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SERIES EQUATIONS INVOLVING JACOBI POLYNOMIALS AND MIXED
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BY
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Abstract. A formal analysis of series equations involving Jacobi polynomials
is given. (2N + 1) series equations involving Jacobi polynomials are reduced to a set
of N simultaneous Fredholm integral equations which can be solved numerically by
the use of the Legendre-Gauss quadrature formula. In case of triple series equations
the result is in agreement with that of Lowndes. Besides triple series equations, certain
quadruple series equations can be also reduced to a single Fredholm integral equation
of the second kind. Owing to the introduction of an arbitrary weight factor, the theory
is feasible for the analysis of various many-part mixed boundary-value problems of the
Laplace equation. As an example, special cases of certain trigonometric series equations
are discussed in detail in connection with an electrostatic problem.

1. Introduction. The theory of ‘“dual integral equations’ or *‘dual series equations”
has made remarkable progress in connection with mixed boundary-value problems in
potential theory in these two decades [6]. As far as series equations involving Jacobi
polynomials are concerned, dual series equations were studied by Noble [5] in 1963.
Srivastav [7] gave the solution of a different kind of dual series equations. In 1968
Lowndes [4] studied triple series equations as a generalization of Noble’s dual series
equations. His result shows that triple series equations can be reduced to a Fredholm
integral equation of the second kind and that Srivastava’s result on triple series equa-
tions [8] is reduced to its special case.

It is important to study multiple pairs of series equations not only for the theory
of series equations itself but for the application of the theory to boundary-value prob-
lems. In this paper a formal analysis of certain (2N 4 1) series equations involving
Jacobi polynomials is given. The series equations are reduced to a set of N simultaneous
Fredholm integral equations. It is interesting to investigate the case in which the prob-
lem can be reduced to a single integral equation. Besides triple series equations studied
by Lowndes [4], certain quadruple series equations can be also reduced to a single integral
equation. Although application of the theory of dual series equations or triple series
equations is restricted to the analysis of two-part or three-part mixed boundary-value
problems, we can now analyze many-part mixed boundary-value problems by the method
presented in this paper.

Our analysis is purely formal and no justification is given for various limiting processes
such as change of the order of integrations.

* Received December 14, 1971.
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2. (2N + 1) series equations involving Jacobi polynomials. Let 0 = p, £ p, <
p2 < -+ < pan = pans+1 = 1. Consider the following (2N + 1) series equations involving
Jacobi polynomial:

Z Cn']u(a: A; P) =0, ppi-n < p < paica 1=1,2,--- y N+ 1, (21)

n=0

Zo CnPnO\ - 0, >‘)(1 + ﬁn)Jn(a’ A; P) = gz-‘(P)y i1 < p < pai
t=1,2,---, N, 2.2
where H,’s and ¢,:(p)’s are known series and known functions, respectively,

I'AN—c+ Tl +a—\X+n)
TN+l 4+a+0c—X+n’

and J,(a, \; p) denotes the Jacobi polynomial J,.(a, A; p) = F,(a + n, —n; \; p). We
assume that a + 1 > X > ¢, 0 < ¢ < 1. We further assume that the arbitrary weight
factor M, has a sufficiently rapid convergence property. The introduction of the factor
H, substantially extends the applicability of the theory to mixed boundary-value prob-
lems.

3. Reduction to simultaneous Fredholm integral equations. In this section we
show that series equations (2.1) and (2.2) can be reduced to simultaneous Fredholm
integral equations of the second kind which can be solved by a standard numerical

method.
The orthogonality relations for the Jacobi polynomials can be written in the form

pn()‘ - 0, )‘) = (23)

1
f 1 = 1N a(a, N1 Ta(a, Ny 1) dr = %2 a+1>1>0, (3.1
1] n

where §,,, is the Kronecker symbol and

_ @+ 29T@+ I\ +n) 3.2)
T + D{TMW}’TA +a — N+ n) :

A
We write

Z Can(ay A; P) = (1 - P))\_a"pzi(P)) pzicy < p < p2i, 1= ,2,---,N, (33)

n=0
where the ¥,:(p)’s (1 £ ¢ £ N) are unknown functions. From (2.1), (3.1) and (3.3),
we obtain

N I2¥]
Co=01% [ e, N dr. (3.9
i=1 Ypgj—2

If we substitute (3.4) into (2.2), then series equations (2.1) and (2.2) can be transformed
into integral equations. We further define new functions ¥,,;(z) by

Pus .
\I'zs(x) = f (r—iz—“'(:))l_,dr, p2ic1 < & < pgi T = 1, 2, Y N. (3-5)

From the theory of the Volterra integral equation of the first kind (e.g. [6]), the function
¥2:(r) can be expressed as
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SinU‘ll'_‘_i_ 7 Wyi(y)

‘I’zi("') = - T dr B (y _ 7‘)’ Y.

