
QUARTERLY OF APPLIED MATHEMATICS 91

APRIL, 1972

SPECIAL ISSUE: SYMPOSIUM ON
"THE FUTURE OF APPLIED MATHEMATICS"

THERMOMECHANICS

BY

HANS ZIEGLER

Ohio Stale University*

1. Shortly before half-time of the period being celebrated at this conference, I had

the privilege of spending a year as a guest of the Division of Applied Mathematics at

Brown University. At that time, "applied mathematics" was virtually synonymous with

"mechanics." A few years before, Prager, Drucker, and Greenberg had formulated

their famous limit theorems in plasticity [1, 2], thus creating a basis for the practical

application of the so-called theory of the plastic potential, suggested by v. Mises [3],

developed by Prager [4] and refined by Koiter [5]. The next few years were marked by

the application of limit analysis to a large variety of structures. As far as Brown Uni-

versity is concerned, much of this work was done by Drucker [6, 7], Haythornthwaite [8],

Hodge [9], Hopkins [6, 10-13, 21], Lee [14], Onat [15-18], Pell [19]. Prager [4, 10, 13, 15,
16, 18, 19], Schumann [20], Shield [8], Symonds [14] and Wang [11, 21, 22]. Many other
groups have contributed. The investigations were extended to soils, to large deformation,

minimal weight and optimal design. Much of this work is still in progress.

2. It may be stated today without exaggeration that practically all of the results

obtained in applied plasticity are based on the theorems of limit analysis and hence

ultimately on the theory of the plastic potential. This is surprising in view of the fact

that this theory, although easily accepted on account of certain similarities with the

theory of elasticity, was a mere hypothesis from its very beginning, bare of any physical

foundation.

To discuss this hypothesis, let us consider an element in a purely plastic continuum,

and let us denote its strain rates by di,- and the corresponding stresses by <r,( . Since

both tensors are of rank 2 and symmetric, they may be represented by vectors d and d,

respectively, in a 9- or 6-dimensional coordinate system (Fig. 1). As long as the stresses

are sufficiently small, the element does not deform. Plastic flow sets in when the end

point of the vector 6 reaches a certain surface in stress space, the so-called yield surface,

and the theory of the plastic potential states that the vector d, representing the strain

rates of the element, is orthogonal to the yield surface in the end point of the vector <J

and points away from the origin.

This statement is a mere postulate, although a certain similarity with elasticity is

obvious. It can be shown, however [23], that the statement, provided it holds for the

element, is also valid for the generalized strain rates and stresses used in many applica-

tions. This is also true, incidentally, for the observed fact that the yield surface is at

least weakly convex. These invariance properties support the orthogonality condition

to a certain extent, and the fact that it forms the basis of practically all of the progress

* On leave of absence from Eidg. Technische Hochschule, Zurich.
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in applied plasticity during the last two decades makes it worthwhile to look for a

physical foundation.

3. An early step in this direction was taken by Drucker [24]. He considered a plastic

body subjected to a given load and to an additional external agency which slowly

applies and removes additional stresses. He then postulated that during application

of the additional stresses as well as during the whole cycle of their application and

their removal the work done by the external agency is non-negative. In other words,

no useful energy can be extracted from the material and its load during the application

of the external stresses nor during the whole cycle of applying and removing them.

On the basis of these postulates it follows from a discussion of Fig. 1, where d*

*4

0

yield

surface

Fig. 1. Theory of the plastic potential.

represents the initial loading of the body and d — d* the additional stress, that (a) the

yield surface is at least weakly convex and (b) the vector d is orthogonal to the yield

surface in the end point of d and points away from the origin. These two results are

equivalent to the inequality

(d - d*)d > 0. (3.1)

Drucker's proof includes the more general case of an elastic-plastic body. However,

some of his argumentation is questionable. In the first place, a finite body will generally

not return to its initial state of stress after plastic deformation. Thus the change in

elastic energy cannot be disposed of as easily as suggested in Drucker's proof. In the

second place, an ideally plastic tensile specimen, loaded almost to its yield limit and

triggered off by a small additional load, will contract during plastic flow. Since the con-

traction implies an increase in the stress, the additional load will initiate a flow of

rapidly increasing speed which may be used to extract energy from the loaded specimen.

