 < 20° shows the strongest effects of the interesting

nonlinear coupling, further studies were made with <t>0 = 0.

Fig. 4 shows the influence of the coupling coefficient y on the escape energy for <j>0 = 0

and zero detuning. An increased value of l-y| leads to an improved energy exchange

between the coordinates Xi and x2 and, consequently, a lowered value of the escape

energy. The experimental data of Fig. 4 are fit quite closely by an empirical formula

t? i

(3.2)
El 1 — exp — k \y\

where k ~ 0.22.

For the next set of studies |-yl was chosen to be 2 since this was large enough to give

a reasonably rapid exchange of energy yet small enough to show a significant increase

Fig. 2. Equipotential energy contours for V(xi, x~) = 2x\ + O.Zx\ + x] — ,lx^x«. 0: lip of bowl;

1, 2: two additional saddle points.
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in Eq scape over EL . Fig. 5 shows the distribution of the escape energy as a function of v

now for |7| = 2 and 4>o = 0. Curve A (negative y) shows an approximately linear variation

of the escape energy down to a value close to the absolute minimum of 1 (near v = 2);

it is then relatively constant. The x\ term in (2.2b) causes the frequency of an oscillation
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confined to this coordinate to decrease as the amplitude is increased. An appreciable

energy exchange between the motions Xi and x2 can be expected when the frequencies

of oscillation in these two coordinates are in a "near resonance" ratio of 1:2. For a

large value of the total energy the energy exchange is achieved more completely when

v assumes positive values since this lowers the frequency of the x, oscillation and main-

tains the resonance condition.
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Fig. 4. Plot of normalized escape energy versus coupling coefficient y.
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Fig. 5 shows that the results are not widely different for opposite signs of y so long

as v is negative. For positive y, however, the escape energy rises steeply when v takes

values greater than 1. This effect is quite striking and indicates the possibility of trapped

solutions having energies much in excess of that at the "lip". The subsequent detailed

study will be associated with a positive sign for y.

4.0. Experimental results for positive 7. The results of this study are summarized

in Fig. 6, where the vertical axis corresponds to the normalized value of the initial

energy E0 plotted on a logarithmic scale. The only variable initial condition is the

velocity for the xl coordinate. We will consider now some representative fixed values

of v and describe the kinds of solutions obtained for progressively increasing E0 .
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; TRAPPED:
SOLUTIONS

'I I"

5 6

DETUNING : v

Fig. 6(b). Plot of logarithm of normalized escape energy versus detuning v [4 < v < 8],

(a) v = — 3. At low energies the solutions remain trapped and xx it) and x2(t)

exhibit slowly varying modulation of the amplitude and phase (see Fig. 7). The first

"escape" solution is observed at a value of logi0 (E0/EL) close to 0.5. Before escape the

limiting trajectory makes many oscillations in z, and when it finally crosses the potential

ridge line it does so at a value of Xi close to the maximum attained earlier. Repeated

runs on the computer for energy levels close to threshold seem to indicate that the envelope

"opens" at the sides, as sketched in Fig. 8 for an escape path. It is also observed that

prior to "escape" additional "comers" are developed on the side of the envelope away

from the "lip". These corners appear to be generated by a subharmonic oscillation of

*2

1

>§325

Fig. 7. Trapped solution for an initial Xi velocity [p '= — 3, logio En/El, = .228].
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some particular order of the fundamental frequency, primarily in the x2 coordinate,

and it is possible that the escape solution corresponds to unstable growth of this sub-

harmonic component. As E0 is increased above the threshold the number of oscillations

executed prior to escape decreases. The numbers in the square brackets in Fig. 6 indicate

the x2 oscillations before escape. Thus for the energy level R or R" 1| to 2 oscillations

are observed while at R' \ to 1 oscillation is found. Curiously, the narrow band containing

the point Q has more oscillations (5 to 6) than the regions on either side. There is a strong

suggestion that for precisely adjusted initial energy in the vicinity of Q a purely periodic

unstable solution may exist (infinite number of oscillations for escape) resembling Fig. 9,

As the energy is increased beyond R" the number of oscillations again increases. Region S

is a narrow band of trapped solutions with energies close to 70 times that of the "lip".

These solutions exhibit an almost synchronized : x2 frequency ratio of 1:2. The har-

monic content of xl (t) is predominantly that of the fundamental with a frequency

slightly less than 1 radian per second. The solution x2(t), however, contains a bias term

as well as a second harmonic of comparable order to its fundamental. The amplitude

in the xl coordinate is observed to be about 6 to 7 times that in the x2 coordinate.

Proceeding to still higher energies, the pattern of behavior repeats. Region Z is

another zone where trapping is indicated although this is difficult to establish (6 to 7

trapped cycles have been observed). The x2 solutions have now acquired a strong third-

harmonic component. Above Z only 1 to 2 oscillations are required for escape.

