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Abstract. A formal analysis of series equations involving Jacobi polynomials
is given. (2N + 1) series equations involving Jacobi polynomials are reduced to a set
of N simultaneous Fredholm integral equations which can be solved numerically by
the use of the Legendre-Gauss quadrature formula. In case of triple series equations
the result is in agreement with that of Lowndes. Besides triple series equations, certain
quadruple series equations can be also reduced to a single Fredholm integral equation
of the second kind. Owing to the introduction of an arbitrary weight factor, the theory
is feasible for the analysis of various many-part mixed boundary-value problems of the
Laplace equation. As an example, special cases of certain trigonometric series equations
are discussed in detail in connection with an electrostatic problem.

1. Introduction. The theory of "dual integral equations" or "dual series equations"
has made remarkable progress in connection with mixed boundary-value problems in
potential theory in these two decades [6], As far as series equations involving Jacobi
polynomials are concerned, dual series equations were studied by Noble [5] in 1963.
Srivastav [7] gave the solution of a different kind of dual series equations. In 1968
Lowndes [4] studied triple series equations as a generalization of Noble's dual series
equations. His result shows that triple series equations can be reduced to a Fredholm
integral equation of the second kind and that Sri vast ava's result on triple series equa-
tions [8] is reduced to its special case.

It is important to study multiple pairs of series equations not only for the theory
of series equations itself but for the application of the theory to boundary-value prob-
lems. In this paper a formal analysis of certain (2N + 1) series equations involving
Jacobi polynomials is given. The series equations are reduced to a set of N simultaneous
Fredholm integral equations. It is interesting to investigate the case in which the prob-
lem can be reduced to a single integral equation. Besides triple series equations studied
by Lowndes [4], certain quadruple series equations can be also reduced to a single integral
equation. Although application of the theory of dual series equations or triple series
equations is restricted to the analysis of two-part or three-part mixed boundary-value
problems, we can now analyze many-part mixed boundary-value problems by the method
presented in this paper.

Our analysis is purely formal and no justification is given for various limiting processes
such as change of the order of integrations.

* Received December 14, 1971.
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2. (2 N + 1) series equations involving Jacobi polynomials. Let 0 = p0 ^ px <
P2 < • • • < P2 n P2.V+1 = 1. Consider the following (2N + 1) series equations involving
Jacobi polynomial:

CO

p) = 0> P2U-1) < P < P2.-1 j t = 1, 2, • • • , iV + 1, (2.1)
n»0

00

X) CnP„(X — x)(l + Hn)Jn(a, X; p) = fir2i(p), p2i_! < p < p2< ,
n°0

i = 1,2, ••• ,JV, (2.2)
where #„'s and g2,(p)'s are known series and known functions, respectively,

n (\ — , \\ - r(X — O- + w)r(l + a — x + n) . .
p„(X <7, X) - r(x + n)r(1 + + ^ _ x + n), (2.3)

and JJfl, X; p) denotes the Jacobi polynomial Jn(a, X; p) = 2Fi(a + n, —n; X; p). We
assume that a+l>X><r, 0<o-<l. We further assume that the arbitrary weight
factor Hn has a sufficiently rapid convergence property. The introduction of the factor
Tln substantially extends the applicability of the theory to mixed boundary-value prob-
lems.

3. Reduction to simultaneous Fredholm integral equations. In this section we
show that series equations (2.1) and (2.2) can be reduced to simultaneous Fredholm
integral equations of the second kind which can be solved by a standard numerical
method.

The orthogonality relations for the Jacobi polynomials can be written in the form

[ rx_1( 1 — r)°"xJm(a, X;r)J„(a, X;r) dr = ^5 , a + 1 > X > 0, (3.1)

where 5m„ is the Kronecker symbol and

2 = (a + 2n)Y(a + w)T(X + n)
T(n + l){r(X)j2r(l + a — X + n)' ^

We write
00

2 CJJfi, X; p) = (1 — p)x~"t2i(p), p21—1 < p < p2, , i = 1, 2, • • • , JV, (3.3)
n = 0

where the t^2i(p)'s (1 ^ i ^ JV) are unknown functions. From (2.1), (3.1) and (3.3),
we obtain

C„ = A* Z ( ^2,(r)rx_1J„(a, X; r) dr. (3.4)
J-l Jpai-1

If we substitute (3.4) into (2.2), then series equations (2.1) and (2.2) can be transformed
into integral equations. We further define new functions Mr2i(^) by

% :>(x) = f dr, p21—i < x < p2i , i = 1, 2, • • • , JV. (3.5)
•'* (r — x)

From the theory of the Yolterra integral equation of the first kind (e.g. [6]), the function
ip2i(r) can be expressed as
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(3.6)tt ar jr _ ry

In this section we derive simultaneous Fredholm integral equations of Once
these integral equations are solved, ^2i(?*) and C„ can be determined by (3.6) and (3.4),
respectively. The following lemmas play an important role in the derivation of the
integral equations.