It is true that these difficulties can be avoided by restriction to an infinitesimal



THERMOMECHANICS 93

element and by neglecting part of its deformation. This process, however, dilutes the

physical content of the two postulates, so that the question arises whether they are

really more fundamental than the inequality (3.1).

4. The inequality (3.1) may be interpreted as a principle of maximum dissipation

rate, since it asserts that, once a strain rate d is prescribed, the rate of dissipation work

of the real stress 6 associated with it is never less than the fictitious rate of work of an

arbitrary stress <S* below or at the yield limit. The principle has been stated independ-

ently by v. Mises [3], Taylor [25] and Hill [26].

Bishop and Hill [27] derived the principle of maximum dissipation rate from the slip

plane theory of crystals and a few additional assumptions. The most notable amongst

them is the postulate that slip along a preferred plane depends only on the corresponding

shear stress. The approach has been recently generalized by Kestin and Rice [28, 29].

They start from the general concept of internal parameters and the corresponding forces

and base their theory on the obviously quite restrictive assumption that it is always

possible to find a set of internal parameters such that the rate of each one of them only

depends on the corresponding force.

5. The work reviewed so far has one common feature: it is entirely based on mechan-

ical considerations. Moreover, most of it is restricted to plastic bodies and rests, to a

certain extent, on more or less plausible assumptions. A study of the foundations of

continuum mechanics shows that, sooner or later, one is compelled to introduce thermo-

dynamic concepts. For example, the general treatment of continuum mechanics requires

that the energy theorem of mechanics be replaced by the first law of thermodynamics,

and the formulation of constitutive equations often requires that restrictions imposed

by the second law be observed. In short, continuum mechanics is in the process of

developing into continuum thermodynamics, thus opening a vast field of interdisciplinary

research which really deserves this name, in contrast to many other enterprises wearing

this label.
Today, work in the border region between mechanics and thermodynamics is ham-

pered by problems of communication. This seems amazing in view of the successful

synthesis of the two fields in the past and in particular in the creation of statistical

mechanics towards the end of the last century. Since then, however, the development

has followed independent lines, and it turns out that today discussions are difficult

between partners one of whom, to put it bluntly, shuns the entropy concept and the

other of whom is used to concentrate on gases undergoing reversible processes.

It will be necessary, however, to bridge this gap. Thermodynamic concepts have

proved to be extremely fruitful for continuum mechanics, and there is in particular no

reason why the special problem of providing a physical basis for the theory of the plastic

potential or, more generally, for the principle of maximum dissipation rate, cannot be

solved by thermodynamic considerations. One might even expect that the solution will

be useful in a far wider field than the one of our original interest.

6. From a thermodynamical viewpoint, the deformation of a plastic body or, in fact,

of any real material, is always an irreversible process. In order to establish a connection

between the stresses and the strain rates, one needs, however, more than the fundamental

laws. Fortunately, thermodynamics is in a position to supply a more powerful tool

in the form of Onsager's symmetry relations [30] which, for the last four decades, have

served as the basis of the linear theory of irreversible thermodynamics. Biot [31-33] was

the first to recognize the implications of Onsager's work for continuum mechanics.
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He used it to establish a perfect analogy between problems of elastic deformation and

viscous flow. This proof of the so-called viscoelastic analogy, discovered by Alfrey [34]

and extended by Hoff [35], is quite general and hence in particular independent of any

conditions of symmetry or isotropy.

In order to formulate Onsager's relations, we note that an irreversible process is

always characterized by certain velocities a,- and the corresponding forces A,- (for a

precise definition of these concepts see [36]). Velocities and forces are connected by the

expression of the rate of dissipation work,

P = A,dj . (6.1)

If, for example, the system considered is the unit volume of a viscous fluid, the a,- are

the strain rates and the A ,• the stresses. Provided the velocities and the forces are con-

nected by linear relations,

A,- = cikak , (6.2)

Onsager's theory asserts that the matrix cik is symmetric; i.e., that

ckj = Cik . (6.3)

This condition restricts (6.2) and, in particular, the constitutive equations of viscous

fluids.

7. It is obvious that the symmetry relations (6.3) are meaningful only as long as

the velocities and forces are connected by linear relations (6.2). In fact, Onsager's theory

is restricted to this case, and it has been claimed that it cannot be extended to nonlinear

relationships. On the other hand, there are strong arguments in favor of such a general-

ization.