(b) v = 2. As Fig. 6 shows, there is a continuous band of trapped solutions for

energies ranging from zero up to almost 30 times that of the "lip". One important

difference between these trapped solutions and those obtained in the low-energy band

E(o) <THRESHOLD

E(o) »THRESHOLD

Fig. 8. Possible modification of envelope for an escape trajectory.
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*2

Fig. 9. Possible form of a periodic trajectory in region Q of Fig. 6(a) (v = —3).

for v = —3 is in the shape of the "envelope". The envelope for v = 2 has the general

character shown in Fig. 10 (cf. Fig. 7 for v — —3). The implications of these are discussed

in Sec. 4.2. At log10 (E0/EL) ~ 0.7, where the '•'nose" of the region of escape solutions

comes close to v = 2, the rate of modulation of the xt(t) and x2(t) trapped solutions as

they "fill in" the envelope is quite rapid.

The solutions remain trapped up to E. Region F is another band of trapped solutions

which is a continuation of that seen at Z and the solutions have corresponding harmonic

content.

(c) v = 6. For positive v the linearized x2 frequency is decreased. It was seen

earlier that the lowest point of escape energy (B in Fig. 6) occurred for a value of v which

created "near-resonance" with a frequency ratio of 1:2 in the Xi and x2 coordinates.

A similar resonance effect with a 1:4 ratio is observed for v slightly greater than 6.

The band of trapped solutions below T are similar to those seen at Z and F. Above T

a new phenomenon is observed. The two high-energy saddles (see Fig. 11) now serve as

escape routes despite the fact that their energies are very much greater than the "lip".

Other Details of Fig. 6. The line gg' marks the demarcation between the two different

types of envelopes mentioned earlier. Associated with the transition to an increased v is

a noticeable reduction in the energy exchange between Xi and x2 . A similar envelope

X2

+ 2

Fig. 10. Trapped solution for initial xx velocity [>> = 2, Iogio E0/El. = .228].
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transformation is observed for values of v lying in the neighborhood of hti. There is,

however, very little change in the energy exchange process and the oscillations are

confined primarily to the xx coordinate.

The region H corresponds to solutions that "escape" after executing at least 5 to 6

oscillations. The significance of this region will be more evident in Sec. 4.4.

The locus J J' represents the plot of the potential energies at the saddle points (c)

obtained from Table I. It is seen that the boundaries separating the regions of trapped

and "escape" solutions are almost translates of J J'. This indicates that although a

majority of the solutions "escape" via paths adjacent to the "lip" (the exceptions being

seen earlier) the energies of the trapped solutions are roughly proportional fractions of

the saddle-point energy obtained from J J'. The locus J J' appears to represent an upper

bound for the existence of bands of trapped energies.

An examination of Fig. 11 shows that the trajectory undergoes successive "reflections"

from the potential energy surface in the neighborhood of the saddle point (c). The form

of the tortuous path described leads one to suspect the existence of a large number

of bands of trapped solutions, the band width diminishing rapidly with increasing energy

levels. The interval TT' in Fig. 6b could, for example, contain very narrow bands of

such trapped solutions.

4.1. Related periodic solutions. An examination of the trapped solutions, par-

ticularly those where the envelope is narrow, discloses that the motion can be decomposed

into a small variation about a large strictly periodic motion. The solutions which ulti-

mately escape have a similar behavior during their pre-escape phase. This suggests that

the question of escape can be related to the stability of an associated periodic solution

of equal energy. To pursue this line of study it is first necessary to find the periodic

solutions and this requires an extension of the initial condition range. Since the envelopes

considered here are symmetric about xx = 0 in the Xi-X2 plane, only corresponding

symmetric periodic solutions will be sought. Appropriate initial conditions are x,(0) = 0;

±2(0) = 0 while ±i(0), z2(0) are in general nonzero.

Fig. 12 shows the initial conditions that correspond to periodic solutions. For a

given v they are seen to be on continuous loci in the Xi(0), x2(0) plane. There are several

separate loci for each v and, considering v to be a parameter, the loci can be grouped into

related "families". Marked on each locus are the regions of trapped and escape solutions.

That is, in the "escape" region any small iso-energetic displacement in the four-dimen-

sional phase space from the periodic solution will generate an escape trajectory. (Clearly

a displacement to a neighboring periodic solution of different energy will remain trapped.)

<$>

-4

Fig. 11. Escape path for an initial Xi velocity [v = 6, logio E0/El = 1.152].
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Fig. 12. Plot of family of periodic solutions for different values of detuning v. (g): position of "lip";

 : Family #1; : Family #2; —: Family #3; »|: Limit of trapped solution;

(a): Locus of vertical tangents to Family 2 solutions.

For the "trapped" regions of the loci a sufficiently small displacement from the periodic

trajectory will remain trapped.

Note that the distinction "trapped" and "escape" does not correspond directly with

stability in the Lyapunov sense. Linearized variational equations can be written for any
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periodic solution and stability determined from a set of coupled Hill's equations (see

Sec. 5.1). This determination of stability is Lyapunov, although the conservative nature

of the system gives stability only in the neutral sense. A periodic solution may meet the

definition "trapped" and yet be linearly unstable. This is because the effect of non-

linearities in the variational equation is to limit the extent of the disturbance growth.

An "escape" periodic solution is necessarily linearly unstable. Since the results of Fig. 12

are determined by computer studies, linearly unstable periodic solutions are difficult

to locate, and those for which escape occurs are especially difficult.

