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TWO-TIMING SOLUTION OF MATHIEU EQUATION TO SECOND ORDER*

By V. S. JORDAN (College of William and Mary)

Introduction. We consider the Mathieu equation
v +E (1 + esin2)v =0 ¢))

for small € in the neighborhood of k¥ = 1, which is the first positive instability region [1].
The solution in this region has been found to first order by Cole [2] by means of a two-
timing perturbation. The method can be extended to higher orders for more accuracy,
or as a test of the range of the method. In this paper the two-timing solution of the
Mathieu equation is extended to second order and is found to differ in some interesting
mathematical details from the first-order procedure.

First-order solution. Let k* = 1 4+ «¢, where o has any constant value. Then (1)
becomes

vy + v + e(a + sin 28)v + €'(a sin 2ty = 0. 2

Define the two-timing variables r = e,y = €t, and let v(¢, ¢) be represented by a function
of the slow and fast time scales u(t, 7, v, ¢). Then the second derivative of v is replaced by

Uee + 2eUyy + € WU,r + 2u,,) + 0(E).

Let u be expanded in a perturbation series in e: u(t, 7, v, €) = %o(t, 7,v) + au(, 7, v)

+ €®us + --- . Substitute this series into the Mathieu equation and separate by powers
of e
Uo,ee + U =0, (3a)
Uy, ee + u = —'(2'“0_‘7 + alg + Uo Sin 25), (3b)

Up e + U = —Quyir + oy + u, 8in 28) — (Quo,iy + Uo,.r + athg sin 20), 3e)

The zero-order solution found from (3a) is
Uy = Ao(r, 7) exp (it) + Bo(r, 7) exp (—u). 4

We substitute this into the right-hand side of (3b) and suppress secular terms of the
form exp (=£1t) in order to avoid growth of u, in ¢. To do this requires that the coefficients
4, and B, satisfy

Ao, — 1By — Liad, = 0, By, — 14, + LiaB, = 0. ()
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The solution of these two first-degree equations in 7 is

Ao = al(‘Y) exp ()‘T) + az(’)’) exp (_)\T), (6)
By, = ra,(v) exp (\1) + r,a,(v) exp (—\7)
where A = (1 — 4a°)"?, r, = 4(\ — Lia), and 7, = —4(\ + 1{a). Thus as a function

of £ and 7 (but not of v) the complete first-order solution of Cole is given by (4) and (6).
Using these in (3b) now determines the inhomogeneous part of u, :

u, = A,(r,v) exp (¢t) + B,(r,v) exp (—1t) + ﬂl; (A, exp (3tt) — B, exp (—3i8)). (7)

Second-order solution. The functions .4, and B; must be determined from the next
higher order equation. Proceeding in a similar manner as above, we suppress terms of
the form exp (=) in the right-hand side of (3¢) by having the coefficients subject
to the equations :

440'., - %’i()\z + '.‘flf)A() - ‘i_aBo + {Al'7 - %?:CZAI - %Blz = O, (8)
By, + 3i(\* + 3By — jado + (B, + ¥iaB, — }4,} = 0.

We have to determine both the dependence of A, , B, on v and the dependence of 4, ,
B, on 7 from the two Eqgs. (8). Assume that 4, and B, have the same form of dependence
on the slow variable as do A, and B, , namely,

A, = ¢, exp (\7) + ¢, exp (—A7), B, = d, exp (\1) + d. exp (—A7). 9)
The fact that Eqs. (8) are first order in v indicates that all the coefficients that depend
on vy have the same exponential form of dependence on v, so we assume
a,(y) = a., exp (nr7), &i(y) = cu exp (nry), (10)
a;(v) = @y exp (n27), ¢:(v) = ¢z exp (nz7).

and similarly for d, , d. where the n; (z = 1, 2) are yet to be determined.

It is clear that (8) really describes four conditions to satisfy because the four coeffi-
cients of exp (n.v == Ar) must be separately set equal to zero, which makes it possible
to determine the four functions A,(r), B,(7), Ao(v) and B,(y). Substituting the appro-
priate terms into (8) gives the equations

rey — dy = —4f{n — MO + %) — tarla, (11a)
cu + 1 dy = 4{mn + 30 + Fn — falay , (11b)
TaCer — oy = —4{m — 3(\* + 7%) — jonlas, (11c)
Cor + 71 doy = 4{myry + 307 + Fo)rs — o), . (11d)

Note that we cannot simply calculate ¢,; and d,, as functions of a,, (or ¢,, , ds» as functions
of a,;) because the determinant of the coefficients of the left-hand side is zero, since
rr, = —1. It is just this fact, however, which gives the values of the 5; . Eq. (11a) is
a multiple of (11b), and Eq. (11¢) is a multiple of (11d); by inspection,

—ry(reny — diy) = (Cua + 12 dy), —11(raCas — da2) = (Caa + 71 daa). (12)

Solving for the 7, gives
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m = % (a2 + é) = —n = 1. 13)

Now the terms d,; and d,, are determined as
dy = ricn + raan y daz = TaC2p + 74022 ) (14)
where
Ty = 4[n — %i()\z + ﬁ) — iar], ry = —4[n + %i()\2 + ‘s‘lf) + fors].

This leaves two independent constants, a,; and a,, , to be determined by the two
zero-order boundary conditions, and two more independent constants, ¢;, and ¢, ,
to be determined by the first-order boundary conditions; all other terms have been
found, and the total solution to second order in ¢ is given by u = u, + eu, .

Further remarks. Itisclearthat A, A; will occur only in the combination 4, 4 eA,,
and similarly B, , B, will occur only as B, + eB, . Let ¢ = A + &7 and define the inde-
pendent constants P = a,, + ec1, , @ = @22 + ec22 . Then the solution can be written
in terms of Floquet theory as

v = P exp (ept) [(exp (it) — exp (31t)) + R (exp (—12) + exp (— 3zt))]

+ Q exp (—es) [(exp (it) — 1’—; exp i) + Bu{exp (—it) + 2% exp (- 3u))] (15)
where
Ry =1+ e = 41 — e)¢ — 3ia) — 2ie(N’ + 39),
Ry =1+ e = —4(1 — e)(@ + 3ia) + 20e(® + 3).

Some terms of order ¢ which u, may be expected to supply are included in (15) without
altering the accuracy to second order.

The usual transition curve between the regions of stability and instability near
k* = 1 is located wherever ¢ crosses from real to imaginary values. To first order this
occurs when A = 0, at « = 1. To second order, however, we must determine the value

of « that satisfies
_1f se(z é):l_
¢_)\[)\+16a+8 = 0. (16)

Assuming that « = +(} + ), we find that & = 7/64, and the transition boundaries
lie at

k2=l+ea=l:|:%e<l+g§)+'-'
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