
QUARTERLY OF APPLIED MATHEMATICS 85

APRIL, 1972

SPECIAL ISSUE: SYMPOSIUM ON"THE FUTURE OF APPLIED MATHEMATICS"

AUTOMATIC PROGRAMMING

BY

ALAN J. PERLIS

Yale University

Since the development of FORTRAN fifteen years ago we have observed a steady

growth in the development of that part of computer science that deals with programming.

In particular, there has been an outstanding development in programming languages:

we can say more—and in a more natural fashion—to the computer and its attendant

service programs to get our tasks accomplished. Our programming languages have

grown more sophisticated—more attuned to the classes of algorithmic tasks we have

set ourselves—and more selective, as we have come to be able to define classes of com-

putations we will often do. Thus FORTRAN has spawned both PL/I and BASIC.

The former has generalized the primitive concepts of FORTRAN'S data and control

and the latter has distilled from FORTRAN its simplest and most important essentials.

Not only have the tasks influenced the languages, but also the hardware and the modes

of use thereby engendered have influenced the languages. In PL/I the issues of pro-

grammer management of program execution are raised, e.g., in ON conditions and

parallel execution. However, the extensions notwithstanding, PL/I is still directed at

the same style of programming algorithms in existence as FORTRAN: PL/I is a sum-

mation of a decade of enormous experience.

This style of programming and the languages used have opened up a number of

interesting areas for study and research:

1. Syntax analysis and parsing algorithms for mechanical languages.

2. Properties of program representation: recursion, iteration and backtracking.

3. Data structures: definition, analysis and computer representation.

4. Semantic models of programming languages.

5. Consequences of program execution: termination, correctness and efficiency.

6. Program equivalence.

7. Design and construction of compilers and interpreters.

Much of computer science research and education in the past seven to ten years

has been concerned with the study of these issues which, regardless of the theoretic

framework in which they are posed, analyzed and solved, are the responses to an applied

problem: how to improve the characteristics of the communication channel between

man and computer. The improvements have revealed themselves by permitting an

increase in computation while saying less, and by permitting more people of limited

computer literacy to communicate with the machine at all.

Those of us in the field of software have learned to be humble before the hardware

engineer—we are aware that we are pushed into major new programming problems



86 ALAN J. PERLIS

arising out of the increased capabilities of the devices, while the conversely directed

force is very rare: few major devices are created to solve vexing programming problems.

Hardware drives the field! An examination of some growth measures will support this

view. There has been an increase by a factor of 1000 in the 20 years from 1950 to 1970 in

1. Machine speed in operations/second.

2. Primary computer storage of a random access type.

3. Cheapness in operations/second-dollar.

4. Storage density in bytes/cu. ft.

The resultant increase in traffic has also caused the same factor increase in the number

of lines of system code necessary to support the usage patterns on these larger and

faster machines.

The enormous increase in traffic between man and his computer has prompted the

development of multi-processing, time-sharing, parallel-processing and networking

of computers. The programming systems managing these complex entities are called

operating systems and their development has opened up still other areas of study and

research in computer science:

1. Statistical models of software-hardware system performance.

2. Parallel processing algorithms.

3. Deadlock prevention and resource allocation.

and a class of management-system problems which arise purely from the complexity

of the emerging systems which we deal with:

1. The rules by which a complex is decomposed into sets of simpler modules.

2. The delegation and distribution of design authority.

3. Documentation, testing and modification.

4. Model alteration, improvement and generalization.

Of course these same issues have already arisen in other guises and have been treated

there by engineers and management scientists. However, in computer science these

issues are new and of interest because of what appears to be the lack of physical con-

straints which dominate so many other large systems.

All of this ferment has occurred in about fifteen years. Already there are programs

in existence with over a million instructions. Surely we may expect there to be many

more of them and programs an order of magnitude larger than these in the next decade.

Somewhat separate from the above developments are those in artificial intelligence—

another important component of computer science. Here one finds research coupled

to a variety of purposes attached to a set of problems from which combination a col-

lection of important techniques has emerged. Artificial intellegence is concerned both

with modeling human thought processes and investing the computer, through its pro-

grams, with more human-like capabilities. Of course, in the last analysis these probably

amount to the same thing. Some of the important purposes are:

1. The study of heuristics, e.g. as in applications arising in chemistry (molecular

structure from spectral data) and formal mathematical manipulation by programs.

2. The investigation of human thought processes through the study of modeling

programs.



AUTOMATIC PROGRAMMING 87

3. Human-like extensions of the machines so that they will better serve us: research

in speech, vision, natural language processing, motion and musculature.