In the first place, we know that most problems in physics are nonlinear, although we

linearize them for mathematical convenience. A theory with a true physical content,

however, cannot be expected to be confined to linearized cases. In the second place, the

symmetry relations can be replaced by an equivalent statement which remains meaningful

for nonlinear relationships between velocities and forces [37] and is strongly supported

by reasons of mathematical simplicity. In the third place, it has been possible [38] to

prove this generalization on the basis of the fundamental concepts of Gibbs' statistical

mechanics [39]. Finally, the generalization has been successfully applied to various

problems, particularly in continuum mechanics [40-42], One of the results, as expected,

is the thermodynamic justification of the theory of the plastic potential.

In order to replace the symmetry condition by a statement that can be generalized,

we insert (6.2) in (6.1), obtaining

P = Ajdj = Cjk&jdt = D(dj). (7.1)

The rate of dissipation work can thus be expressed as a quadratic form D(a,) of the

velocities. This form is called the dissipation function and is positive definite in view of

the second law. On account of the symmetry relations (6.3)

dD/ddj = 2cjkdt , (7.2)

so that (6.2) may be written

A, = XidD/ddj), (7.3)

where X =
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In an n-dimensional cartesian coordinate system a,- , the dissipation function can be

represented by (hyper-)ellipsoids D = const (Fig. 2). The relation (7.3) implies that

the force vector A,- is orthogonal to the tangential plane of the .D-surface in the end

point of the velocity vector d,- . Thus, the symmetry relations (6.3) are equivalent to an

orthogonality condition which may be generalized for nonlinear cases.

8. Comparing Figs. 1 and 2, we note a marked similarity: both of the two figures

D = const

Fig. 2. Replacement of Onsager's symmetry relations by an orthogonality condition.

illustrate an orthogonality condition. This is an argument in favor of the thermodynamic

approach. It is true that the roles of velocities and forces are interchanged between the

two figures, but this is incidental and could easily be modified. The fact that, in Fig. 1,

all of the /J-surfaces appear to be concentrated in a single yield surface, is a particular

feature of the plastic body. There remains the difference in the shape of these surfaces.

The D-surfaces in Fig. 2 represent a linear theory and hence are ellipsoids. If, on the

other hand, the relationships between velocities and forces are nonlinear, as in the case

of a plastic body, we have to expect dissipation functions of a more general type. How-

ever, the orthogonality condition (7.3),

A, = \(dD/dd,), (8.1)

remains meaningful, provided the factor X is determined by means of the identity

A, a, = D(dj) (8.2)

following from (7.1).

Thus it turns out that, replacing the symmetry relations (6.3) by the orthogonality

condition (8.1), (8.2), we obtain a form of Onsager's theory which is not restricted to

linear cases.

9. The orthogonality condition is equivalent to various extremum principles. Such

principles have been formulated for the linear case by Onsager [30], Biot [32], and by

Prigogine and De Groot [43]; others have been added during the last decade [36, 44-48].
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Of all these possibilities, the principle of maximum dissipation rate seems to be the

most interesting one, aside from the fact that it is closely connected with the principle

already discussed in connection with the theory of the plastic potential (Section 4).

It states that, once the force vector A ,• is prescribed, the actual velocity vector a,- max-

imizes the rate of dissipation work P = A, a, or, equivalently, the dissipation function

D(dj) subject to the side condition (8.2).

To prove this, we note that for a given value of P, the equation D(a,) = P represents

an ellipsoid E (Fig. 3) with center 0, whereas the equation A/dj = P represents a plane

F

Fig. 3. Principle of maximum dissipation rate.

F perpendicular to the prescribed vector At . The distance of F from 0 is proportional

to P whereas the semi-axes of E are proportional to y/P. The side condition (8.2) requires

that E and F have at least one point in common. This condition is clearly satisfied for

sufficiently small values of P. It is further obvious that the direction of the exterior

normal of E differs from the direction of A,- in the points of intersection with F but

coincides with this direction in the point of contact. This point, however, corresponds

to the largest value of P for which (8.2) is satisfied.