(3.6)
In this section we derive simultaneous Fredholm integral equations of ¥,;(z). Once
these integral equations are solved, ¥,;(r) and C, can be determined by (3.6) and (3.4},
respectively. The following lemmas play an important role in the derivation of the
integral equations.
LemMA. 1. The following relation s due to Noble [5]:

Ko ) = (T@PED™ 3 Al = o, Ve, }31u@ s 9

= [ m@6 - 276 - 9 @

= k(r, p), 3.7
where
m(x) = 27710 — ), t = min (r, p). 3.8
2. The following definite integral involving ¥.;(r) can be transformed into that involving
¥,.(x) as

Pad \025(7‘) _ Psi .
1—o dr = T(o, p2icr 3 %, Y¥2:(y) Ay, 2 < pai-1 (3.9
Pai—1 (7‘ - .’12) Pai—

where T(o, u; x, y) 1s defined by

sin o7 w — o)

T(o,u;z,y) = -, z<u<uy. (3.10)
’ T (Y- D)y — v
3. The function T'(o, u; x, y) defined by (3.10) satisfies
siner d [° dp
— - = = T(o, u; y, 2). (38.11)
T dzde (z - p)(p — ) ’
4. We define a function I,(a, \, o, d; x) by
d T p)\-l
L(a,\, 0,d;2) = 5 J.(a, \; p) dp. 3.12
@ o di) = g [ B a2 ) d (3.12)

Then we have the following relation:

I‘(O’) i z p)\—l ® 2 _ *Paj a1 . .
11(1 — 0') dx 4 (x _ p), dp "Z':) HnAnpn()\ a, )‘) ‘/pa,‘—, t1/21‘("I)r n(a’! )‘7 p)']n(a’ )\,T) dT

[ ot

. Z ﬁnArZLpnO\ -0, )‘)In(a’ A o, d’ x)In(a; A, 0, p2iaa ;y)}' (3'13)

n=0

Proof. 2: derivation of (3.9). Substitution of (3.6) into the left-hand side of (3.9)
and the use of integration by parts give
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pai ¥aiD) _ __si.n o [ 1 {i i, (y) }
j; = T /;u—. (r—2)'° df’-/: y — )7 dyy dr

sé—-1 (7' - x) -
sin o 1 pai \I/z.'(y) ]n-p..'
— —=E—
™ [(r — )’ ‘/: (y — 1’ i

. pai _ pai ) 1 pas
om0 Lo g (7 ) g, sinem g ) g
T Jpyica (r — 2) ro(y—r1 T Vesie

1 v dr }
. -1 -0 .
{(ch'—l —2)'7°Y — peica)” ( ) ‘/:’"-' r— 2@y — )

Since

v _ . 1-0
(1 - ‘7) f 2(_1: c i (y p_i‘-l) y
pais (1 — 2)°7(y — 1) Y — T \p2ia z

we have

fp" Yoi(7) dr = sin o fﬂ" (p2icy — @) W, (y) dy

priea (r — 2)'7° T Doics (4 — D)W — p2ic1)

Pas
= f T(o, p2i-1 ; 2, ¥)¥2:(y) dy.

Pai—1

3: derivation of (3.11). With the aid of integration by parts, we obtain

[t - =) - [0,

Differentiation of the above equation with respect to z gives

gsinor d [° dp
T dzh @ — D)o — '

) . J
e {(x —~ u)’(iz 479 f @ — p)'(: - y)"'}

sin o W — y)°
T (z— Yy —w
= T(o, u; y, x).

4: derivation of (3.13). From (3.12), one can see that the function I,(a, )\, o, p2;-1 ; 2)
satisfies the integral equation

- i " IL(a,\, 0, p )
M (e, N ) = T 1 Paiz1 3 Y) g 3.14
r (a T) T ‘/;ai 1 (T - y)l—a v ( )

From (3.5) and (3.14), we have for the left-hand side of (3.13),

mr (0) gﬁAnpn()\ o, VL, \, o, d; 2) f R drsm L

./' I,.(a, A, 0y prioy ;y) dy = Sin o P(U) Z ﬂ A D ()\ - )\)I (a oo, d: :t)
ni/n b » ? t ’ ’
Paf—1

r =9 T Tl —o) iz
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17%] Pl
f I(a, \, 0, p2i-1 ;) dyf Vi@ - dr = f V,;(y) dy
- Prji-1

YPsf—1 y)

i T
4{5";”ﬁ(_"—)5 > AP = 0, VLG, N 0, G DLE, N, 0, oo ;y)}. QE.D.

We now discuss reduction of series equations (2.1) and (2.2) to simultaneous Fredholm

integral equations of the second kind. Substitution of (3.4) into (2.2) and the use of
(3 7) give

= fﬂ-f ) YoMk, (r, p) dr + f

pai—1
N

+ 2 7 gk, ) dr = (T@F R, (3.19)

i=i+1 Ypaj—,

Bk B+ [ Ok, o) dr

where pg;_; < p < pa2i and
B = 0= 00— o VLGN A8 S [ P e . 316

The summation symbol Y_!_, should be ignored when & > I If we substitute the
integral form of k,(r, p) into (3.15), then the left-hand side of (3.15) is expressed in
terms of a double integral the field of which is shown in Fig. 1. The change of the order
of integrations gives

S G e [ e [ e [ ]

Paj—2

+fm _mE) fp”" RO _*_f“ _m@ [“ val) g,

(b — )™ v (r— ) i (p— 2)'77 r— )
1 €) P Y
+ i-;l [-/; O ds ‘/;"'-l r—a) @

" f: m(x)l M gy ./;, up,,(r) :| {T(0)} 0" Gas(p), P21 < p < p2i

s (p— (r —

(3.17)

If we substitute (3.5) and (3.9) into (3.17), we obtain

[ 2O e+ 5[ 16 m o 000 i}l = <, @19
Pei—1 (p - x) =i+l Ypaj—a
where

x(p) = Z [ [, "/ ,;(y) dy

i1 Losies (p — )™

+ j:.i_l (r_n—“—(%){:‘, dt fp:il T(o, p2i-1 ; & Y)¥25(y) dy] B '/;P“_x (p_gz_(i—;l:, “

= j; i T(o, p2i-1 3 & YY¥.;(y) dy + {P(U)}zp)‘-lgg,(p). 3.19)
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Fic. 1. The field of integration.