Lemma. 1. The following relation is due to Noble [5]:

k(r, p) = !rW)2(rp)k-' Alpn(\ - a, X)J„(a, \;r)J„(a, X; p)
n-*0

= [ m(x)(r — x)°-\p — x)'~l dx
*'0

= k,(r, P), (3.7)

where

m{x) = /"'"'(I - t = min (r, p). (3.8)

2. The following definite integral involving foiiy) can be transformed into that involving
yS?2i{x) as

f " 7 Idr = ['" T(a, P,2i_, ; ®, t/)*^) dy, x < p,,., , (3.9)
•V..--. (r — x) Jp.i-i

where T(<r, u; x, y) is defined by

Tiff, u) x, y) = - — ——- , x <u < y. (3.10)
x (2/ - x)(2/ - u)

3. The function T(a, u; x, y) defined by (3.10) satisfies

sin air d fx dp .
—si (I _ „)•(„ _ f).- * T<°■«■*>■ <3-n)

4. We define a function In(a, X, <r, d; x) by

In(a, X, o-, d) x) = £ ^P_ — ^„(a, X; p) dp. (3.12)

77te/i we have the following relation:

wir(j , jz I" ~ dp E HnAlpn(\ - a, X) I"" X; p)Jn(a, X;r) dr
1 (^1 cry a# Jd yx — p) n=o ^ p a / -1

f' t /si /sin <"r r(o-)

■ 2 ,1p»(X — <7, X)/„(a, X, tr, d; z)/n(a, X, <r, p2,_i ; 2/)f- (3.13)
n = 0 J

Proof. 2: derivation of (3.9). Substitution of (3.6) into the left-hand side of (3.9)
and the use of integration by parts give
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r Mr) dr . _sinffx r— f| r- JVM. 1
(r - x) * J,.,-, (r - x) 1* J. (y - rf *I

_ _5in£Ir—i r-jMsL 1-"
" L(r - x)'- J■ (y - r)' J.-.,.-.

sin C7r f" 1 — cr 1 I""' V2i(y) , sin air f" , , ,
 / : dr / 2,u" dy =   / *24(y) dy

*" ■'p..-. (r — x) ? (y — r) ""

) (y — P2i-i)

dr

Since

we have

l(p2l._, - a;)w(y - p2,_,)' v~ " (r - x)2-(y - r)'

(1 - <r) f dr = 1 ~ P2.-1Y"
•'p.,-, (r - x)2~"(y - r)' V ~ x \p2,-, - a;' '

f" m r _ (<»-.-*/ j,„(, d5f
pPii

= / TV, p2i—\ ; a:, y)^ii(y) dy.
•* P t i -1

3: derivation of (3.11). With the aid of integration by parts, we obtain

f dp = 1 - «v-' _ r (x - p)1-
1 (a; - p)'(p - y)1" 1 - <r\u - y) I (p _ y)2-' p'

Differentiation of the above equation with respect to x gives

sin (ttt d C' dp 
7T dx J„ (x - p)'(p - vy-°

_ sin air f 1 . I" dp
t I (a; - «)'(« - yy- I (x - pY(p - y)2

_ sin fjir (u — y)*

"" (x — y)(x — u)°

= r(<7, w; t/, a:).

4: derivation of (3.13). From (3.12), one can see that the function I„(a, X, <r, p2)_i ; x)
satisfies the integral equation

rx-'Jn(a, X; r) = /" /"(a' X' cr' ; v) dy. (3.14)
T (r - y)l-°

From (3.5) and (3.14), we have for the left-hand side of (3.13),

rnF(j ^ E HnAlpn(\ - <r, X)/.(o, X, <r, d; ®) ["' ^,(r) dr S-^
■I (.1 G) »-0 " Pa i — i ^

[" /n(a, X, <7, p2)_, ; y) sin o-tt r(o-) ^ a 2 „ ,w / . , n
• /  7 riz; «2/ = —— ^7j \ Z-, HnA„p„{\ - <r, X)/.(o, a, d; x)

jk.i-, (r — y) 7r i (.X — a) „.0



SERIES EQUATIONS 57

f"' \L. (r) f"
■ / 7„(a, X, a, p2)-a ; y) dy / -——dr = / ^2l(?y) (ij/

(r — ?/) Jp*j-i

'sij^g7r ^ E HnAlpn(\ ~ <T, x)/n(«, X, a, d; x)In(a, X, a, p2l-_, ; y)j>- Q.E.D.

We now discuss reduction of series equations (2.1) and (2.2) to simultaneous Fredholm
integral equations of the second kind. Substitution of (3.4) into (2.2) and the use of
(3.7) give
*-1 [*Pti' — * pPti f»P fP*i

E / faj(r)K(r, p) dr + / fai(r)kT(r, p) dr + / f2i(r)fcp(r, p) dr
J- 1 * P » f - i " Pa i — t "p

+ E f" M)K(r, P)dr = {r(<r)}'pMUp), (3.15)
j — t +1

where p2i_i < p < p2, and

(p) = ?2<(p)~ £ Pn(X - X; p)A* X) / \p2i{r)r"lJn(a,\]r) dr. (3.16)
n = 0 3=1 Jp9j — x

The summation symbol X'-* should be ignored when h > I. If we substitute the
integral form of k,(r, p) into (3.15), then the left-hand side of (3.15) is expressed in
terms of a double integral the field of which is shown in Fig. 1. The change of the order
of integrations gives

E [ r- ^ r dr + r r md J
ft LA (P - x) (r - x)1- J,.,-, (p - x) J. (r - a;)1" J

+ r ^ f" * + f r *Jo (p — a:) •'p.i-i (r — a;) •'p.f-. (p — x) " J* (r — x) "

j. r f-- _m(^_
,-TT. U« (, - (r - z)'~

+ / :—r^~rr<J dx f —^^vr,dr \ = {r(a-) }2px-1g?2,-(p), p2l_, < p < p2i .
Jp%i-x (p — x) pai—i (r ~ #) -I

(3.17)

If we substitute (3.5) and (3.9) into (3.17), we obtain

f , + E I T(a, pa,., ; x, i/)^2,(2/) d?/} da; = x(p), (3.18)
P 9 i i (p — X) y i-i + l J Ptj — x )

where

x(p) = - E [/ . *2<0/) dy
1 Up.,_, (P - J/)1

+ f"" f" T(a, p.,-, </)*„.(*/) dj/1 - f"" dt
0 (p — i) JP'l-> J Jo (p — £)

• E f" P2,'-1 ; (, 2/)*2,G/) dy + {r(cr) )2px-l<72t(p). (3.19)
!-•' JP»i-x
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Fig. 1. The field of integration.

