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1. Introduction. About seventy years ago Ludwig Prandtl [1] initiated a rather

remarkable contribution to applied mathematics. At the time he was trying to understand

the two-dimensional flow of a viscous incompressible fluid past a rigid obstacle (a typical

configuration is shown in Fig. 1), and his interest centered on situations in which U, L,

Fig. 1. Geometry of Prandtl's problem.

and the kinematic viscosity v of the fluid were such that v/LU « 1.

The differential equations implying the conservation of mass and momentum could

have been cast in the form

v Aw — v-grad co = 0 (1.1)

and

A\p = w (1-2)

where the velocity v is related to ^ by

v = (u, v) = (xf,„ , -i,), (1.3)

co is the vorticity, i.e.

co = I-curl v, (1.4)

and A denotes the Laplace operator. The boundary conditions required that \[/ = \f/n = 0

on T (see Fig. 1) and v —> f U as x2 + y2 —> <».

The problem is nonlinear in a very nontrivial way, the geometry is messy, the domain

* Parts of this study were supported by the National Science Foundation under Contract NSF-GP-

17383.



12 GEORGE F. CARRIER

is large, and methods conventionally available at the time were quite inadequate for

the task in hand.

Prandtl's remarkably perceptive but equally simple observation was equivalent to

the following. Eq. (1.1) describes the balance which must be achieved between the

diffusion of vorticity' from particle to particle and the carrying along of the vorticity

"contained" by a particle as it moves at velocity v. The time it takes most particles

to traverse a distance L is of order L/U and the distance, normal to the object, over

which vorticity can be transported by the diffusive process during that time is of order

<5 = (vi)l/2 = (v/UL)U2L « L. It followed readily that Aco is very well approximated

by co„„ near the object («„„ merely denotes the second partial derivative in the direction

of the local normal to T); furthermore, outside of a thin layer (of order 5) near the

object and directly downstream of the object o> is zero for all practical purposes, simply

because there is no mechanism by which vorticity could have been transported to such

locations. An equivalent argument suggests that wherever co differs significantly from

zero, one can write

to ~ i/-*» . (1.5)

The fact that Ai/< = 0 over much of the domain, the simplification of Eqs. (1.1)

and (1.2) achieved by the foregoing approximations and the fact that co need be described

only in n < S not only permitted Prandtl to solve his problem but have also given rise

to a very large body of mathematical formalism commonly referred to as "singular

perturbation theory" or "matched asymptotic expansions"; more importantly, they

also have provided the basic foundations for the heuristically-reasoned, spectacularly

successful treatment of many important problems in science and engineering. This

success is probably most surprising to rigor-oriented mathematicians (or applied mathe-

maticians) when they realize that there still exists no theorem which speaks to the validity

or the accuracy of Prandtl's treatment of his boundary-layer problem; but seventy

years of observational experience leave little doubt of its validity and its value.
* * *

About sixty years ago Peter Debye made a rather different contribution. He found

a very powerful technique for evaluating some integrals he needed. In essence his dis-

covery was an ingenious extension to the complex domain of an idea attributed to

Laplace which dealt with real integrands. For my purposes, it suffices to describe the

latter and it requires fewer pages. The integrand under consideration is the product of

two functions indicated in Fig. 2. One of the two functions, f(x), is narrow in the sense

Fig. 2. The functions /(x) and g(x) of Laplace's problem.
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that most of its area is associated with an interval on the x axis which is small compared

to the distances over which there occur significant changes of the other function, g(x).

Fig. 2 provides plausibility for the argument that one might approximate the integral

by I ~ g(x0)F, where F is the area under / and x0 is the "center of gravity" of j(x).

Actually, Laplace's method was developed for functions /(x) whose form typically is

= [ g(x) exp (-Xp(x)) dx,
J a

with p'{xo) = 0 at some point a < x0 < b, g(x0) ^ 0 and p" (x0) 7^ 0. There are approxi-

mations beyond those described above which render the result even more simply explicit,

but the important innovation has been described. Extensions of this use of the idea,

which follow rather directly, note that it is sometimes very advantageous in subsequent

manipulations and interpretations to replace one integral

I = f g(x)j(x) dx

by another,

I* = / g(x)f*(x) dx,

where /*, which is much more convenient in the continuing analysis than is /, is chosen

because it duplicates those macroscopic features of / which are important in determining

the character of I (e.g. its area, its width in some appropriate sense, etc.).