By the theory of Volterra integral equations of the first kind, (3.18) is transformed into

N

@@ + @) S [ T, g i, 000 dy =

f=1i+1

sinor d [* x(p) d
dx Psi-1 (a: - p)’
(3.20)
For the reduction of the right-hand side of (3.20), we define the function S(e, u, v; z, y)
by

min (u,9)
[ m@7e ut 916,06, 2) de

S(o, u,v; z, y)

sin® o 1 min G0 (@) (w — H'w — 8
= 3 R 2
e g | c-dw-o © G2
where ¢ > wu, y > v. From (3.11) and (3.21), we have for j < ¢
sinoer d [~ 1 oad m(y)
- - = d — "I
T dz )., x — o)’ ‘/;n‘-: (b — '
= f mWT (o, pri-r 5 Y, W) dy  (3.22)

Pri-1

V,;(y) dy

and
siner d [ 1 Pai—1 m(g)
dz d T y P2i—-1 9y &y \1,2,' d
r dzJ,,_,  — o)’ p,/; E)l-v Ej;ﬂ (o, o &) (y) Y
Pai Pai-1
= j; ~ ¥,,(y) dyj; m@ET (e, poizy ; & 2)T(0, p2i_y ; &, Y) d

[2¥]
= [ 86 piea s o 32, 000 . (3.29)
Pof—1 .
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Again by the use of (3.11) and (3.21), we have for ¢ = j,

siner d [° 1 pai—1 m psi
— d V d T y P2i-1 58, ‘I’z,‘ d
T dr Pri—1 (:l: —_ p)' Pj; (p _ E)l—’ 3 -/;:;-. (o, p £ ) (y) Yy

Paj Pai—1
= [0 w@a [ m@T6 mier 16 DTG, i 3 0)
Paj-1

P2
= f S(o,y p2ic1 s p2i-1; %, Y)¥2,(y) dy. (3.24)
P2i—1
From (3.19), (3.20), (3.22), (3.23) and (3.24), we have

@) + [ 8, paics » mrics 3 2 YEly) dy

pai—1

S TG, i 19,9+ S0, bt s 32 D) dy
i= Paj—2

N

P
+ Z f {m@)T (o, p2i-1 ; %, Y¥) + S(o, paicr s P2ia 5 %, ¥) Wi (y) dy

_ P(U) d P g2i(p)
Il — o) dz pstr (T — p)° de- (8.25)

By using (3.13), terms involving unknown functions ¢,;(x) on the right-hand side of
(3.25) can be transformed into those involving ¥,;(z). If we write

__T@ 4 [ 0700
Gzi(x) = P(l —_ 0') dz Pai—1 (x b P)’ dp’

Kz, y) = S(o, p2i-r y p2icr 32, Y) + Smﬂ_‘m' '11_(12%)—0,)

(3.26)

. Z: HnA:pnO\ - 0, )‘)In(a'; N, 0, P2 ;x)In(ay A, 0, p2ia ;y)) (3'27)

n=0

T
m(w)T(U, P2i-1 ; T, y) + S(ar P2i-1 5 P2i-1 ; %, y) + smﬂ_o-’r I\(l (‘_7) 0‘)

K2z, )

. E HlAzpn()‘ - 0, )‘)I»(a’ N, @, p2ica ;x)In(a: N, 0, p2i ;y)) 1< j) (3~28)

n=0

T
K2i2:(xr y) = m(y)T(o, P2i-1 Y, x) + S(U: P2i-1 5y P2i-1 3 T y) + Sm"r"w F(T(—_a..)—a—-)

: Zo ﬁnA:pu()\ - o, )‘)In(ar N, @, P2ica ;:@)In(a) A, 0, p2i ;ZI), 1> j: (3-29)
then we finally arrive at the simultaneous Fredholm integral equations of the second
kind

N Paj
m@)¥i(z) + 2 Kyii(x, Y)%2;(y) dy = Goi(x), p2ics < 2 < pai
1=12---,N. (3.30)

i=1 Ypaj-a
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As to the symmetry of the kernel, the relation K,;:;(y, ) = Ka.s;(, y) should be noted.

4. Triple series equations and quadruple series equations. Triple series equations
of the first kind studied by Lowndes [4] can be treated by putting p; = d, p, = ¢, p; = 1,
92(p) = f(p), H, = 0, N = 1in (2.1) and (2.2). In this case the integral equation (3.30)
is in agreement with that derived by Lowndes.