Some of the extremum principles, equivalent to the orthogonality condition in the

linear case, retain this property in nonlinear cases, provided the dissipation function

satisfies certain conditions which, from a physical point of view, are obvious. If gross

ambiguities in the connection between velocities and forces are to be excluded, the

D-surfaces must be at least weakly convex, and to avoid unstable situations, one has to

assume that these surfaces are ordered in such a way that the value of D increases

sufficiently fast on any radius from the origin [36, 46]. One of the theorems remaining

valid under these conditions is the principle of maximum dissipation rate.

Dividing the dissipation function by the temperature, one obtains the rate of entropy

production within the system. It follows that the last theorem can also be stated as the

principle of maximum rate of entropy production. From a physical point of view, this
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form is particularly appealing since it represents a simple extension of the second law.

In fact, if a closed system tends towards its state of maximum entropy, it seems reason-

able that the rate of entropy increase under prescribed forces be a maximum; i.e., that

the system should approach its final state on the shortest possible path.

10. In most cases and, in particular, in systems of the type we are considering here,

the velocities df are the time derivatives of certain parameters a,- which, together with

the temperature 6, define the state from the point of view of a macroscopic observer.

In a viscous fluid, e.g., the a, are the strain components, representing the shape of the

element.

From a microscopic point of view, the system may be considered as purely mechani-

cal, the qK being the coordinates of its atoms and the pK the corresponding momenta.

Under certain assumptions ([46] or [38, p. 854]), the motion of this microsystem is

determined by Hamilton's equations

q, = dH/dp, , pt = ~{dH/dqK), (10.1)

where the Hamiltonian

H, P. , Oy) (10.2)

represents its total energy. On account of (10.1) the time derivative of H is

H = (dH/daj)aj . (10.3)

It follows that H is modified through the a, alone.

In contrast to the microsystem, the macrosystem is a thermodynamic system with

parameters a, which may be assumed to vary slowly compared with the micro-coordi-

nates qK . This assumption clearly implies that the macrosystem is to be considered as

adiabatically isolated, since a heat flow through the boundary cannot be represented

by slow variations of the a, .

In order to obtain useful results for the macrosystem, the statements (10.1) through

(10.3) must be interpreted statistically. According to Gibbs ([39, p. 5]), this is achieved

by (a) associating a large number of microsystems with the given macrosystem and

(b) by inferring the behavior of the macrosystem from the average behavior of the

ensemble of microsystems. It is clear that the history of the a, must be the same for the

whole ensemble, and it is equally obvious that the average behavior of the ensemble and

hence the behavior of the macrosystem (and, in particular, the temperature history)

are entirely determined by the history of the a,- .

It follows that, e.g., the dissipation function at any time t is completely determined

by the way the macroscopic constraints a,- vary up to the time t. If the history is repre-

sented by internal parameters (to be counted among the a,), the dissipation function

depends on the state of the macrosystem and the velocities a, , and if we suppose that

the state is prescribed, the dissipation function assumes the form -D(a,).

The forces A,- do not appear in this discussion. In fact, the statistical treatment

shows that the dissipation function plays the decisive role in irreversible processes and

that the forces appear as derived quantities. In order to connect the forces with the

velocities by means of the dissipation function, we note that the choice of the velocities

a,- describing the irreversible process is somewhat arbitrary. The corresponding forces A,-

are subject to the condition that the scalar product Afa,- represents their rate of work.

Restricting ourselves to linear transformations of the velocities, and considering the a,-
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as contravariant, we conclude from (8.2) that the A,- define a covariant vector. The

simplest covariant vector connected with the dissipation function is its gradient. Mul-

tiplying it by the scalar which itself may depend on D, we obtain (8.1), and the inclu-

sion of the factor X makes it possible to satisfy (8.2). Thus it turns out that the ortho-

gonality condition represents the simplest invariant connection between the dissipation

function and the force vector.

11. The last result supports the orthogonality principle but does not prove it. For a

formal proof, we now definitively turn to thermodynamics. Here, we encounter a first

obstacle in the form of the common argument that thermodynamics, notwithstanding

its name, deals with equilibrium states and not with the evolution of systems in the

course of time. This objection, however, is not only disproved by the description of

processes in all texts on thermodynamics, but also by Onsager's theory, and it is by no

means more realistic in connection with an extension of this theory to nonlinear processes.