4.2. Character of periodic solutions and their instabilities. Family No. 1. Fig. 13

shows an example of a trapped periodic motion for v = 0. An examination of the and x2

time plots shows each motion to be predominantly simple harmonic. The period of

oscillation decreases slightly from the linearized value for increasing energies. For

energies exceeding N (see Fig. 12) the solutions "escape" (e.g. Fig. 14) and the number

of cycles executed prior to escape decreases with increasing energy. Trapped periodic

solutions on the locus v < 0 can be continued to a higher energy level than those for

v > 0. Further the solutions for v < 0 seem to approach the origin asymptotically in

contrast to those for v > 0 which appear to originate at some finite coordinate on the

-e2(0) axis.

The trapped solutions described in Sec. 4.0 were generated for x2(0) = 0. That is,

they correspond to points on the horizontal axis in Fig. 12. Therefore the periodic solution

appropriate to the trapped motion is the one which is closest to that axis at a given

energy level. Thus for v = 0, for all xjfi) up to about 6, it is clearly the first family of

periodic solutions which is relevant, while in the neighborhood of Zi(0) = 9 it is the

second family. However for v = 2 the second family is the relevant one from x,(0) = 0

up to about 9 or 10. Referring now to Fig. 6a, the line gcf dividing the low energy trapped

solutions into two groups near v = 1 represents the demarcation between Family 1

and Family 2 as the relevant periodic solution. Of course this distinction is not a really

sharp one. For clarity the loci v = 6 and 8 have not been shown in Fig. 12, yet it can be

remarked that the dividing line hh' in Fig. 6b corresponds to a transition from Family 2

to Family 3 as the relevant periodic solution for large detuning.

x2(o) = .478

dx./dt (o) = 2.0

Fig. 13. Stable periodic solution (Family 1).
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i x2

dxi/dt (o) = 4.8

Fig. 14. Unstable periodic solution (Family 1) (x = 0).

Family No. 2. For v = 2, there is one locus that starts near the origin, intersects

the £i(0) axis at about 6.5 and solutions remain trapped up to M (Fig. 12). Figs. 15

and 16 show two examples of periodic motions along this locus. In contrast to Family-

No. 1 the x2(t) solution now has a prominent bias term as well as a double frequency

component. The harmonic component of x^t) remains predominantly that of its funda-

mental. The period of oscillation is found to increase slightly with increasing energies.

Note that there are two branches of the loci although the second has been determined

only for v > 1.

Fig. 12 also shows the presence of a '''saddle" for a value of v near 1.2. A stability

analysis (Sec. 5.2) will show the locus of vertical tangents to be the bounds of linearized

stability. Note that there are solutions below the vertical tangent that are stabilized

nonlinearly. These are essentially due to energies being less than the "lip" with slight

extensions for some values of v.

The high-energy branches of Family No. 2 have generally a threshold of escape for

z2(0) ~ —0.5 corresponding roughly to the locus of vertical tangents. These branches

also have an escape threshold for x2(0) ^ 0.5. In between, near z2(0) = 0, there is a

"wedge" of escape solutions starting approximately at n = 1.5 and growing in width

as v decreases. The linear instability associated with these "escape" solutions shows a

strong | subharmonic content along with 3/2 and 5/2 components. For v = 2 where

the motion is not actually unstable (no ''"escape"), the disturbances from the periodic

motion have the same strong subharmonic modulation. From the v = 4 and v = 6 curves

of Family No. 2 it might be expected that a broad band of trapped motions would

persist for large v down to Xi(0) = 0. In fact this is not the case. For v = 10, the remote

saddle points in the potential energy (Fig. 2) have moved into the origin and the origin

itself becomes a saddle-type singularity. Thus as v increases from 6 up to 10 the upper

bound of the trapped solutions in Fig. 12 comes down toward the origin.

Family No. 3. The interval of trapped motions is quite narrow and diminishes

rapidly with decreasing v. The solutions xjf) and xjt) now have additional third-har-

monic components. For v < 2, subharmonic components (primarily of order §) are

observed to be so readily generated for very small displacements that it is almost im-

possible to isolate the main periodic solution on the computer.
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4.3. Periodic solutions with longer periods (subharmonic components). In the

previous section we have remarked on the occurrence of strong subharmonic content

for trajectories in phase space that are slightly displaced from the pure periodic motions.

Different orders of subharmonics occur at different locations on the loci of periodic

solutions and the subharmonic of order 5 is especially significant, being associated with

linearized instability and "escape" from the well. This suggests that a study of periodic

motions with periods of multiples of that of the basic motion would be relevant to the

"escape" problem.

Consider linearized perturbations vi , V2 from a basic periodic motion x,(t) — x*(t)

and x2(t) = x%(t) respectively. The frequencies of oscillation in x\(t) and x*(t) are

oil and u)2 which are in a ratio of 1:2, with the composite system period close to 2ir. The

variational equations are reciprocally coupled through Mathieu-type terms. If we

postulate the lowest rational subharmonic frequency in rj2 to be <t2cj2 , then the Mathieu

terms in the 172 are found to generate the complementary subharmonic (1 — <r2)w2 .