Triple series equations of the second kind studied by Lowndes [4] can be treated
by substituting p, = po = 0, p. = d, ps = €, p» = ps = 1, gu(p) = g(p), ga(p) = h(p),
H, = 0, N = 2into (2.1) and (2.2). Since N = 2, we have two integral equations from
(3.30). Elimination of ¥.(x) gives a single integral equation in ¥,(z) which is identical
with the result of Lowndes. Discussion can be slightly generalized and certain quadruple
series equations can be also reduced to a single integral equation. Let

Z anuO‘ ) )\)J,,(a, \; P) = gz(P), 0=,p< d,

n=0

> D.J.(a, A; 0) = 0, d<p<e,

n=0

Z anno‘ - 0o, >\)Jn(ar A; P) = g4(P)y e< p< fy

n=0

> D.J.(a, \; p) = 0, f<p=1. (4.1)

n=0

Series equations can be considered as a special case in which p, = p = 0, p, = d, p; = ¢,
ps =f,ps=1,N =2, H, =0. From (3.30), we have

d !
m(@) (@) + f Kon(z, 1)¥a() dy + f Kulo, W0.0) dy = Ga(e),  (4.2)

d !
m@E@ + [ Ko, 000 & + [ Kul, )00 & = 6@, @3

where
Kooz, y) = S(0,0,0;2,y) =0,
Kau(z, y) = m@)T(o, €;2,y) + S(0, 0, ¢; 2, y)
= m()T(o, €; 2, y), (4.4)
Koz, y) = Kau(y, 2),
K. (z,y) = S(o,e,¢;z,9).
Since Kz(z, y) = 0, we have from (4.2)

G, w5

0 = = [ 16,03 Y@ dy + &8.

Substitution of (4.5) into (4.3) and the use of (3.21) give

! d
m(2)¥,(z) + f K(z, )¥(@y) dy = — fo T(o, e; £, 2)Gy(8) dt + Gu(z), (4.6)
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K(z, y)

S, ei2,9) = [ mOT(, e DTG, ¢35, )

f,, ‘ m@)T (o, e; £, )T (o, e; £, y) dt

_ sin’ gr 1 f’ mE)e — £
ST (r—ey—e° e @—HY -9
Thus the quadruple series equations (4.1) are reduced to a single integral equation.
When f — 1, the series equations (4.1) are reduced to triple series equations of the
second kind and the integral equation (4.6) coincides with that derived by Lowndes.
When d — 0, g,(p) = 0, the series equations (4.1) become triple series equations of the
first kind and the integral equation (4.6) is in agreement with the result of Lowndes
except for slight changes in notation.

5. 2N + 1) cosine series equations. In order to discuss mixed boundary-value
problems of two-dimensional Laplace equations in Sec. 7, trigonometric series equations
are studied in detail in Seecs. 5 and 6. In this section we consider the following cosine
series equations:

dt. 4.7

Za,.cos(n+%)0=0, 02(,'_1) <0< 02;_1 (2= ]., 2,“' ,N+1),
n=0

(5.1)
S+ DA+ H)a, cos 4+ 10 = £,:0), 6icy <0< 6, (@G =1,2,---,N),

n=0
Where 00 = O, 02N+1 = .
For the physical application, it is necessary to compute the quantity

O0ai ©
g = _/; ‘ {Zo a, cos (n + %)0} deé. (5.2)
Let
a=1, >\=g, a=%, p=cos’-g, pi=cos2£2-%—’—‘—‘,
-1
Co= (~0'Cn+ Do,  Ho=H,  gulp) = escaloosm Vo)
Since
3. ,g_)_ g1 cos(n+ 36 ( §)__ 1
Jn(]') 2 y COS 2 = ( 1) 2n + 1 0 ) pn 1) 2 - 1 ) (5'3)
cos§ n + 5

the series equations (5.1) are equivalent to the series equations (2.1) and (2.2). From
(5.2), g(w+1-0 is given by

Pai had d

n=0

= f’"‘ ¥2:(p) dp

Pai—1

- l Pai ‘I’z.‘(x)
T Pai—1 (x - p“‘l)

173 dz. (5.4)
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In order to solve the simultaneous integral equations (3.30) numerically, it is neces-
sary to compute kernels. F'rom (3.2), (3.8) and (3.10), we have

Az = 1§r (n + %) , m(z) = 1, T(o,u; z,y) = 1lr(y —(-uziyxi %)

1/2 (5~5)

respectively. Elementary computations with (3.21) give
1 “ u — &
™z — 0y —w)”l @ -9y — 9

— o \\/2 _ o \1/2
= 7_rl§x _1 ” {(; — Z) log — (y u) log } (5.6)

z—u
where z, y > u. Functions S(o, u, v; z, y) for u < z < v < y can be expressed by ele-
mentary functions but its derivation is not so obvious so that we deseribe it briefly.
From (3.21) we have

S(o, u, u; z,y) = dt

X
x — U

Yy
y—u

1 1 * 1 1 e a
S((T}u;v;x) y) =7l'2((x_u)(y _2)))1/2y-__x‘/;j (x——-g—y _£>(u_£)/(v_s)/ d£
_ 1 1 ~
= PG =0 =)y = M@ — M), (5.7)
where
g _— 1/2 _ 1/2
M@ = ‘/; (u E)z _(”E 3] dt. 5.9