In fact, the inclusion of nonlinear terms does not necessarily imply that the velocities

are greater than the ones considered by Onsager. The essential condition obviously is

that the a, vary slowly compared with the qK . It is this assumption, and not the require-

ment that the a,- be constant, which governs all of Gibbs' work.

The emphasis placed on equilibrium states stems from the fact that, until lately,

thermodynamics, rather than being conceived as a field theory in the spirit of continuum

mechanics, has been based on the fiction of homogeneous states, i.e., of finite bodies in

which the state variables are the same throughout the volume. This fiction implies that

if, e.g., a mole of a gas is heated by contact with an external body, the heating process

has to be considered as infinitesimally slow (since otherwise transient temperature

differences would develop). This has the additional consequence that the entropy pro-

duction due to heat exchange inside the volume is negligible and that the process,

therefore, is practically reversible.

It is clear that a field theory, based on the notion of state variables depending on

position and time, is far more realistic. It has been shown by Traupel [49] that there

is no reason why this approach, which has been extremely fruitful in mechanics for

approximately two centuries, should not be equally justified and useful in thermo-

dynamics. Within the frame of such a field theory the restriction to infinitesimally slow

processes is unnecessary; it is replaced, so to speak, by the concept of a body consisting

of infinitesimal elements. Moreover, the treatment of irreversible processes becomes as

straightforward as the discussion of reversible ones.

12. In continuum thermodynamics the primary object of investigation is the unit

of mass. Considering it as the macrosystem in the sense of Sec. 10, we notice that its

state is described by the temperature 6 together with certain mechanical variables a,

which include the strain components and possibly a set of internal parameters repre-

senting the history. Let us denote these quantities, which depend on position and time,

as independent state variables. Any function of a,- and 6 may be called a dependent state

variable or a state function. Examples are the free energy ^(a,- , Q), the reversible forces

A'f ' which we define by

A(fr) = d^/da, , (12.1)

and the entropy

S = ~(d*/dO). (12.2)
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It follows from (12.1) and (12.2) that, in any change of state,

¥ = AY'd, - SO. (12.3)

The internal energy U(a,- , 0) is another state function, defined by

U = * + OS. (12.4)

On account of (12.3) its rate is given by

U = A<r)d,- + ftS. (12.5)

In order to facilitate the statistical treatment (Sec. 13) we assume at present that

the element is adiabatically isolated. In this case S represents the rate of entropy pro-

duction within the element. Besides, the first law reduces to

U = Ajdj , (12.6)

where the A,- represent the macro-forces (zero for internal parameters and proportional

to the stresses for the corresponding strain rates). Comparing (12.5) and (12.6), we obtain

(Aj - A ■r))a,- = 9S. (12.7)

If the element undergoes a reversible process, S is zero, and it follows from (12.7) that

in this case Af = A^\ This justifies the term "reversible force" for A-r), and it further

suggests the decomposition

Af = Alr) + Ay\ (12.8)

where the A-"' may be denoted as irreversible forces. According to (12.7), they are

subject to

OS = D > 0, (12.9)i <•>,

where D, by comparison with (8.2), is the dissipation function, and the inequality sign

is a consequence of the second law.

It thus turns out that each force can be decomposed into a reversible and an irre-

versible part. The reversible force is a state variable since it is obtained, according

to (12.1), by partial differentiation of the free energy. The irreversible force depends

on the change of state and hence is a function of the a,- . Relation (12.9) clearly estab-

lishes the connection with the original form of our problem. There, we dealt with the

purely dissipative and hence purely irreversible case, represented, e.g., by a viscous

fluid and characterized by A,- = Aj°. The present representation is more general insofar

as it admits reversible and irreversible forces and hence is applicable to more complicated

continua as, e.g., the viscoelastic body.

The only condition for the A]^ so far is (12.9). It connects the irreversible force with

the dissipation function but does not determine it completely.