By the theory of Volterra integral equations of the first kind, (3.18) is transformed into

m(x)<S?2i(x) + m(x) X [ T(<r, p2,_, ; x, y)V2i(y) dy = —— j~ [ dp.
,-i + i Jr.i-r ir ax J(x — py

(3.20)
For the reduction of the right-hand side of (3.20), we define the function S(a, u, v; x, y)
by

*min (u,»)Jpmin tu,»;
m(QT(<r, u; £, x)T(a, v; £, y) d£

0

2
7r

i r"""' mMa ~ iQg ~ a~ i-- «!■(„ - .1-1 5 - si :rlT_ <3"1)(® - «)'(j/ - v)' Jo (a: - 9(2/ - 0

where x > u, y > v. From (3.11) and (3.21), we have for j < i

sin air d f* 1 , f" m(y) T , . ,
t dz (x - py p (p - y)1"" 2'(y) V

rp»i

= f m(y)T(<r, p2i_, ; y, x)^2l(2/) dy (3.22)
Jpaj-t

and

sin <rx c? dy

f*p2j

= / *2,(y) / m.(£)T(<j, p2i_, ; £, x)T(a, p2,^ ; £, ?/)
P »1 —■ i ^0

rP*i

= / >S"(cr, p2i_, , p2,._, ; X, y)y2i(y) dy. (3.23)
JP»i-i
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Again by the use of (3.11) and (3.21), we have for i 5= j,

sin air d f 1 , fm© f" m, „ S.T. , ,
 / 7 w dP / 7 T^r, ^ / r(°"> P2,-i ; £, 2/^2,(2/)

7T (3; - p)' (p - f)1 J,.,-.
/•Pay r>P*\ — i

= / ^2,(?/) di/ / ™(£)T(a, P2.-1 ; £, P2j — 1 ; £, 2/) $
Jpaj-i Jo

fP*i
= / &(<r, p2,_, , p2,_, ; a;, y)V2i(y) dy. (3.24)

Jpai-i

From (3.19), (3.20), (3.22), (3.23) and (3.24), we have
fiPai

m{x)^3i{x) + / S(<7, p2t—1 , P2.-1 ; X, y)^2i(.y) dy
Jp%i-x

i~ 1 /*P»»

+ X) / {m(2/)T((7, p2i_, ; y, x) + S(o-, p2i_1 , p2,_, ; a;, y) }^2i(y) c?2/
J-l "Pai—i

X f>P*1

+ Z / {w(x)7V, p2j—1 ; a:, 2/) + P2.-1 , P2/-1 ; x, y)\%j(y) dy

 rO) A f px~'&,(p) , ,3 25N
- r(i - „) <fc J,.,.. (I - „)• d,>- <3-25)

By using (3.13), terms involving unknown functions \p2i{x) on the right-hand side of
(3.25) can be transformed into those involving ,J/2;(a:). If we write

r / \ r(o-) d r px~1g2i(p) /o ofi\
O..W - ro^)5^ <3-26)

v r \ Of . \ 1 s'n ^ r(tr)
y) — ^(C) P2i-1 ) P2i-1 » J/) I ^ ^

• X) ff«Alpn(^ — c, x)7n(a, X, a-, P2i-1 j &) p2i—\ ') V) 1 (3.27)
n-0

K2i2j(x, y) = m(x)T(a, p2j; x, ?/) + £(<7, p2l_, , p2,_! ; X, 2/) + ^

ao

^n^nPni^ > P2t'-1 > 0" > P2/-1 ) V) y ^ ^ j) (3.28)
n—0

#"2.2,(x, 2/) = m(y)T(<r, p2i_l ]y,x) + S(a, p2i_, , p,,., ; x, 2/) + ^

ao

53 HnAnPn(^ ^7 0"> p2i-l j P2/-1 > 2/) J ^ ^ (3.29)
n-0

then we finally arrive at the simultaneous Fredholm integral equations of the second
kind

N pPai

m(x)V2i(x) + X) / K2i2i(x, y)V2i(y) dy = (r2,(x), p2,_, < x < p2i ,
1-1 JP%i-x

i = 1, 2, ••• ,iV. (3.30)
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As to the symmetry of the kernel, the relation K2j2i(y, x) = K2iti{x, y) should be noted.
4. Triple series equations and quadruple series equations. Triple series equations

of the first kind studied by Lowndes [4] can be treated by putting pi = d, p2 = e, p3 = 1,
g2(p) = /(p), //„ = 0, Ar = 1 in (2.1) and (2.2). In this case the integral equation (3.30)
is in agreement with that derived by Lowndes.