Using the variable transformation w = (u — £*/(v — £)'*, (5.8) is reduced to

_ 2(1) _ u)z (u/2)1/ w2
M(Z) = - z —0 ‘/(; (w2 _ c)(wz _ 1)2 dw} (5‘9)
where
c=(z—u/(—v). (5.10)
After some elementary computations, we have
_ o= |l @ Gy
M@) =z log Tt Va 2(z — w) j; 7 —o + M, , (5.11)
where M, is independent of z and given by
(u/v)1/2 (u/o)1/s
dw 1 1 1
Mo—_(u+v)£ w2_1+§(v-—u)‘/(; {(w_1)2+(w+1)2}dw'
(5.12)
The definite integral on the right-hand side of (5.11) can be evaluated by the formula
1 Wy — ‘\/C
mdw 2o Bl vel €O
. = (5.13)
o W —¢ 1 W,
tan™* 0).
Ve e €<0
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Since 4 < ¢ < v < y and therefore, for z = z, ¢ = —(z — u)/(v — z) < 0 and for
z=y,¢c= (y —w/(y — v) > 0, so that we find from (5.7), (5.10), (5.11) and (5.13)
Vo — Vu

S 93280 =~ O [

2_ 1 (7) _ x>1/2 - (( © )l/?(v _ x)l/2)
+1rzx—y y—v tan T —u v
_a\12 _ \12
1 1 (y—u\”? ‘(yuu> —(yvv>
Fx—-y(x—-u) logl(y—u)“_l_(y—vm.
u v )

To complete the computation of kernels, it suffices to show how to compute the function
I.(a, \, 0, d; x). If we write

(5.14)

) _ n2 1\ ( 31 .8, 2’1)
IB;u,n) = (—1) 7r(n+2) I, 1,2,2,cos 51008 5], (5.15)

then we find

V2 ( 1)‘1/2 cos (n + 3B

1 1/2 ]
nt 2 (cosu — cos B)'* + (n + §> R.(B;u), (5.16)

IB;u,m) =

where

B8 H 1
R.(3;v) = %2- f & sin(e + Be ;. (5.17)

0S U — COS @)

The I(8; u, n) and R,(8; u) are identical with I(u, n) and R,(u) with 8 = ¢ defined by
the authors [3]. R,(8; u) can be computed by the recurrence relation similar to that for
the Legendre polynomials:

9 cosg
. — — — 3 -l
Ro(ﬁ:u) = 1 1l"sm Sy/ ’
CO¥ 2
R.(B;u) = Ry(8;u) cosu + 2;/2 cos-g (cosu — cos B)'?, (5.18)

(m + DR,..(8;%w) — (2n + 1)R.(8; %) cosu + nR,_,(8;w)
242

= = cos (n + 3)B(cosu — cos B)*?, n==1.

- (y - sz‘—l)‘/z log ‘ ) ,}
T = p2i-1 Y = pai-1

+2 3 HI@ co5™ (pres); 2 cos™ /2, m)

n=0

We finally find for kernels
— . \12
K,‘z‘(x, y) — _!._ 1 {(x P2«—-1) ].0 | 4

o Y \Y — p2ia & 'x = P2i-1

(2 cos™! (pai-1)"?; 2 cos™' vy, n),
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1 o1 — )
Ksni(z, y) = T (y —(-p;)(;/ - P)z'~1)l/2

_ 1 (l’zi—x)w2 - (Pzi-x)l/z
7"2((115 — poi-)y — (Pzi—x)l/z + (Pz;—x)l/z
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7(2 cos™ (P2i—l)l/2; 2 cos™’ VY, n), j> g,
Ksioi(@, y) = Ksini(y, 2) j<nt.

The value of K,;.:(x, x) can be computed by the I’Hospital theorem.

For numerical computation it was found convenient to write = p.;_, sec’ £ when
p2icr # Oor x = cos® (£/2) when p,;-, = 0. This can be illustrated by the example of
triple cosine series equations. Ior simplicity we consider the case f.(6) = 1. This problem
will play an important role in the analysis of boundary-value problems of the Laplace
equation in Sec. 7. If we write

z=psec’, 0=f=sec” <M;i§)>s$o,

COS( 2/ ) (5.20)

1
Vv P1

then from (3.30) and (5.20) we finally obtain the following integral equation:

¥V,(z) = E() cos’ ¢,

E.
sin £ cos ¢ E@) + f Luvunlt, DE(n) dn = 1, (5.21)

_ 4 tan’ £ log (sin ¢) — tan® 4 log (sin 7)
Leven(sy "1) - 7|'2 Sec2 7 — Se02£

+ 4p, tan £ tan i HI?2 cos™ /py ;2 cos™ (+/p, sect), n)

n=0
12 cos™ +/py ;2 cos”t (V/p, seC 1), M). (5.22)

The value of Lq...(£, 7) for £ = 5 can be computed using L’Hospital’s theorem. The
value of ¢, can be computed by

2 13
@ =) E®) dt. (5.23

6.(2N + 1) sine series equations. In this section we discuss the sine series equa-
tions
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Ela.Sinno =0, 01y < 0 < 024 =12 ---,N+1),
» (6.1)