13. The missing link in the determination of the A5° is provided by the statistical

interpretation outlined in Sec. 10. In phase space the ensemble of microsystems corre-

sponding to a given macrosystem is represented by a great number of points qK , p, ,

each one of them moving on its //-surface which itself is in motion as long as the param-

eters a, vary with time. According to Gibbs, the distribution of these phase points may

be considered as canonical ([39, p. 33]) and, on account of the large number of points,
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may be treated as a continuum ([39, p. 5n]). The canonical distribution is characterized

by the distribution function

w = exp (Sf — H)/6, (13.1)

where d and ^ are the temperature and the free energy of the macrosystem. Eq. (13.1)

implies that the phase points are uniformly distributed along the layers formed by

H-surfaces, whereas their density varies from layer to layer. The logarithm of the dis-

tribution function (Gibbs' index of probability) is given by

t] = In to = (^ — H)/d. (13.2)

Its negative mean value,

-rj = S, (13.3)

taken over the whole ensemble, is the entropy of the macrosystem.

A simple calculation ([38, p. 856]) shows that

tj — 0, whereas rj = — $. (13.4)

It follows that, in the presence of entropy production, the processes of differentiation

with respect to time and averaging over the elements of an ensemble are not inter-

changeable. In fact, (13.2) shows that, if rj is not constant, the distribution density of

the layers bounded by //-surfaces must vary with time ([46, p. 119]) even though each

single phase point moves on its proper //-surface. We have to conclude, therefore, that,

in an irreversible process, a given macrosystem is not always represented by the same

ensemble of microsystems. This means that any entropy production (as has been demon-

strated in [46]) is accompanied by a reorgainzation of the ensemble, consisting in the

addition of phase points and the disappearance of others or, in short, in a transport in

phase space superposed on the regular flow.

The conclusion reached here clearly breaks with the traditions established in con-

nection with reversible processes. However, the conclusion is inevitable and implies that,

in dealing with irreversible processes, one has to sacrifice the concept of continuity in

phase space. To confirm this, let us write (13.2) in the form

H = V - 6-q. (13.5)

A simple calculation shows that

H = V + 6S, whereas B = * + 6S + dS. (13.6)

It follows that

8 = S + 6&, (13.7)

and we note that again the processes of time derivation and averaging cease to be

interchangeable as soon as the entropy production in non-zero.

A fluid of density p, moving in space and subject to the continuity equation

P + Pvi.i = 0, (13.8)

satisfies the relation

(j* pHdvj = f pHdV, (13.9)
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where H is an arbitrary field function, dV denotes the volume element, the integral is

extended over an arbitrary volume and the dot indicates material differentiation.

Applying (13.9) to the "continuum" of phase points, interpreting H as their energy and

replacing the density p by the distribution function w, we note that the two sides of

(13.9) respectively represent the left-hand side and the first term on the right-hand side

of (13.7). The presence of the second term on the right-hand side of (13.7) confirms that

there is no continuity in phase space provided the entropy production is different from

zero. i

It follows from Hamilton's equations (10.1) that

(dqK/dqK) + (dp./dp.) = 0. (13.10)

The corresponding equation for the fluid considered above is

Vi.i = 0, (13.11)

and this is equivalent to

P = 0 (13.12)

if the fluid satisfies the continuity equation (13.8). Interpreting (13.12) in phase space,

we obtain Liouville's theorem w = 0. For irreversible processes, however, there is no

continuity in phase space. It follows that Liouville's theorem is restricted to the rever-

sible case.

14. We noted at the end of Sec. 12 that, so far, the only connection between the

vectors a, and A{° is the condition (12.9). Let the state of the macrosystem, together

with the macro-forces, be given at time t, and let us ask for the corresponding velocity af.

According to (12.1) the reversible part A,-r) of A, is a state variable. Thus, AJr) is given

and it follows from (12.8) that also the irreversible force A,-0 is known.

The velocity a,- does not enter Hamilton's equations (10.1), (10.2). If, therefore,

dj is varied at time t by the amount 5a,- , this variation is of arbitrarily small influence

on the motion, during a sufficiently short time interval, of the various microsystems

corresponding to the given macrosystem. In the irreversible case, though, there is also

a transport in phase space, and the corresponding change of rj in the layers bounded

by //-surfaces may be different for the velocities a, and a,- + 5a,-. However, for variations

5a,■ which do not affect the various sides of (12.9), the behavior of the macrosystem

during the time interval considered is the same. It follows that not only a single velocity

dj is compatible with the prescribed force A, or, equivalently, with its irreversible part

Ay\ but also all those varied velocities a,- + <5a,- for which the dissipation function

and hence also the scalar product with A-'' remain unchanged. However, this requires

(see Fig. 3, where A,- has to be replaced by Ay") that, in general, Sd, is infinitesimal

and that A-° is orthogonal to the tangential plane of the dissipation surface passing

through the end point of a,- .