Thus the only range of a2 to be considered is 0 < a2 < §. Next, if we examine the effect

of the o-2o)2 component via the Mathieu terms in the Vi equations, the lowest component

in the 7n has the frequency ctjWi with a, = 1 — 2<r2 . Finally, the effect of the <rlo}1 com-

ponent of t)i in the rj2 equation yields the same c2w2 with which we began. Thus the

relation cr, + 2o-2 = 1 links the lowest-frequency component in y, and y2 for any con-

sistent solution of the linearized variational equations. Note that for — <r2 = 5 the

order of the subharmonic is the same for both Xi and x2, while for <r2 < §, x2 has the lowest-

order subharmonic and for u2 > •§, xx has the lowest-order. In no case is the lowest

order of the composite set jo-] , <x2| greater than |. Figs. 17 and 18 show loci of initial

conditions leading to subharmonic periodic motions for v — 2 and v = 0 respectively.

These loci bifurcate from the main "stem" locus of Families 1 and 2. The captions (5, § etc.)

denote the value of . The periodic motions contain strong components at multiples

of the lowest frequency and it is especially important to note that the strongest com-

ponent in x2 is (1 — <j2)oj2 rather than <72oj2 itself.

Interesting characteristics of these periodic subharmonic motions for a2 < ^ can be

discovered by studying the representative case <r2 = J in some detail. The xx-x2 trajectory

is shown in Fig. 19. The period of this motion is 6x/ui or 12tt/u2 . Any point on this

trajectory can be regarded as a set of initial conditions, and in particular if we restrict

ourselves to crossing of the x2 axis in the positive direction we generate three sets of

initial conditions for the trajectory which are displayed as the points k, k' and k" in

x2(o) = -.408
dx,/dt (0)= 7.224

Fig. 15. Nature of periodic solutions for Family 2 (» = 0).
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(C)

*2

f 5

5
X2 (o) = . 413

dx,/dt (o) = 10.644

Fig. 16. Nature of periodic solutions for Family 2 (v = 0).

Fig. 20. The actual execution of the trajectory is a succession of transitions fc —> fc' —>

k" —> k, etc. In the initial condition space of Fig. 20 there is actually a continuum (two-

dimensional surface) of points which correspond to periodic solutions and which are

associated in sets of three. This is indicated in the figure. Iso-energy contours on this

surface of periodic solutions are roughly elliptical. For initial conditions lying just off

the surface the motion of the system is almost periodic, and in terms of x2 axis crossing,

successive points in the space of Fig. 20 follow approximately the k, fc', fc" transitions

  "ESCAPE" BRANCH

  TRAPPED SOLUTIONS

Fig. 17. Family of periodic solutions with subharmonic components (v = 2).
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"ESCAPE" BRANCH

TRAPPED SOLUTIONS

Fig. 18. Family of periodic solutions with subharmonic components (v — 0).

except that there is a slow, progressive displacement of each point along the iso-energy

contour. The x1~x2 trajectory corresponding to this slow displacement is shown in Fig. 21,

where it is seen that the trajectory slowly fills an envelope.

The existence of a surface of subharmonic periodic solutions is characteristic of all

02 < 5 and can be interpreted as phase independence of the subharmonic components

with respect to the generating solution. For = J the situation is very different. Periodic

solutions exist only on two lines in the initial condition space (Fig. 22). One of the lines

Fig. 19. Trajectory corresponding to periodic subharmonic motion for o-2 = 1/3 (>- = 2;x2(0) = —0.06,

i,(0) = 4.644).
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xz (0)

Fig. 20. Initial conditions in 3-space for generating subharmonic motion of order 1/3. (v = 2). k, k',

^''-Equivalent sets of intial conditions generating trajectory shown in Fig. 19; (a) main periodic solution

(Family 2) (no subharmonics); (b) symmetric subharmonic loci (lies in 3^(0) — ii(0) plane).

corresponds to symmetrical solutions in the x,-x2 plane (Fig. 23), while the other corre-

sponds to asymmetrical solutions (Fig. 24). The two lines appear to join the locus of

regular periodic solutions (i.e. nonsubharmonic) at the same point for v = 2. For v — 0,

however, the bifurcation of the asymmetric branches from the main "stem" occurs at a

slightly higher energy level than that corresponding to the symmetric branches. Con-

sidering a family of constant-energy surfaces there would exist one critical surface which

is tangential to the bifurcation point of the symmetric periodic solutions. For energy

levels greater than this critical, there are in general four points of intersection (in pairs

of two) with the symmetric and asymmetric branches. Considering the symmetric branch,

for a precisely adjusted initial condition (e.g. p or p' in Fig. 22), unlike the other values

of cr2 discussed earlier, there arises no transition sequence from p or p'. For small dis-

placements away from the exact conditions necessary for periodic motions there are

slow motions in orbits surrounding p or p'. The asymmetric branches exhibit an unstable

characteristic and for v = 0, small displacements from the branch escape. For v = 2,