207U+ H)ausinng = f,,(0), iy < 0 < 6 (G =1,2, -+, N),

n=1

where 6, = 0, 6.5., = . For the physical application, it is necessary to compute the
quantity

Y] ©

g = f {E a, sin no} de. 6.2)
O3i—1 n=1

Leta = 2,\ = 3/2,0 = 1/2, p = sin® (8/2), p; = sin® (6:/2), Co = (n + 1)aps, H, =

Hoiry g2i(p) = (fzi(z Sin-{/ p)/2(p(1 — p))”z. Since

§..2g)_ 1 sin(n + 1)8 (g)_ 1
J"(z’z’smz‘n+1 sng+ P\L3) =710 6.3)

the series equations (6.1) are treated as a special case of the series equations (2.1) and
(2.2). From (6.2), we find

qi = 2 fp . {Z Can(ay >‘; P)} dp

n=0

_ o \Pzi(ﬂ) __
h 2 ‘/l:ﬁ—: (1 - p 2 dp

)
. Pas ; _lii_ Pai ‘1,2.‘(17) i
-7 fm—x a- p)”z{ - dpj; (x— p”* dx} dp
_ 2 pai (1 — pyiy)”?
B ‘/;.‘_, a-—-2)(@— Pzi—;)vz V() dz. (6.4)

We now give kernels of integral equations for sine series equations. From (3.2),
(3.8) and (3.10) we have

(u — x)l/B

A=Z@A D, me) =i, Tewsy =it lm, 69)
respectively. We find from (3.21)
S(o, u; u; z, y)
_ 1 “ u— ¢
(@ — wy — w)"* fo Q-8 —-Hy — 9 ¢
_ 1 (11— _
(R Top kT e R A
11 1 [z —u)” z 1 [y —u)”? Iy }
+r’z—y{1-—x(y—u) log z—ul 1—y<x —u) log y—ul’ 6.6)

where z, y > wu. The function S(o, u, v; z, ¥) for u < z < v < y can be evaluated in a
way similar to that for the cosine series equations. Some elementary algebra with (3.21)
gives
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where M (2) is defined by (5.11). From (5.10), (5.13) and (6.7), we find
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(@ — Wy — )1 — 21 — )" 7 @l — )" + @1 — W)

+5 @ — y)l(l —2 (Z = f»)m tan™ ((x - u)m(,, > x)m>

T L [
l

TP —9d—y \z—u

If we define
2 3 1 . .
Qn(a; u) = 1_l' In—l(2) § ) 5 ) st % ;Sll'l2 g) ) (6-9)
we have from (3.27), (3.28) and (3.29)
1 1 1 = ppiy) ’
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—_ log |—2——
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+ Z 2anQn(2 sin™ (Pzi-l)ln; 2sin™ \/x)én@ sin™ (p2i—l)l/2; 2sin™" V),

(p2j—1 — x)l/2
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+
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—

Koz, y) = 72 — S(0, paic1 s P2i-1 3T, V)

+ > 2nH,G.(2sin™" (pp:-1)"*; 25in™" v2)Qu(2sin (pr5-1)""; 2807 V),

n=1

for 7 < j,

K;ii(z, v) = Ky, 2) for ©>j,

where S(o, p2i1, p2i-1 ; T, ¥) is given by (6.8). The value of K,..:(z, ) can be computed
by L’Hospital’s theorem.
In order to compute Q,(a; u) we derive a recurrence formula. From (6.9) we find
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oy — 1 4 V2 ["eos(n— e — cos(n+ $e
Qrlers ) = nsinudu * J, (cos ¢ — cosu)'”? de- ©.11)
We define the function &,(e; u) by

Ryasn) = 2 [ = ot Do g, 6.12)

COS ¢ — COS u)

then we have the following relation between £,(a; u) and R,(8; u):
R.a;u) = (—=1)R.(x — a; 7 — ). (6.13)
From (6.11), we have

1 d 2 [“cos(n — )qa-—cos(n+%)¢
sinudu = J, (cos ¢ — cosu)'’?

__1 d 2 ["2singsin(n+ e
sinudu = J, (cose — cosu)”?

(n + DQuiila; w) + n@(a;u) =

de. (6.14)
Applying the integration by parts to (6.14), we have
( + 1)Qusi(e; u) + nQu(e; w)

~ @0+ DB %) + 2v2 _sin(n + Ha

7 (cosa — cosu)

172 » n 1. (6.15)

By some elementary algebra, we have

Qile; u) = Bolo; u) + 2;_/2 (sin La/(cos @ — cos u)'’?). (6.16)
If we can compute B,(a; u), then @,(a; u) can be computed by the recurrence formulas
(6.15) and (6.16). Now the relation (6.13) should be recalled. As far as the function
R.(8; u) is concerned, we gave the recurrence formula (5.18).