The last statement proves the orthogonality condition on the basis of statistical

thermodynamics. Together with (12.9), it supplies the connection between the velocities

dj and the irreversible forces A J'\ It can be shown [38,42] that the restriction to adiabatic

processes may be dropped if the components g, of the heat flow are considered as addi-

tional velocities with corresponding irreversible forces — (1/p) (In 6)ti . It follows that

the behavior of the macrosystem is completely determined in any process by its set^of
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macrocoordinates and two scalar functions: the free energy ^ and the dissipation func-

tion D.

15. It can be shown [46, p. 138] that the orthogonality condition still holds if the

roles of the velocities and the irreversible forces are exchanged and the dissipation

function is written in terms of the irreversible forces.

If the dissipation function is quadratic, the connection between the irreversible

forces and the velocities is linear, and the orthogonality condition becomes equivalent

with the symmetry relations (6.3). In the highly nonlinear case of a plastic element, where

all D-surfaces are concentrated in a single yield surface, the orthogonality condition is

equivalent with the theory of the plastic potential. As an example situated between these

two limiting cases, let us consider a non-newtonian fluid of the Reiner-Rivlin type [51,52],

The constitutive equations of the incompressible Reiner-Rivlin fluid may be written

= ~pSik (15.1)

and

f,V = g(dl2) , d<3>) djk + h(d(2) , d(3>)(d,i dik %dm 5,*), (15.2)

where and <r-i' are the reversible and irreversible parts of the stress, p is an un-

determined hydrostatic pressure, djk is the strain rate with basic invariants dw , du) ,

and 8^ is the unit tensor. The functions g and h are arbitrary but subject to the condition

that the rate of dissipation work,

P = (1/pK<;> dlk , (15.3)

referred to the unit mass by means of the density p, is non-negative.

As long as the functions g and h are arbitrary (except for the restriction P > 0) the

constitutive equation (15.2) does not obey the orthogonality condition. It can be shown,

however [40], that the orthogonality condition is satisfied if the two functions are given

by

9

h =

T\( o dZ) dD , \ 3D
P \ nj (2) "f~ ^ , (3) ) ij >\ oa(2) oa(3) / oa(2> ^

dD

ddm <2) ddt3, "7 ddi3> '

where

pD = 2gdm + 3/id(3) (15.5)

is the dissipation function per unit volume. These conditions clearly define a special

class of Reiner-Rivlin fluids, simpler insofar as the two arbitrary functions are reduced

to a single one with a precise physical meaning: the dissipation function D.

To treat specific applications, the dissipation function must be specified. On account

of the nonlinearity we cannot expect exact solutions. A reasonable way to obtain approx-

imations is based on the expansion of in terms of powers of d,k . Truncating this

series, one obtains successive approximations, containing an increasing number of

coefficients, which are free except for the condition that D is non-negative. If one then

subjects the polynomials obtained to conditions (15.4), the number of free constants

is considerably reduced.

The first approximation is linear and characterized by the constitutive equation

= 2 nd,t (15.6)
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of the newtonian fluid of viscosity 77 > 0. On account of the orthogonality condition the

second approximation is still given by (15.6). In a third approximation we obtain

= 2(?7 + K.dm) djk , (15.7)

i.e., the constitutive equation of a quasi-linear fluid with two material constants tj and k.

The fourth approximation yields the constitutive equation

<rjt' = 2(i? + Kd(2) - Xd(3)) d,t + 4\d(3) (dti dik — fdw &jk) (15.8)

of a truly nonlinear fluid characterized by three constants 77, k, X. In this last case the

orthogonality condition reduces the number of material constants from 5 to 3.

Comparing the various approximations, we note that the second one is still newtonian

and that the terms containing the square of the strain rate tensor appear for the first

time in the fourth approximation, whereas (15.2) already contains them in the second

approximation if the orthogonality condition is neglected. Thus, the transition from the

newtonian to the truly nonlinear fluid is considerably smoothed by the orthogonality

condition.