Fig. 21. Trajectory corresponding to an almost periodic motion (? = 2; z;(0) = — .06, ii(0) = 4.660).
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X2 (0)

X,(0)

SURFACE OF

^CONSTANT ENERGY

SLOWLY
MODULATED
SUBHARMONIC
SOLUTIONS

Fig. 22. Symmetric and asymmetric subharmonic loci for order 1/2(» = 2). (a) main periodic oscillation

(Family 2) no subharmonics; (b) symmetric subharmonic loci (lies in ij(0), x2(0) plane); (c) a symmetric

subharmonic loci (lies in space, ij(0), x2(0), x2(0)).

not all such solutions escape and there is a small interval of energies near the bifurcation

point where there are amplitude-modulated trapped motions. The theory to be discussed

in Sec. 5.1 shows that a periodic motion xv(t) = x*t (t); x2(t) = x%(t) having a fundamental

period T can exhibit linear instability under two conditions:

(1) The characteristic exponent of the system of Hill's equations has a zero exponent.

(2) The exponent has an imaginary part of x/T.

Note that the above are only necessary and not sufficient conditions. Condition (2)

corresponds to the generation of a subharmonic component of order § and for v = 0

we notice "escape" for both Families No. 1 and 2 (Fig. 12) near the J subharmonic

bifurcation point. The Family No. 1 instability is very pronounced and the h subharmonic

*2

--5

5 Xl

x2(o) = -.475

dx,/dt(o)- 9.2

I

Fig. 23. Nature of solution in presence of a subharmonic component of a2 = 1/2 (c = 0).
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X2

4-5

Fig. 24. Trajectory corresponding to an asymmetric subharmonic motion for <r2 = 1/2 (x = 0; x>(0)

.05, i,(0) = 9.53 is('O) = -.316).

branch could not even be located. For v = 2 the 5 subharmonic branch is equally difficult

to detect for Family No. 1, whereas for Family No. 2 strong subharmonic modulations

are observed near the bifurcation point with the solutions remaining trapped. It has

been observed that the transition from a stable to an "escape" behavior along the \ sub-

harmonic branches of Figs. 17 and 18 is again characterized by condition (2)—that is,

the growing motion has a § subharmonic of the \ subharmonic.

4.4 Regions of trapped solutions in the £2(0) — Zi(0) plane (x,(0) = Xi(0) = 0).

Figs. 25 through 29 show the regions of trapped solutions for the indicated values of the

detuning parameter v. The boundaries were obtained by a computer search facilitated

by the stability limits of Families 1, 2, 3 and the subharmonic branches described

in the previous section. Also drawn on the figures are the loci of constant total energy

E0 = 2x2(0)2 + *2(0)3 + ±i(0)2/2.

Figs. 25 and 26 show the presence of a wide band of trapped solutions neighboring

the origin. The boundary of this region is comprised of a finger-like extension whose

"backbone" is the locus of Family No. 2 solutions. Other extensions are caused by

Family No. 1 solutions and the \ subharmonic component locus of Family No. 2. For

v = 2 (Fig. 26) the upper boundary of the regime of trapped solutions comes close to

the Xi(0) axis for E0 in the range of 5 to 10. This corresponds to the proximity of the

"nose" of the escape solutions to the v = 2 axis in Fig. 6. For v = 4, a second narrow

region of trapped solutions is found for E0 ~ 26 and this corresponds to solutions neigh-

boring Family No. 3. There must be a similar region for v = 2 at Ea ~ 65 and lying

near the horizontal axis. It has, however, not been shown on account of the uncertainty

of the long-time containment of these solutions.

For v = 1 (Fig. 27) there exist three separate regions of trapped solutions. The

narrow band of escape solutions near 2^(0) = 8 corresponds to the region H shown in

Fig. 6. For decreased v (Figs. 28, 29) the regions of trapped solutions are wider apart with

a narrowing of the high-energy solutions neighboring Family No. 2. For v = —2 (Fig. 29)

there exist only two trapped regimes separated by a wide band of escape solutions.

On the basis of the above figures it can be expected that for v < —2 the triangular

high-energy trapped region would become narrower whereas the trapped solutions

neighboring Family No. 1 would be extended to higher energies. Note that the positive
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intercept of the trapped solutions (Figs. 2.5 through 29) on the x2(0) axis is always 0.67

and corresponds to the energy at the "lip".

5.0. Analytical study. The analysis described below is essentially a stability study

for the families of periodic motions, and is divided into two sections. In Sec. 5.1 we

consider the linearized variational equations. These coupled Hill's equations are especially
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well suited to certain high-energy cases where there are rapid modulations of the solutions

neighboring the periodic motion. In Sec. 5.2 we adopt the technique of slowly varying

amplitude and phase. This technique is generally applicable only to low-energy cases,

but in these cases it permits a more complete description of modulated solutions than

the linearized variational equations.