Triple series equations of the second kind studied by Lowndes [4] can be treated
by substituting Pl = Po = 0, p2 = d, p3 = e, p4 = p5 = 1, gdp) = g(p), g4(p) = h(p),
Hn = 0, N = 2 into (2.1) and (2.2). Since N = 2, we have two integral equations from
(3.30). Elimination of <k2(x) gives a single integral equation in ^'..(x) which is identical
with the result of Lowndes. Discussion can be slightly generalized and certain quadruple
series equations can be also reduced to a single integral equation. Let

X) D„pn(\ - a, X)./n(a, X; p) = g2(p), 0 ^ p < d,
n»=0

oo

X Dnjn(a, X; p) = 0, d < P < e,
n-0

CO

X) Dnpn(\ - a, \)Jn(a, X; p) = g4(p), e < p < f,
n=0

X) Dnjn(a, X; p) = 0, / < p g 1. (4.1)
n —O

Series equations can be considered as a special case in which p, = p0 = 0, p2 = d, p3 = e,
p4 = /, p.5 = 1, iV = 2, Hn = 0. From (3.30), we have

m(a:)^2(x) + [ K22(x, y)V2(y) dy + [ K2i(x, y)^4{y) dy = (?2(:r), (4.2)
^0 J e

m(xyvjx) + ^ K42(x, y)^2(y) dy + J Kti(x, y)V4(y) dy = G4(x), (4.3)

where

#22(z, t/) = S(ar, 0, 0; x, y) = 0,

K2i{x, y) = m(x)T(a, e; x, y) + S(a, 0, e; x, y)

= m(x)T(ff, e; x, y), (4.4)

K42(x, ij) = K2i{y, x),

K44(x, y) = S(a, e, e; x, y).

Since K22(x, y) = 0, we have from (4.2)

*»© = - J' T(a, e; ?y)*4(y) dy + (4.5)

Substitution of (4.5) into (4.3) and the use of (3.21) give

m(x)<Z4(x) + £ K(x, y)%(y) dy = T(cr, e; £, x)G2© ^ + (?4(x), (4.6)

where
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K(x, y) = S(<r, e, e; x, y) - [ m(QT(<r, e; £, x)T{a, e; £, y) dt,
Jo

= f m(g)T(<r, e; £, x)T(a, e; £, y) di.
Jd

=  1 [' m(£)(e - S) ' /4 7s
^ (® - e)'(y - e)' h (® - ?)(*/ - ?) ^ '

Thus the quadruple series equations (4.1) are reduced to a single integral equation.
When / —> 1, the series equations (4.1) are reduced to triple series equations of the
second kind and the integral equation (4.6) coincides with that derived by Lowndes.
When d —> 0, g2(p) = 0, the series equations (4.1) become triple series equations of the
first kind and the integral equation (4.6) is in agreement with the result of Lowndes
except for slight changes in notation.

5. (2N + 1) cosine series equations. In order to discuss mixed boundary-value
problems of two-dimensional Laplace equations in Sec. 7, trigonometric series equations
are studied in detail in Sees. 5 and 6. In this section we consider the following cosine
series equations:

X an cos (n + \)6 = 0, 02<i-i> < d < 02i_i (i = 1, 2, • • ■ , N 4- 1),
(5.1)

CD

23 (n + 2) '(1 + Hn)an cos (n + %)0 = /2i(0), ^2.-1 < 9 < 62i (i = 1,2, • • • , N),
n —0

where 60 - 0, d2N+i — *"•
For the physical application, it is necessary to compute the quantity

qt = [ cos (n + J)0f dd. (5.2)
"^i-i ln=0 /

Let
3 1

d 1, X ^ j C c) j P COS ^ j Pi cos

C„ = (—l)"(2n + l)a„ , H„ = H„ g2i(p) =

2 > 2 ' 2 1 9 '

f 2 (N +1 — i) (2 COS \/p)

V p
Since

r( 1 3. 2 1 cos (n + |)6> / 3\ 1
"V ' 2 ' C0S 2/ 2n + 1 0 ' P"V ' 2/ 1 ' ^ ^cos- n + -

the series equations (5.1) are equivalent to the series equations (2.1) and (2.2). From
(5.2), q(N+is given by

qN _ f" / V* n t /„ ^ . .A 4p_+1" ~ L-> iS C"Jn(a' X; P)J (1 -'p)1/2

/P»»
^2<(p) dp

-fr <**^ Jp»i-\ P2»—i/
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In order to solve the simultaneous integral equations (3.30) numerically, it is neces-
sary to compute kernels. From (3.2), (3.8) and (3.10), we have

A" tt (n + 2) ' m(-x) T(-a' U' X' V) 7r (y - x)(y - u)1/2 '

respectively. Elementary computations with (3.21) give

5(a, u, «; x, y) = j _u){y_ u))w2 [ (x _ _ Q dH

(5.5)

1 1 - ttV
— u)ir2 x — y [\y — uj " \x — u

log log y
y — u (5.6)

where x, y > u. Functions S(<r, u, v; x, y) for u < x < v < y can be expressed by ele-
mentary functions but its derivation is not so obvious so that we describe it briefly.
From (3.21) we have

s<"- «.•!«.»)- - ,))■* ~ /; (~i - —)(«- £)-■<» - a-

1 1 {M{x) - M(y)I, (5.7)t ((x — u)(y — vj) y — x

where

m- TV8 «. (5.8)j0 z ~ K

Using the variable transformation w = (u — £)1/2/(v — £)1/2, (5.8) is reduced to

2(y-w)2 w2
 J, („■ - c)(u)2 - d- (5-9)

where

c = (2 — m)/(2 — v). (5.10)

After some elementary computations, we have

Af (2) =2 log \/f — Vm 2(2 - «) + M0 , (5.11)
J 0 ^ ^\/f + Vw

where A/0 is independent of 2 and given by

M.--(« + »)£" +5 ("-»)/. " ^
(5.12)

The definite integral on the right-hand side of (5.11) can be evaluated by the formula

r° dw
Jo w2 — C

1 log2Vc
Wq — Vc
W0 + Vc

(c > 0)
(5.13)