Since, on the other hand, the square of the strain rate finally appears in the higher

approximations, it is to be expected that the typical nonlinear effects observed in experi-

ments and predicted by the theory of Reiner-Rivlin fluids may be fully explained by

the simpler theory based on the orthogonality principle. This has been confirmed [40]

for the Weissenberg effect [53] (climbing of a fluid along a rotating cylinder (Fig. 4)),

Fig. 4. Weissenberg effect.
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the Green-Rivlin effect [54] (development of vortices in a parallel flow through an

elliptical tube (Fig. 5)) and in other cases [41]. In the case of Fig. 5 it even turned out

that the numerical results are exactly those of Green and Rivlin. This unexpected

result is explained by the fact that, on account of the difliculties in the analytical treat-

ment, Green and Rivlin had to simplify their fluid to such an extent that, for the problem

considered, it became equivalent to a fluid obeying the orthogonality condition.

Fig. 5. Green-Rivlin effect.

16. The examples just treated were simple insofar as all of the macrocoordinates

are external parameters. Besides, the free energy is identically zero. In other cases,

e.g., in a viscoelastic material, the macrocoordinates are partly internal parameters,

representing the history of the element, and the behavior of the element is determined

by the free energy together with the dissipation function. The orthogonality condition,

however, is not restricted to continuum mechanics. It may also be applied to chemical

problems, and here the macrocoordinates are sometimes exclusively internal parameters.

As an example, let us generalize the treatment [42] of a problem discussed on a linear

basis in the recent editions of the text by Sommerfeld on theoretical physics [55], sup-

plemented and edited by Bopp and Meixner.

Let us consider an isothermal gas consisting of

n = n0 + nx + n2 (16.1)

moles of molecules in the respective energy levels Uu, Ui , and U2, confined in a closed

container of constant volume. Its free energy [42] is

¥ = ^2 n,[Uj — dSj — Rd In (n/n,-)], (16.2)



THERMOMECHANICS 105

where R is the gas constant, Sa , Si , and <S'2 are the entropies per mole of the three

components, and the sum is extended over the indices 0, 1, and 2. Since 0 and n are

constant, the state of the mixture is determined by the internal parameters nx and n2 .

The problem is to determine the manner in which the system, released in an arbitrary

state and left to itself, approaches the equilibrium state.

The free energy (16.2), as a state function, can be expressed in rii and n3 by means

of (16.1). According to (12.1) the reversible forces A[r) corresponding to the parameters

nk (k — 1, 2) are the partial derivatives of SP with respect to the nk . Carrying out the

differentiation we obtain

A^ = ^ — Rd In (n0/nk). (16.3)

It can be shown that the A[r> vanish in the equilibrium state nk , n0, and it follows that

AiT) = Rd (In (nk/nk) — In (n0/n0)). (16.4)

The dissipation function D depends on the nk . According to (8.1) and (8.2), the

irreversible forces are

Al" = \(dD/dnk), (16.5)

where X follows from

A[{)nk = D(nk), (16.6)

if the summation convention is adopted for the index k = 1,2. Since the nk are internal

parameters or, in other words, since the corresponding forces Ak do not contribute to the

first law, we have Ak = 0. It follows from (12.8) that A[T) + A[x) = 0; i.e., that

X(dD/dnk) = /?0(ln (w0/n0) — In (nk/nk)). (no summation) (16.7)

This equation connects the internal parameters with their rates and thus governs the

approach of the system towards equilibrium.

In general, both sides of (16.7) are nonlinear in nk and nk . In the vicinity of the

equilibrium configuration the nk — fik and the hk are small, and by linearizing (16.7)

we obtain the system

nk = —7i ,(n, — fit), (16.8)

where the properties of the matrix ykl are governed by the orthogonality condition used

on the left-hand side of (16.7). Taking this into account, one easily shows [42] that (16.8)

is equivalent with the linear Fowler relations [56] including the so-called principle of

detailed balance. Thus these last relations, usually considered as the basis of the theory,,

turn out to be consequences of the orthogonality condition in the linear case.

17. These are only a few particularly simple applications of the orthogonality

condition. The connections established with existing theories in vaiious fields appear

encouraging. It seems reasonable to expect that the application to more complicated

problems will contribute to render them more tractable. Finally, the fact that once

again a close connection and an intensive mutual interaction between mechanics and

thermodynamics become apparent, seems to me of particular interest.
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