-ESCAPE" FROM A POTENTIAL WELL (PART I) 481

5.1. Stability analysis using Hill's equation. For a general two-degree-of-freedom

conservative system possessing the energy integral U = (x\ + ±1/2) + V(x, , x2) where

V(xj , 2\) is the potential energy, the equations of motion are

£i + Vx. = 0, i = 1, 2. (5.1)
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If we assume a periodic motion x*(t), x%(t) with a least common period T, the linear-

ized variational equations are

Vi + ViVxm + V3-iVxix,-i =0, i = 1,2 (5.2)

where the ??< are perturbations around the periodic motions x* , x*2 and the partial

derivatives of V(xt , x2) are evaluated for the assumed periodic motion.
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The system of equations (5.2) admit the well-known Floquet theory with the general

solution

7U = (5.3)
7-1

where the c,- are integration constants, a, the characteristic exponents, and the pa(t)

I

D.
Q.
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Ph
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periodic functions with period T. The autonomous equations of motion (5.1) can be

expressed in a canonical form and Poincar6 [6] has shown that in such cases the charac-

teristic exponents are equal in pairs but with opposite signs. Two of these exponents are

always zero and they correspond respectively to perturbations that (1) shift by a constant

factor the argument of time of the periodic motion xy = x*:(t); x2 = x%(t); (2) displace

the motion to a neighboring periodic motion at a slightly different energy level and

period. The other two exponents (a, — a.) are in general nonzero and serve to determine

the stability. A necessary condition for stability is that a be purely imaginary. As a

consequence of the two zero exponents the characteristic equation determining a is

similar to that obtained for a single-degree-of-freedom system and in particular linear

instability is found when a is equal to zero or iir/T. When a = 0, all four exponents

vanish and the stable variational solution has a period T. When a = zV/T the variational

solution has a modulation frequency ^ of the basic frequency of the unperturbed periodic

motion.

The variational equations (5.2) for the particular problem considered here can be

written as a pair of coupled Hill's equations:

v, + [1 - 0.1* - 0.2x?(f)]ii = 0.2x*(t)v2 , (5.4)

fj2 + [4 + 6x*(t)]r)2 = 0.2af(<)i?i . (5.5)

For many cases of interest the computer tests reveal that when instability is seen the

variations rj2 are much stronger than j?j . This suggests an approximate analysis which

ignores the 171 term (5.5), permitting the separate solution of that equation. The solution

x*2 (t) for both families 1 and 2 can be represented as

x%(t) = a0 + a, cos 2'j>t + a2 cos 4ait + • • • , (5.6)

the dominant terms being the first three in the Fourier series. The reduced variational

equation for t?2 takes the form

V2 + (^0o + 2 0* cos 2A:t^7j2 = 0 (5.7)

where r = cot.

Eq. (5.7) is a standard Hill's equation with three independent parameters

0O , 6i , • The exponents and the eigenfunctions for the unstable solutions can now be

computed from the series expansions listed in Hayashi [7].

Selected cases have been calculated for Family 2 (v = 2 and v = 0) and for Family 1

(v = 0). The results are summarized in Table II including a comparison with the behavior.

In most cases the analysis of the reduced equation explains the observed behavior.

That is, "escape" is associated with a real exponent and trapped motion with imaginary

exponent. There are two cases of disagreement. For case 4, the exponent is real yet the

variational motion is trapped. The explanation is simply that the total energy is below

that of the "lip". Mathematically, this means that the neglected nonlinear terms are

the strong determinants of trapping here. The other instance is case 10 which has an

imaginary exponent and yet in which the solutions "escape". This is a situation where the

neglect of the coupling between the vi and rj2 equation is invalid. If one examines the 771

equation alone (uncoupled from tj2),

*?, + [!- 0.1* - 0.2x*(/)]t,i = 0, (5.8)
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for the case at hand it turns out that the exponent for the separated »h solution is also

imaginary but the solution is very close to a region of primary instability. It is the

coupling between 77, and j?2 to which the instability must be ascribed.

Referring again to Table II, we see that the parameters 6l and d2 are typically of

magnitude 4 or less. Thus instability is associated with values of 90 in the neighborhood

of 1, 4, 9, 16 etc. The type of modulation seen should be slow for d0 — 4, 16 etc. since

here the period of the variational function, 7j2, is 2ir which matches the period of the

primary periodic oscillation (cases 4 and 5). However, for d0 = 1, 9 etc., the period of

the variational function, tj2 , is x so the modulations appear rapid (cases 2 and 7). Note

also that while the eigenfunction for case 7 contains a sin r term and so qualifies as a

§ subharmonic the dominant term is sin 3t, in keeping with 90 ~ 9.

No cases are shown in Table II for Family 3 periodic motions. To analyze these

the 6-j>1 term has to be included in x% (t) and the resulting Hill's equation has four param-

eters. The experimentally observed stability regions for this family are quite narrow

and the tedious analysis has been omitted.

5.2. Slow modulation analysis. Computer simulation shows that trapped solutions

are often characterized by much smaller amplitudes in x2 than in X\ . (This does not

conflict with the statement in the previous section that for variational solutions tj2 is

often much larger than ijt .) If |j:2|/|xi[ is sufficiently small, the nonlinear term 3x1

in (2.2b) will be comparable to the other nonlinear terms and a conventional perturbation

analysis regarding all nonlinear terms as small can be pursued. This kind of analysis lead

to slowly modulated oscillations, and the slowness of modulation is a test of the validity

of the section. While \x2\ must be small, and the energy of the solution may be quite

large.