For the numerical computation it was found convenient to write £ = p,;_; sec® ¢
provided that p,;_; # 0. This is illustrated by the example of triple series equations.
For simplicity we consider f,(§) = 1. This problem is important for the analysis of mixed
boundary-value problems of the Laplace equation which is discussed in Sec. 7. If we
write

xr = p, sec’ &, 0§£§sec"<sin%/sin%)szo,

6.17)
‘I’z(x) R4
-z~ 2 t E(E)cos £,
then from (3.30) and (6.17), we finally obtain the following integral equation:
£o
sin ¢ cos £(1 — p, sec” H)E(E) + f Leaa(€, ME() dn = 1, (6.18)

4pl sin” £ log (sin g) — sin® 7 log (sin 7)
sin® & — sin® ]

Loai(¢, 1) = 2 (1= p)logd— p) 'l‘

+ 4 tan’ £ log (sin £) — tan® 7 log (sin 7)
2

p sec’ n — sec’ ¢
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+ 4p,(1 — pysec’£)(1 — py sec” 1) tan £ tan »

- nHGu(6, 3 250 (Vo sec) Gu6, s 2sin™ (Vpisec n).  (6.19)

n=1

The value of L.a(¢, n) for £ = n can be computed using L’Hospital’s theorem. From
(6.4) and (6.17), the quantity ¢, is given by

1
@ = 7%(1 — ) | E@d (6.20)

7. Application to a mixed boundary-value problem of the Laplace equation. Using
the method in the preceding section, we discuss a mixed boundary-value problem of
the Laplace equation. The problem arises in electrostatics and has an application to
computation of the Maxwellian capacitance matrix of a transmission line system [1],
[2], [3]. Let us consider the transmission line system whose cross-section is shown in
Fig. 2. We assume the symmetry of the line structure in respect to x = 0. We further
assume that the potential of the outer waveguide I' is maintained zero. The Maxwellian
capacitance matrix of the transmission line system is defined in the following way.
Let ¢1, ¢z, + -+ , g2 be the charge per unit length on the strips of the transmission line
system with v, , v, , - -+ , v, 5 the corresponding potentials. The charge and the potential
are related by the Maxwellian capacitance matrix C = (C;;) as

q = :CV, (7.1)

where q = (q1, ¢, -, @ox)' and v = (v, , 05, -+, v2y)". It is well known that C is
a symmetric matrix [2].

The matrix element C;; can be computed by solving boundary-value problems of
the Laplace equation. We denote the potential in the waveguide by

V=V1’ Oéyéhly
=V,, hsysh-+h,, (7.2
=Va,h1+hz§y§hx+ha+ha-

Yi

'y
€ V.

T

2
\

0]

—

-Tr -)(ZN-XM-X2i Xy X, X, X Xy Xyiq Xy xzmxzn rx

Fie. 2. Symmetric multiconductor transmission line system.
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V satisfies the Laplace equation in the appropriate region and the continuity condition

V1=V2’ y=hl:

114 av.

fl_a'y_l=€26_y2, y=h, (7-3)
Va=1V,, y=h+h,

where ¢; denotes the dielectric constant of the medium filled in the relevant region.
Boundary conditions to be satisfied by V., are as follows:

V.=20 =123 on T, (7.4)
av, _ B_E y=h+h, zn,<z<25,
€3 ay = € ay )
y=h +h, =2, <2< =2,
Ve =, y=h +h, 2, <z <

=12 , N+ 1), (7.5

(1:=1’2"" ;N)’ (7-6)
Vs = vien y=h+h, 2, << —23,

where 2, = 0, 2,5+, = r. The charge on the strip conductor is

q: = f o(z) dr, qisn = f B o(z) dz =12 ---,N) 7.7
where

(@) = ¢ v, 3V,

g Gy YThth @8

If v is given, we can compute q by solving the above boundary-value problem. In order
to compute the Maxwellian capacitance matrix C, we consider the following two kinds
of boundary-value problems.

(a) Ve = Uy = 0, k=1,2,.--,5—-1,75+1,---,N, (7.9)
v; = v,y = 1.
Solving this boundary-value problem, we obtain
Cii + Cijen = qou (7.10)
where ¢, = ¢; = Qisn -
(b) % =%.a=0, k=12 ---,5—1,74+1,---,N, (7.11)
v; = —Vjy = 1.
Solving this boundary-value problem, we obtain
Cii — Cijorn = Qui - (7.12)
where ¢,, = ¢; = —¢,+~ . From (7.10) and (7.12), we have
Ci; = Cii = 3(q0: + ¢.9), G,i=1,2 +-,N), (7.13)

Ceiuv = C;+N.' = %(q.; - q.n'),
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where use is made of the symmetry of the matrix C. Problems (a) and (b) can be reduced
to trigonometric series equations by a method similar to that used for a single strip
line problem [3]. We define A\, , L, and H, by

M= @+ P/, n=20,1,2, ... for problem (a),

(7.149)

A\ = nw/r n=12 --- for problem (b),
L. = ™1 + 08 /(1 + ri0e™™™™), (7.15)

~2\nhgy —2\nh, _ —~2An(ha+hs) —2\nhsy - —~2\nhgy
H" = _L"e Il-j L 6—2)\11()3{1):6) + X (L e_—l;)\’::::(li.ee—Z)\nh.) ¢ ) ) (7‘16)
'n 23 n

respectively, where k;; = (e, — ¢;)/(e; + €;). Problem (a) is reduced to

daycos(m+20=0, 65, <0< b, i=1,--- N+1, 7.17)

n=0

Z (m+ DA+ H)acostn+ 30 =v;, 6,, <0< 6y, 2=1,---,N(.18)

n=0

where 0, = =z,/r and the charge q.. is given by

Os¢ ©
Gei = (&2 + &) {Z a, cos (n + %)0} de. (7.19)