* ■ tan 1 —777 (c < 0).lV|c| V\c\
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Since u < x < v < y and therefore, for z = x, c = — (x — u) / (v — x) < 0 and for
z = y, c = (y — u)/(y — v) > 0, so that we find from (5.7), (5.10), (5.11) and (5.13)

| s/v — y/u
S(a, u,v;x,y) = —tft -X77. 3W2 log

7r ((x - u)(y - v)) 6 I y/v +

, 1 1 (v ~ ^V/2 + n-i (( u Yn(v-xYn\
7r2 x — y \y — v) an Us — u) \ v ) )

(y - u\/2 _ (y - v\-
_ V u ) { v )

ir x — y \x — u] y - u
u

(5.14)

To complete the computation of kernels, it suffices to show how to compute the function
7„(a, X, a, d; x). If we write

I(/3; u, n) = (-1)" | [n + |) In(l, | , | , cos21 ; cos2, (5.15)

then we find

r(ft«,») - („ +1)"" + (»+ 5)"'^; «)• <5.16)
where

fi„(0;«) = [' SU1 (" + *)? d (5.17)
•7T J„ (cos M — COS £>)

The J(/3; u, n) and B„(/3; u) are identical with 7(w, n) and /?„(«) with /3 = c defined by
the authors [3]. RJfi; w) can be computed by the recurrence relation similar to that for
the Legendre polynomials:

R0(|8; w) = 1 — - sin 1
T

cos-

ucos 2

R^p-ju) = R0(fi-,u) cos « + -—- cos ^ (cosu — cos /3)1/2, (5.18)
7T Z

(?i + l)/2n+i(/3; w) — (2n + l)Rn(/3;u) cos u + nRn^;u)

2V2
IT

cos (n + i)/3(cos u — cos 0) , n ^ 1.

We finally find for kernels

K2i2i{x, y) = \ ~ {(* _ P2,-1V/2 log —- —&=±Y' log
ir x y {\y p2i—\J x P21-1 \x Pa-i/

y
y Pa-1

+ 2 £ ffj(2 cos"1 (P2.--01'2; 2 cos"1 V®, n)
n = 0

•7(2 cos"1 (p2,-i)1/2; 2 cos"1 Vy, n),
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ItT (x V) ~   
*,<»(*, V) - r(y_ x)(y _ p2/_i}1/2

7T ((x — P2i-l)(y — P2i-l))
log (ft,-,)1" - (p2,-,)

1/2

(p.,-1)1^ + (ft.-.)'

2 fft,-, - *y/2 , // p2- rVft,-.-^y/2N)
ir2 a: - y Vy - p2i-J \\z - p2,-i/ \ p2,-i / /

[A/ - ft,-.)1/2 _ (y ~ ftf-,V/2
* P21—1 / \ P21—1 /

(5.19)

■\-jL-(v-^r log
7r x — y \x — p2i-i/ y p2»-i ^ (y P21—i

P21—1 / \ p2i-1

+ 2 X ff„/(2 cos"' (pj,-!)172; 2 cos"1 Vz, n)
n = 0

•7(2 cos"1 (p2,_i)1/2; 2 cos"1 Vy, n), j > i,

K2i2i(x, y) = K2i2i(y, x) j < i.

The value of K2i2i(x, x) can be computed by the L'Hospital theorem.
For numerical computation it was found convenient to write x = p2j_1 sec2 £ when

p2i_, 0 or x — cos2 (1/2) when p2i~ 1 = 0. This can be illustrated by the example of
triple cosine series equations. For simplicity we consider the case /2(0) = 1. This problem
will play an important role in the analysis of boundary-value problems of the Laplace
equation in Sec. 7. If we write

x = p, sec2 £, 0 ^ sec /cos (6>t/2)\ =
Vcos (62/2)J 0 '

(5.20)
*2(s) = -7-^) cos2£,

V Pi

then from (3.30) and (5.20) we finally obtain the following integral equation:

£ cos £!?(£) + [ !/„„„(£, v)E(v) dy = 1, (5.21)
Jo

Sill J

, . 4 tan2 £ log (sin £) — tan2 77 log (sin j?)
~ tt2 sec2 v ~ sec2 £

00

+ 4p! tan £ tan y ^ //„7(2 cos-1 Vpi ; 2 cos-1 ( Vpi sec £), n)
n — 0

•7(2 cos"1 \/pi ; 2 cos"1 (-%/pi sec 77), n). (5.22)

The value of Lov,,n(£, 17) for £ = can be computed using L'Hospital's theorem. The
value of <71 can be computed by

8. = - f° E® d£. (5.23
7T Jo

6.(2 N + 1) sine series equations. In this section we discuss the sine series equa-
tions
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X) a, sin nd = 0, 02c<-i> < 0 < 02i_, (i = 1, 2, • • • , N + 1),
(6.1)

CO

X n_1(l + Hn)an sin nd = /2,(0), 02i_1 < 0 < d2i (i = 1, 2, • • • , N),
*=» 1

where 0O = 0, 02.v+i = t. For the physical application, it is necessary to compute the
quantity

qi = 2 an sin ndj dd. (6.2)

Let a = 2, X = 3/2, o- = 1/2, p = sin2 (0/2), p4 = sin2 (0i/2), C„ = (n + l)a„+i , Hn =
, £?2i(p) = (/2<(2 sin"V p)/2(p(1 - p))1/2. Since

r/o 5 . . 2  L_ sin(n + 1)0 / 3\ 1_
"V ' 2 ' 2/ n+ 1 sin 0 ' Pn\'2/ n+1' ( 3)

the series equations (6.1) are treated as a special case of the series equations (2.1) and
(2.2). From (6.2), we find

fP*i ( ^
dpQi = 2 [ S X CnJn(a, X; p)

J Pti-x \ n*>0

_ o f" *Up) ,~ L-. a - p)w~2 p

2 r" i i i d r< v„(x) , \,
L-> a - p)1/2\ -dPl, (x-Pr'2dxsdp

-HI. a <6-4)
We now give kernels of integral equations for sine series equations. From (3.2),

(3.8) and (3.10) we have

A* = f (» + l)2, m{x) = , TV, «; s, y) = ± ̂  , (6-5)

respectively. We find from (3.21)

S(<r, u; w; x, y)

i f «- j
t'((* - M)(2/ - «))'/2 J„ (i - 0(x - my - Q ?