Eqs. (2.2) are rewritten as

d^/dt2) + x1 = oj1(xl , x2), (5.9a)

(d2x2/dt2) + 4x? = Sf2(x, , x2), (5.9b)

where

cS/ifo , x2) = 0.2x,x2 + O.lfXi , (5.10)

6/2(xi , x2) — — 3^2 + O.lxl , (5.11)

and 5 is the perturbation parameter.

Several techniques are available for this problem. The one which will be used is the

asymptotic expansion of Bogoliubov and Mitropolski [8]. It will be necessary to carry

the solution to order <52, and this technique proves to be convenient. Principal solutions

are taken in the form

x,o = Roi cos (jt + 4>oi), j = 1,2 (5.12)

where Roi and <t>oi are slowly varying functions of time. The complete solutions are

expansions in 5

Xj(t) = xi0 -1- oxtl 4- 02xi2 + • • • (5.13)

where the xik are functions of Roi and <pni as well as time. The differential equations

for Roi and <^0, are taken in the form
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(id/dt){R0i) = 8Aj0(R0i , <t>0j) + i'Auffiot , <j>0,•) + ••• , j = 1,2, (5.14)

(d/ dt) = 8Bi0(R0, ,<t>oi) + 82Bjl(Roj , <j>0i) + ••• , j = 1, 2. (5.15)

The series (5.13) are substituted into (5.9) along with series expansion of the functions

/i and /2 . Separate equations are formulated for each power of 5. The secular terms

that are generated from the nonlinear functions are then eliminated by choice of the

functions Ajm and Bim . The critical term 3x1 has no influence on the first approximation

solution (Ai0 and Bj0). Accordingly we can use this analysis for larger values of x2 than

might have been supposed originally. The first order set of amplitude and phase varia-

tions admit two well-known integral invariants (see [9]). The first of these adiabatic

invariants is related to the total energy (which is of course a precise invariant). The

second adiabatic invariant is the averaged perturbation Lagrangian. Expressed in terms

of R0, , 4>0i these invariants are

Roi + 4Kq2 = constant d_ef E'0 , (5.16)

RotRoi cos (2<f>01 — <p02) — 4iJ?o2 = constant. (5.17)

In order to reflect the influence of the quadratic term in x2, the amplitude and phase

variations have to include terms of the order of 82. From these equations one can generate

an appropriate energy invariant which is

Soi(l + .025j>5) + 4i?02 = constant def E] . (5.18)

A second invariant can again be obtained reflecting the second-order correction to (5.17).

This integral is

R2olR02(l + -025v8) cos (2<£0i — #02) + k08Rl2 + (kx8 — lv)Rl2 = constant def M', (5.19)

where k0 , k1 are constant depending on v, Ee . These are detailed in [10].

As is customary in coupled oscillations of this kind, there is only a single relevant

phase variable (2<£0i — <Pm) which we may call ifo, so that Eqs. (5.18) and (5.19)

relate only three variables. Following a transformation used by Gilchrist [11], a new

variable x is defined by

sin x = 2R02/E„ ; cos x = Rot(l + .02ovS)U2/Ee (5.20)

which identically satisfy (5.18). Then (5.19) becomes

, , SkoEe . 4 , (Sk, 2v\ . 2 2M'
sin x cos x cos V0 H sm x + - g-J sm x = (5.21)

which is then a single constraint between the two remaining variables x and \p0 ■

In (5.21) all of the coefficients except M' depend on the system parameter v, and Ee .

Thus M' may be regarded as the sole relevant initial-condition parameter once Ee is set.

A diagram of integral curves in the x — "Ao plane can be constructed with M' as a param-

eter, such as Figs. 30, 31. Singular points in this diagram correspond to stationary ampli-

tude and phase—i.e. periodic solutions. A stable singular point such as A or B in Fig. 30

corresponds to stable periodic motions and for initial conditions on a closed trajectory

surrounding such a point the motion will be a modulated periodic one. The saddle at C

in Fig. 30 is an unstable singular point in that small deviations of initial conditions will

produce large excursions of x and V'o , yet interestingly the long-time behavior of these

variables is periodic.
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The special feature of the present analysis is that the excursions of x and may be

large in these modulated solutions without invalidating the results. The essential restric-

tion is that the modulation must be slow for the results to be valid, and slowness generally
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requires sufficiently small x2 ■ Since tan x — 2R02/R0i this means that x must be less than

some critical level x* in each diagram. The higher the energy level, the lower x* will be.

In Fig. 30 point B corresponds to a Family 1 motion while A and C belong to Family 2.

X
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For the particular energy level selected the x corresponding to B and C is so large as to

make the analysis marginally valid. B is experimentally observed to be stable for suffi-

ciently small deviations of initial conditions, while C gives rise to escape solutions

along the branch of the saddle proceeding toward increasing %■ It is interesting to note

that at higher energies the singularity corresponding to B actually develops instability

by the modulation frequency rising to one half of the fundamental frequency. Of course

the present analysis is invalid well before that occurs.