The Laplace evaluation can be cast in the form of a formal asymptotic expansion

in X together with the error estimates which usually accompany such formalisms, but

again, there seems to be no rigorous support for the direct extensions alluded to above,

a fact which need not detract at all from the utility of the device and need not deter one

from noticing that it frequently works beautifully even when / is not particularly narrow.
* * *

In 1921, while studying the dispersion of particles in a moving fluid, G. I. Taylor

needed some measure of the extent to which the velocity fluctuations at one location

were statistically related to those at another. To him it was clearly plausible to adopt

the simply-defined quantity, R = (u(x, t)u{x + d, t)), where ( ) denotes an average

over time. The viability of the choice rests on its simplicity and the fact that the size

of R at any given 5 is clearly related to the extent to which statistical knowledge about

the fluctuations at x implies statistical information about the fluctuations at x + 5.

The understanding of turbulence still eludes us, of course, but the invention has

played an enormously important role in our accumulation of knowledge about turbulent

motions and it has been equally important in describing and understanding many other

phenomena.

2. Applied mathematics. The studies outlined in the foregoing are three rather

different examples of contributions which have had a profound influence on the mathe-

matical treatment of scientific and other "real world" problems. I have outlined them,

with considerable license, not to reveal the inaccuracy of my historical knowledge but

because they have one common feature which I wish to emphasize: the invention, in

each case, was not an abstraction—-or a class of abstractions—-or a class of all classes of

abstractions! The first invention (the boundary layer concept) involved a simple quanti-
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tative idea which was based on a clear understanding of the underlying mechanisms

and the nature of the phenomenon; beyond that, it required only a willingness to approx-

imate in accord with the idea but without firm error estimates. The second required only

a clear picture of the revelant features of the mathematical object (not its abstraction)

and a willingness to discard that which was not essential to the task; the third required

only a clear recognition of the role of the object (correlation function) to be defined

and a willingness to go ahead without trying to choose among all possible alternatives.

The investigator did not ask himself: find all possible approximations to Eqs. (1.1)

and (1.2) whose solutions with the given boundary conditions differ from the true

solutions by less than e—or find all possible measures of the statistical correlation of the

random variable u{x + 5) and u(x). Rather, he asked himself: Can I find one simpler

set of requirements on ip which render its calculation tractable and which still retain

enough of the underlying physics of the phenomenon to guarantee that the \p so generated

can be interpreted in the context of the scientific problem? or, Can I define one measure

of the correlation of the velocity fluctuations which will aid me in trying to gain insight

into the nature of this frustratingly irregular phenomenon?

There is still a multitude of worthwhile, unanswered questions in the world of natural

science, in economics, in human physiology and other biological disciplines and in most

of human endeavor, whose answers will ultimately be obtained (or rather evolved) with

the help of mathematical tools and mathematical reasoning. Of these, I feel rather

certain, many (perhaps most) will require the foregoing varieties of heuristic argument,

the "find it before you prove it exists" attitude, and the determination to understand

the real phenomenon; ordinarily, they will use, in no more than a peripheral way, the

compounded abstractions and the concern with compounded abstractions which seem

to have become the principal preoccupation of so many members of that community

labeled (or merely identified as) applied mathematics. To repeat, most innovative, truly

productive advances in the mathematization of disciplines with quantitative aspects

will require the informal, opportunistic reasoning illustrated in Sec. 1.

Sooner or later, of course, these advances in knowledge and understanding will be

carried out. But a question I can't answer asks whether applied mathematicians will

make these activities their business or whether they will leave them to the engineers,

the economists, the biologists and others. Another question which has more immediate

importance arises from the following observation. To a large extent, the community of

core mathematicians has decided that it is not its responsibility to provide instruction

related to the application of mathematics; to the same large extent, much of the instruc-

tion in methodology has become the responsibility of the applied mathematics community.

The important question is: Will this community include in the instruction it offers,

illustrations of the heuristic, inventive, reasoning so necessary to progress in science,

in technology, and ultimately in our whole society or will it retreat into a cloistered

preoccupation with abstractions both in its research and its instruction? If it does

retreat, then the present generation and possibly a few future generations of students

will receive little instruction of this sort and those that enter the worlds of technology,

of science, of environmental repair and of medical advancement, will do so severely

handicapped by a grotesquely distorted education.

Our symposium is labeled "The future of applied mathematics." It is my view

that if, in answer to the foregoing questions, we make the latter choice, applied mathe-

matics has no viable future whatever—'it could only become a small, rather sterile corner
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of mathematics, a discipline which despite its moments of greatness, already is populous

enough to contain more sterility than it wants. But if we make the former choice, i.e.

if among all of its other activities, the applied mathematics community provides inno-

vative contributions to the mathematization of disciplines which are just becoming

quantitative, if it concerns itself with finding approximate models for complicated

phenomena (thereby sacrificing accuracy of detail for ease of interpretability), if it seeks

to develop techniques whereby the implications of given mathematical models can more

easily be inferred, then applied mathematicians will have inherited much of today's

continuation of the challenges, the intellectual achievements, the contributions to

society, and the fun which, before they abdicated, was largely the property of the

mathematicians and the physicists.
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