 1 (1 — u) . | ,
A(x - U){y - u)Y'2 (1 - x)(l - y) log 11

. 1 1 / 1 (x - u\1/2 x 1 fy - u\l/2 . y \
""2 ® — 2/ \l — a: \?/ — u) x — u 1 — y\x — u) °S y — u J ' (6.6)

where x, y > u. The function S(<r, u, v; x, y) for u < x < v < y can be evaluated in a
way similar to that for the cosine series equations. Some elementary algebra with (3.21)
gives
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S(<r, u,v;x, y)

1 r (u - a)u*(v - £)1/2 ,r
tt2((x - u)fo - „))1/2 Jo (1 - £)(* - £)(?/ - {) 5

1 / M(l) MQr) M(?/) ,
7r2((a: - u)(y - v))1/2 \(1 - x)(l - y) (y - x)(l - x) (x - y)( 1 - y)j '

where M(z) is defined by (5.11). From (5.10), (5.13) and (6.7), we find

S(cr, u,v,x, y)

(u( 1 - v))1'2 - (v(l - u))1. (i - «r a - vy 
T((x - u)(y - v)(l - ®)(1 - y)),/2 10g (u( 1 - i>)) + (t>(l - «))1/2

, 1 1 (v - a:V/2 . -x (( u \/2(v - xV/2\
+ x2 (x - y)( 1 - «) \y ~ v) Un \\® - u) \ v ) )

^rT ~ {*¥.T_ J_ l (y - u\
TT2 (x — y)(l — y) vc — u)

1/2

log M"°+
If we define

we have from (3.27), (3.28) and (3.29)

K2<2i(x, y) = -5 771 7 \(n — W75 7T^ „\fi ,a |1 ~ Pa—11ir ((x p2t--\){y p21—i)) (1 a;)(l 2/)

+ A —(- —)1/2 log
7T a; - y U - x \y - p2t_,/

x
X p2i-

_ At—^ Y/2 log —y.— |
1 — y\x — p2,_,/ y — p2t—i J

+ X/ 2nJ?„^n(2 sin 1 (p2,_1)1/2; 2 sin 1 \/a;)Q»(2 sin 1 (p2,_i)1/2; 2 sin 1 Vy),
»** 1

(p _ #)1/2

ff,«,(s, 2/) = ^(i _ ^ _ ^^y/5 - S(*> P»«-i ' P2'"1 5 V>

+ 2>tf„&(2sin 1 (p2i-,),/2; 2 sin 1 \/a;)0„(2sin 1 (p2l_,)1/2; 2 sin 1 Vj/),
n — 1

for i < j,

K2i2i(x, y) = K2i2%(y, x) for i > j,.

where S(a, p2i_i, p2,-i ; a;, y) is given by (6.8). The value of K2,2,(x, x) can be computed
by L'Hospital's theorem.

In order to compute Qn(a; u) we derive a recurrence formula. From (6.9) we find

(6.8)

Qn(a) u) = | 2, | , | , sin21 ; sin2 ̂  , (6.9)

! (6.10)



SERIES EQUATIONS 67

«.(„;») - -4- -f ^ f cos cos(n + tV ̂  (6 n)
nsmudu t Ja (cos<p — cosw) '

We define the function Rn(a; u) by

£„(«; u)=^f cos (n + 2)^ ^ (612)
I J, (cos <p — cos u) v

then we have the following relation between Rn(a) u) and u):

Rn{a\ u) = ( —1)"/2„(7t — a] it — u). (6.13)
From (6.11), we have

/ 1 i\A / \ > / \ Id V2 f cos (n — h)<p — cos (n + %)<p ,(n + l)Q,+i(a; u) + nQn(a; u) = -— -j-  —— \/2 — ^
sm udu ir Ja (cos<p — cos w)

1 d a/2 /"* 2 sin <p sin (w + |)?> , cr ija
sin w dw 7r Ja (cos p — cos w)I/2 <f>'

Applying the integration by parts to (6.14), we have

(n + l)<Li(«; w) + nQn(a] u)

= (2n + 1)S„(«; u) + ^ Bin(n + f)« ^ ( ^
7T (cos a — cos u)

By some elementary algebra, we have

Qi(a) u) = R0(ct) v) + =^-~ (sin -2 a/(cos a — cos w),/2). (6.16)
7r

If we can compute Rja; u), then Q„(a; u) can be computed by the recurrence formulas
(6.15) and (6.16). Now the relation (6.13) should be recalled. As far as the function
Rn{!3\ u) is concerned, we gave the recurrence formula (5.18).