From Fig. 12 we note that for v < 1.3 there is a band of energies for which only

Family 1 solutions exist (e.g. for v — 0 the band extends from E0 = 0 to E0 ~ 25).

In such cases the singular points A and C are absent as in Fig. 31. The singular points

A and C do appear, however, for a much larger value of E] . The closed contours around

A that are then obtained verify again the high-energy trapped solutions seen experi-

mentally (e.g. Fig. 12; Family 2, v = 0 and z2(0) — —.3). The singular points A and C,

when they do exist, always lie on ^o(O) = 0. For a specified v, the associated x coordinate

is, however, a function of the energy parameter E]. In particular the calculations (detailed

in [10]) show that for v > 1.3 the singular points A and C exist from small E] upward

to large valuer and with an almost constant spacing of x- For 1.3 > v > 1, A and C

approach each otht. with increasing energy and finally coalescence occurs at some

E] = E2e . The singular pol.:+s then reappear at an increased value of E] = E] > E2e and

become spaced further apart with increasing energy. For v < 1 the singular points do

not appear till some high value of energy E2e and then become spaced further apart with

increasing energy. The critical values of R01 , Rn that correspond to the coalescence

condition for a specified v are easily calculated and may be used to evaluate the corre-

sponding x2(0) and ±i(0) from (5.13). These calculations show that the vertical tangents

drawn in Fig. 12 are coincident with the points of coalescence. The correspondence is

less accurate at higher energies and this can be attributed to the neglect of terms in the

expansion (5.13) beyond z,-2.

Note that there are saddle points at x = 0; <p0 = ±t/2 in Figs. 30, 31 indicating a

periodic solution. This motion, however, corresponds to the initial conditions 3a(0) 0

and very small i2(0), and is always linearly unstable. Such an initial condition further-

more is not represented in Fig. 12.

6.0. Conclusion. We have considered in this paper a nonlinear dynamical system

that exhibits oscillatory motion for small amplitudes and an anticipated divergent

behavior in one or both of the coordinates at some large amplitudes. The study has,

however, revealed the existence of bands of "trapped" modes having unusually large

energies and separated by regions of divergent solutions. These trapped solutions neighbor

families of periodic motions which form a two-dimensional subspace in the four-dimen-

sional phase space.

The stability transition of these conservative periodic motions (based on a linearized

analysis) corresponds to the two cases of the characteristic exponent of the system of

Hill's equations having either a zero exponent or an imaginary part of ir/T. The latter

case corresponds to the generation of a subharmonic component of order J and the

experimental results indicate both of the above transitions.

Another interesting observation has been the nature of the "escape" path relative

to the position of the "lip." It has been found that the "escape" trajectory (for an initial

velocity in the Xi coordinate) does not in general pass over the "lip" but instead follows

a displaced path.
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The results obtained here have been for a truly conservative system. To make the

results meaningful in engineering problems, a consideration of the effects of small dissipa-

tion must be included. In particular, it would be interesting to know whether, and under

what conditions, it may be possible for the motions to decay from a high-energy trapped

state to rest. This would be especially significant when no continuous band of trapped

solutions exists down to the rest state. This study will be described in Part II of this paper.

References

[1] B. Budiansky, Dynamic buckling of elastic structures: criteria and estimates; in Dynamic stability of

structures, Proc. Internat. Conference Northwestern University, Evanston, Illinois, 1965

[2] G. Contopoulos, A third integral of motion in a galaxy, Z. Astrophys. 49, 273-291 (1960)

[3] M. Htaon and C. Heiles, The applicability of the third integral of motion: some numerical experiments,

Astronom. J. 69, 73-79 (1964)
[4] G. Contopoulos and J. D. Hadjidemetriou, Characteristics of invariant curves of plane orbits, Astron-

om. J. 73, 86-96 (1968)
[5] G. Contopoulos, Orbits in highly perturbed dynamical systems. I. Periodic orbits, Astronom. J. 75,

96-107 (1970)
[6] H. Poincare, Les methodes nouvelles de la mechanique celeste, Tomes 1, 2, 3, Paris, 1892, 1893, 1899;

reprint, Dover, New York, 1957; English transl., NASA TTF-450, 451, 452, National Aeronautics
and Space Administration, Washington, D. C., 1967

[7] C. Hayashi, Nonlinear oscillations in physical systems, McGraw-Hill, New York, 1964

[8] N. N. Bogoljubov and Ju. A. Mitropol'skix, Asymptotic methods in the theory of non-linear oscillations,

Fizmatgiz, 1958; English transl., Hindustan, Delhi; Gordon and Breach, New York, 1962

[9] R. E. Kronauer and S. A. Musa, Exchange of energy between oscillations in weakly nonlinear con-

servative systems, J. Appl. Mech. 33, 451—452 (1966)

[10] R. Subramanian, Escape from a potential well, Ph.D. Dissertation, Harvard University, Cambridge,

Mass., 1970

[11] A. O. Gilchrist, The free oscillations of conservative quasi-linear systems with two degrees of freedom,

Internat. J. Mech. Sci. 3, 286-311 (1961)