Some of the important problems to which these purposes have been attached are:

1. Organic chemistry synthesis and molecular structure analysis.

2. Formula manipulation: integration, differential equations, Laplace transforms,

etc.

3. Natural language processing: program understanding of speech and text.

4. Games, such as go and chess and checkers.

5. Robotics.

6. Mechanical theorem proving.

As programs have become larger, modes of use more stylized, and as numbers of

machines increased in variety, the movement of programs from one computer environ-

ment to another has become an issue of some importance: how does one move a system

of programs from one environment to another? Three approaches have been used:

1. Boot-strapping.

2. Program abstraction followed by re-programming.

3. Standardization.

Boot-strapping depends on the generation of programs in an environment-independent

way from a programmed kernel which, while environment-dependent, is sufficiently

simple that a sufficiently accurate environment-independent description can be

given, thus permitting the kernel to be easily rebuilt in a new environment. The re-

mainder of the system is presumably unaffected by the transition. This technique is

now widely used and is limited mostly by the ability to describe adequately the data-

processing functions of kernels. The method of abstracting and reprogramming maps

an environment-dependent program into one which has the same function or purpose

but is more abstractly specified—by which one means that it is less environment-de-

pendent! An example would be mapping an efficient linear equation solver which utilizes

the available core, disk and tape characteristics of its current environment into a program

which is efficient in another different environment. Abstraction is very difficult to

mechanize and only a very few algorithms, e.g. sorting, are understood well enough

to yield to this method. Standardization, of course, legislates the problem away by

insisting that all environments be, if not identical, at least common in a useful sub-

environment so that restriction to it eliminates the problem almost completely.

By and large artificial intelligence has not concerned itself with the problems arising

from the programming process per se. However, here is a human problem-solving activity

of ever-increasing importance to which the tools of artificial intelligence can be applied.

Already some activity exists and some progress can be reported:

1. A heuristic program to design operating systems has been attempted.

2. A heuristic program to design instruction codes for a computer has been written.

3. A heuristic program to design sorting programs is being built.

4. An approach to automatic program production from statements of input-output

predicates, utilizing mechanical theorem proving, is under development.

Heuristics is associated with design. Consequently we may expect the techniques

of artificial intelligence to be influential wherever programs are being designed. This



88 ALAN J. PERLIS

is particularly true if the goal includes mechanical design of programs. If one may

prognosticate, automatic programming research will become absolutely intertwined

with artificial intelligence work in this ensuing decade. If that will be so, to what problems

in automatic programming will we turn so as to take maximum advantage of what

artificial intelligence has to offer? I believe these problems will be:

1. The programming problem itself: how may we create programs that write detailed

programs from little information?

2. The re-programming problem: how may we transfer a collection of programs

from one environment to another?

3. The program-understanding problem: how may we create programs which "under-

stand" other programs so that they can convey information about a program to anyone

who requests such information? It is probably through such programs that the issues

of education, documentation, monitoring and improvement of large programs can be

brought under manageable control. However, it may well turn out that programs which

understand can themselves be understood only with great difficulty. We are already

capable, however, of taking some important first steps with the translators we are now

accustomed to use. With very little extra effort these same translators could optionally

produce an auditing program which could monitor the use of resources by an object

program in its successive executions. With somewhat more effort a flow path analysis

could be produced which itemizes the paths and conditions under which they were

followed.

A good translator is many-one; i.e., it attempts to find the "best" object program

for a set of functionally equivalent source language programs, and it attempts to deter-

mine this object program from a lexicographic analysis of the source program. Once

the translation has been achieved, answers to questions about the original source program

are often so difficult to obtain from the object program that re-analysis of the source

becomes necessary. Alas, it often happens that the source has long since been lost, or

no longer matches the object program, etc.

Thus it seems reasonable often to produce some coded version of the "reverse"

translation process as well as to have a program available which can answer questions

about the triplet: source program, source to object translation and object program.

In a sense, progress in programming language design can be measured by the ratio

of program text we must write which says what is to be done to that which says how

it is to be done.

Of course, we all know that this is a layered issue: "what" at one level must be "how"

at another, presumably lower, level in the language processing hierarchy. It is precisely

the increase in this ratio which is the source of the difficulty in answering questions

about a source program given the object program.

The central idea of automatic programming is precisely that of defining program

specification formats which, for an interesting set of tasks, is very high on "what"

and very low on "how". The assumptions on which this is based are:

1. It is simpler to state what is to be done than how it is to be done.

2. For most uses of the computer the traffic between people, programs, and com-

puters is of greatest value when it deals with "what" rather than "how".