Ogi—1 n=0

Egs. (7.17) and (7.18) are closely related to conditions (7.5) and (7.6), respectively.
Problem (b) can be reduced to the following sine series equations:

Za,.sinnﬂ = 0, 02.'..2 <0< 02,'-] y i = 1, < ,N + 1, (7.20)

n=1

> n'a + H)a,sinnd = v, , 6., <0< 6,;, 1=1,---,N, (7.21)

n=1
where 0, = wx;/r and the charge ¢,; is given by

a4 @
Goi = (&2 + €3) j; - {2 a, sin no} do. (7.22)

n=1

Egs. (7.20) and (7.21) are related to conditions (7.5) and (7.6), respectively.

To show how the series equations method works, we give numerical results of some
simple examples.

1. Chestnut’s [1] example (N = 1). Parameters of the transmission line system are

as follows:
€ = €& = €& = ¢
hy = 1.0, h, = 0, hy = 1.0,
2 =012, =052 =7 =101 = 0.751.25).

Since N = 1, series equations are reduced to a single integral equation. The integral
equation (5.21) or (6.18) was approximately replaced by m simultaneous linear equations
and solved numerically. The series involving H, in the kernel of the integral equation
was truncated at n = n, where |H,,| < |H,|-107". In Table 1, we give the numerical
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TABLE 1.

Numerical results of Chestnut’s [1] example (note: EXT in Chestnut’s result
denotes the value C(m/3, m/5, m) extrapolated by his method).

I =075 m =3 1l =075 n =3
m Ce(m)/ e m Co(m)/ e
4 2 .588624 4 4.236568
6 2.589841 6 4.373639
8 2.590163 8 4.415367
10 2.590281 10 4.427795
15 2.590367 15 4.432731
20 2.590386 20 4.432973
CEXT (4, 6) 2.590353 CEXT (4, 6, 8) 4.433630
CFXT (6, 8) 2.590398 C(',BXT (6, 8, 10) 4.433066
Exact 2.590398 Exact 4.433000
Chestnut’s result [1] Chestnut’s result (1]
15 2.5984 15 4.4680
EXT 2.5918 EXT 4.4483
30 2.5938 30 4.4435
EXT 2.5914 EXT 4.4362
l=1.25 n1=5 | =125 n|=5
m Ce(m)/ e m Co(m)/ e
4 1.971626 4 3.965087
6 1.972435 6 3.999429
8 1.972659 8 4.004268
10 1.972741 10 4.005020
15 1.972800 15 4.005230
20 1.972814 20 4.005259
CEXT (4, 6) 1.972775 CEXT (4, 6, 8) 4.005062
CEXT (6, 8) 1.972822 CEXT (6, 8, 10) 4.005158
Exact 1.972822 Exact 4.005277
Chestnut’s result [1] Chestnut’s result (1]
15 1.9780 15 4.0314
EXT 1.9746 EXT 4.0147
30 1.9745 30 4.0142
EXT 1.9733 EXT 4.0080

71
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TABLE 2.
Numerical results of capacitance matriz of the four-conductor transmission line system.
Results of
Kammler
Ciile Computed (r = )
Cn/e = Cu/e 2.89139 2.8914
Caa/e = Ciz/e 3.29377 3.2938
Ciz/e = Cufe = Ca/e = Cas/e —1.00605 —1.0061
Ca3/e = Csafe —0.97670 —0.9767
Cis/e = Cu/e = Ca/e = Caz/e¢ —0.07948 —0.0795
Cu/e = Ca/e —0.01247 —0.0125

result achieved by the method presented in this paper and the exact value obtained
by the conformal mapping method for C, and C, , where C, = Cy; + Cy5,Co = C1y — Cha.
The orders of the error in C, and C, are 0(1/m®), where @ = 3, while the method of a
Fredholm integral equation of the first kind [1], [2] produce the error of the order of
Bi/m* + B./m’, where B; is a certain constant. The extrapolation technique deseribed
by!Kammler [2] can be utilized for C, and C, . In this case they are given by

myC.(my) — miC,(m,)
my — m,

{Co(ma) — Co(mz)}2
Co(my) + Co(ms) — 2Co(my)

Extrapolated values are also given in Table 1. Since this example is very simple, the
classical conformal mapping method can be applied. The method presented in this
paper is feasible for practically important problems to which the conformal mapping
method is useless, e.g. those of ¢ # e # € .

2. Four-conductor system (N = 2). Parameters of the transmission line are as
follows:

CF XT(ml y, Mg) =

y

Co™"(my , ma , mg) = Co(ms) — (m, + ms = 2m,).

€ = € = € = €
hl = 0.5, hz = 0, h3 = 0.5,
X, = 0.05, Ty = 0.25, T3 = 0.35, Ty = 0.55, Ls =T = 2.5.

This example problem is equivalent to that of Kammler [2] except r = « in Kammler’s
example. Numerical results are given in Table 2. These computations were carried
out using the computer system FACOM 230-60 at the Data Processing Center, Kyoto
University.
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