For the numerical computation it was found convenient to write x — p2i-1 sec2 £
provided that p2i-1 0. This is illustrated by the example of triple series equations.
For simplicity we consider j2(0) = 1. This problem is important for the analysis of mixed
boundary-value problems of the Laplace equation which is discussed in Sec. 7. If we
write

x = Pi sec2 £, 0 ^ ^ sec 1 (sm.^jsin = £0 ,

^2(3)
7; cot ~ E(Q cos2 £,

(6.17)

1 - x 2 2

then from (3.30) and (6.17), we finally obtain the following integral equation:

sin£ cos £(1 - Pl sec2 £)£© + [ Lodd(£, r,)E(v) dv = 1, (6.18)
Jo

r ft „\_-M o "i lr><r (1 U 4p> sin21 log (sin g) - sin2 y log (sin rj)v) - T, a - pi) log (i - pi) +

. 4 tan2£ log (sin £) — tan2 y log (sin -q)
\ 2 2 2 yt sec vj — sec £
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+ 4Pl(l — p! sec2£)(l — p, sec2 y) tan £ tan i)
oo

• nHnQn(di ; 2 sin-1 ( Vpi sec £)) Qn(dt ; 2 sin-1 (VPi sec j?)). (6.19)
«-1

The value of L„dd(£, ?/) for £ = ?j can be computed using L'Hospital's theorem. From
(6.4) and (6.17), the quantity q, is given by

<7i = " (1 - Pi) f' E® dt. (6.20)
7T J o

7. Application to a mixed boundary-value problem of the Laplace equation. Using
the method in the preceding section, we discuss a mixed boundary-value problem of
the Laplace equation. The problem arises in electrostatics and has an application to
computation of the Maxwellian capacitance matrix of a transmission line system [1],
[2], [3]. Let us consider the transmission line system whose cross-section is shown in
Fig. 2. We assume the symmetry of the line structure in respect to a; = 0. We further
assume that the potential of the outer waveguide r is maintained zero. The Maxwellian
capacitance matrix of the transmission line system is defined in the following way.
Let qi , q2 , • • • , q2N be the charge per unit length on the strips of the transmission line
system with Vi , v2, • • • , v2N the corresponding potentials. The charge and the potential
are related by the Maxwellian capacitance matrix C = (C,-,) as

q =:Cv, (7.1)

where q = (qi , q2 , • ■ • , q2n)' and v = (ui , v2 , • ■ • , v2N)'. It is well known that C is
a symmetric matrix [2],

The matrix element Cu can be computed by solving boundary-value problems of
the Laplace equation. We denote the potential in the waveguide by

V = V, , 0 ^ y ^ K ,
= Va , ht ^ y ^ A, + h2 , (7.2)

= Va , K + h2 ^ y ^ hi + h2 + hx .

"r "VWi "V*. X1 X2 X2i *»,*!» r X
Fig. 2. Symmetric multiconductor transmission line system.
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F satisfies the Laplace equation in the appropriate region and the continuity condition

V1 = V2 , y = K ,

dFt _ dV2 _ I fm o\
e1 a ~ e2 , J 2/ — "1 )dz/

F2 = Fa , y = Ai + /t2 ,

where e, denotes the dielectric constant of the medium filled in the relevant region.
Boundary conditions to be satisfied by F, are as follows:

F, =0 (i = 1, 2, 3) on T, (7.4)

dF2 aF3 f?/ hi -|- h2 , x2i-2 x x21—1 /• 10 Ar _l in n
«2 = e3 , <! (» = 1, 2, • ■ • , M + 1), (7.5)

12/ = K + h2 , — x2i-t < x < —x2i-2

F2 , y h\ ~f" h2 t x2i~i x ^2i ^   2 2 ... _/^) (7 6)

F2 = , y = hi + h2 , ~x2i < x < —x2i-!

where x0 = 0, x2N+1 = r. The charge on the strip conductor is
r>x s« /»— Xif— 1

g,- = / tr(a:) cte, gf+Ar = / cr(x) dx (i = 1, 2, • • • , N) (7.7)
Jxni-i J-xni

where

^) = £* ~ €3 ̂  , 2/ = *i + ^ • (7.8)dy dy

If v is given, we can compute q by solving the above boundary-value problem. In order
to compute the Maxwellian capacitance matrix C, we consider the following two kinds
of boundary-value problems.

(7.9)
(a) vk = vk+N = 0, k = 1, 2, • • • , j - 1, j + 1, • • • , N,

f ,• = vi+N = 1.

Solving this boundary-value problem, we obtain

Cit + Cii+N = q„ , (7.10)

where q„ = qt = qi+N .

(b) vk = vk+N = 0, k = 1, 2, • • • , j - 1, j + 1, • • • , N, ^

Vj = ~vi+N = 1.

Solving this boundary-value problem, we obtain

C„- - Cii+N = qai . (7.12)

where q0, = g, = —q, + N . From (7.10) and (7.12), we have

Cu = Cit = Kg.,- + q.i), ^ j = 1)2) , N), (7.13)
d*i+N @i+Ni 2 ({?•»' Qoi) j
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where use is made of the symmetry of the matrix C. Problems (a) and (b) can be reduced
to trigonometric series equations by a method similar to that used for a single strip
line problem [3]. We define X„, L„ and Hn by

Xn — (ri \)ir/r, n = 0, 1, 2, • • • for problem (a),

X„ = nir/r n = 1, 2, • • • for problem (b),

L„ = + Kt2e2M')/(l + Kl2e"2Xnt'), (7.15)

= L„e~2Xnh' + e'2Xpt- - 2L„e~2Xn""+'") + K2:i(Lne~^h- - e^')
n 17" — 2Xn(Aa + /»3) i / j —2Xnh* —2XnA8\ 7 \ • /