However, these assumptions are not always valid. It is often much easier for pro-



AUTOMATIC PROGRAMMING 89

grammers to write at least parts of correct programs than to state unequivocally what

these parts do in some larger context. Programs are often their own best explanations.

An approach which has been suggested by several investigators is to phrase the

programming problem as the production of a program as the by-product of the proof

of a theorem. The conditions on the input data are expressed as a predicate and the

output is similarly expressed. The theorem to be proved is then phrased as follows:

Let the input be an n-tuple of objects X satisfying an input predicate 0(.ST). The desired

output predicate is i//(X, Z) where Z is an m-tuple of output data objects. The program

is a (partial) function F such that Z = F(X), F is defined for the data X and ^{X, F(X))

is true. The function is constructed through the constructive proof of the theorem

(V XMX) D (3 Z)t(X,Z)]

by a theorem-proving program. Here "what" is the theorem and "how" is the sequence

of substitutions made during the proof and leading to a definition of Z. Programs with

loops are constructed by appealing to various forms of mathematical induction. The

language of the predicate calculus is used for expressing "what", while the "how" is

obtained mechanically by a theorem-proving program. Certainly the above approach

focuses attention on the major issues: the definition of linguistic mechanisms which

permit us to

1. State what programming task is to be done.

2. Construct the mechanisms for accomplishing this task using a reduction program.

There seems little doubt that, in the early stages of this work, the linguistic mech-

anism will be a combination of the predicate calculus and the algorithmic languages

of the FORTRAN-ALGOL-APL-LISP variety. Furthermore, the "reduction" program

will operate on a mixture of standard translation, heuristic search and formal theorem-

proving techniques.

It seems reasonable that we cannot confine our serious attention to mechanical

theorem-proving techniques, since the problems for which we seek to find programs

are far beyond their present or near-future capabilities. Indeed, we must remember

that the entire development of programming languages has been focused on the de-

velopment of mechanisms for expressing "what", e.g. loop-control, macros, procedures,

and data structures. Probably we must begin to add to our languages statements ex-

pressing problem-solving techniques which are to be applied to statements expressing

input-output relations. As a rather trivial example, consider the bucket problem wherein

one has 2JV empty buckets whose gallon volumes , P2 ■ ■ • P2N are pairwise relatively

prime and a reservoir of M = X^-i Pk gallons of liquid. By emptying or filling only

one bucket from the reservoir at each stage one is to generate a sequence of M volumes

Xt held by the 2N buckets such that each volume from 1 to M is attained. The variable

identifiers and the input-output predicates are easy to write down:

1. All variables take on positive integer values.

2. X is P, , P2 , • • • , P2N , 2N, M.

3. Z is Xi , x2 , • • • , xM .

4. <f>(X) is (M = YZi A) A (V2" i)(V2W j)[gcd (P, , P,) = 1]
5. \p(X, Z) is (V4 i)(VM j)[Xi < M A « ^ J D x{ ^ xf

A»>0(3!" k)[xi+1 = x. + Pt}}.



90 ALAN J. PERLIS

If a back-tracking algorithm were available, a good automatic programming system

would presumably use it, since the problem can be solved by enumerating the integers

from 1 to M and trying permutations. Thus a program could be created forthwith.

However, we know that an algorithm can be easily specified that involves no back-

tracking or search. Whereas for a problem which seems semantically quite similar,

that of obtaining a particular distribution of liquid among the buckets, there doesn't

always exist a solution and when there does the only known method for finding it is

by a backtracking technique. To find the non-backtracking algorithm for the former

problem, the program generator would have to search for a strategy which takes ad-

vantage of cycles and then apply induction. The problem becomes trivial by observing

that the buckets may be taken two at a time and each pair of buckets once only in

the outer cycle of two.

But it is just this kind of problem-solving analysis that is the domain of artificial

intelligence: program writing by programs is a fundamental problem in artificial intel-

ligence and hence in computer science. This then points to the task for programming

research in the next decade.

References

[1] Frederick M. Haney, Using a computer to design computer instruction sets, Ph.D. Thesis, Dept.

of Computer Science, Carnegie-Mellon University, 1968

[2] B. G. Buchanan, G. L. Sutherland and E. A. Feigenbaum, Heuristic DENDRAL: A program for

generating explanatory hypotheses in organic chemistry, Machine intelligence 4 (B. Meltzer and D.

Michie, eds.), Edinburgh University Press, Edinburgh, Scotland, 1969

[3] Zohar Manna and Richard Waldinger, Towards automatic program synthesis, Comm. ACM, pp.

151-165, (1971)