1 — Lne + k23K-L'ffi ~~~ e )

respectively, where = (e, — «,)/(«< + «,)• Problem (a) is reduced to

(7.14)

X «» cos (n + §)0 = 0, 6*2,-2 < 0 < 02<, i = 1, • • • , N + 1, (7.17)
n=0

oo

H (n + l)_1(l + Hn)an COS (n + \)6 = vf , 02,_1 < 0 < 02i , i = 1, , N,(7.18)
n-0

where 0, = 7rx,/r and the charge 5,, is given by

q,< = + e3) ̂  a» cos (n + c?0. (7.19)

Eqs. (7.17) and (7.18) are closely related to conditions (7.5) and (7.6), respectively.
Problem (b) can be reduced to the following sine series equations:

CO

23 a„ sin 710 = 0, 02l_2 < 0 < 02,-i , i = 1, • • • , N + 1, (7.20)
ri =» 1

CO

y. n_1(l + H„)a„ sin n6 = v, 02,_! < 0 < 02< , i = 1, ■ ■ • , iV, (7.21)
n™ 1

where 0, = irz./r and the charge (/„,■ is given by

1*0, i [ CO ^q„i = fe + e3) J jXj a„sin?i0f <20. (7.22)

Eqs. (7.20) and (7.21) are related to conditions (7.5) and (7.6), respectively.
To show how the series equations method works, we give numerical results of some

simple examples.
1. Chestnut's [1] example (N = 1). Parameters of the transmission line system are

as follows:

£l = €2 — €3 = €,

hi = 1.0, h2 = 0, h3 = 1.0,

Xi = 0.1, x2 = 0.5, x3 = r = I (I = 0.75, 1.25).

Since iV = 1, series equations are reduced to a single integral equation. The integral
equation (5.21) or (6.18) was approximately replaced by m simultaneous linear equations
and solved numerically. The series involving //„ in the kernel of the integral equation
was truncated at n = nx where \Hni\ < \Ht\- l(r7. In Table 1, we give the numerical
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TABLE 1.
Numerical results of Chestnut's [1] example (note: EXT in Chestnut's result

denotes the value C(m/3, to/5, to) extrapolated by his method).

I = 0.75

4
6
8

10
15
20

C?XT (4, 6)
C.EXT (6, 8)
Exact

ni = 3

C.(m)/t

2.588624
2.589841
2.590163
2.590281
2.590367
2.590386
2.590353
2.590398
2.590398

Chestnut's result [1]

15
EXT

30
EXT

2.5984
2.5918

2.5938
2.5914

I = 1.25 m = 5

4
6
8

10
15
20

C„EXT (4, 6)
C?XT (6, 8)

Exact

C.(m)/e

1.971626
1.972435
1.972659
1.972741
1.972800
1.972814
1.972775
1.972822
1.972822

Chestnut's result [1]

15
EXT

30
EXT

1.9780
1.9746

1.9745
1.9733

I = 0.75

4
6
8

10
15
20

Co XT (4, 6, 8)
C„EXT (6, 8, 10)

Exact

Hi — 3

Co(m)/e

4.236568
4.373639
4.415367
4.427795
4.432731
4.432973
4.433630
4.433066
4.433000

Chestnut's result [1]

15
EXT

30
EXT

4.4680
4.4483

4.4435
4.4362

I — 1.25 nj = 5

4
6
8

10
15
20

Co XT (4, 6, 8)
C0EXT (6, 8, 10)

Exact

C0(to)/ e

3.965087
3.999429
4.004268
4.005020
4.005230
4.005259
4.005062
4.005158
4.005277

Chestnut's result [1]

15
EXT

30
EXT

4.0314
4.0147

4.0142
4.0080
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TABLE 2.
Numerical results of capacitance matrix of the four-conductor transmission line system.

Cij/e

<V e = C44/e
C22/£ = C33/e

Cii/e = C21/€ = C34/€ = C43/ e
C23/€ = C32/«

C13/c = C31/e = C24/£ = Cafe
Ci 4/e = C41/e

Computed

2.89139
3.29377

-1.00605
-0.97670
-0.07948
-0.01247

Results of
Kammler
(r = co)

2.8914
3.2938

-1.0061
-0.9767
-0.0795
-0.0125

result achieved by the method presented in this paper and the exact value obtained
by the conformal mapping method for C\ and C0, where C, = Cu + C12, C0 = Cu — C12.
The orders of the error in Ce and C0 are 0(1 /m"), where a ^ 3, while the method of a
Fredholm integral equation of the first kind [1], [2] produce the error of the order of
fii/m + /32/m3, where /3,- is a certain constant. The extrapolation technique described
byfKammler [2] can be utilized for C« and C0 . In this case they are given by

next, _ \ _ - mlC.imJ
C. (m, , m2) - ^ _ ma

C"(m, CM,) - + a<»,)''-2«m.) (m' + "" " 2mi)'

Extrapolated values are also given in Table 1. Since this example is very simple, the
classical conformal mapping method can be applied. The method presented in this
paper is feasible for practically important problems to which the conformal mapping
method is useless, e.g. those of 5^ e2 ^ e3 .

2. Four-conductor system (JV = 2). Parameters of the transmission line are as
follows:

£l = t2 = =

hi = 0.5, h2 = 0, ih = 0.5,

Xi = 0.05, x2 = 0.25, x3 = 0.35, = 0.55, x5 = r = 2.5.

This example problem is equivalent to that of Kammler [2] except r — a> in Kammler's
example. Numerical results are given in Table 2. These computations were carried
out using the computer system FACOM 230-60 at the Data Processing Center, Kyoto
University.
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