TWO-TIMING SOLUTION OF MATHIEU EQUATION TO SECOND ORDER*

By V. S. JORDAN (College of William and Mary)

Introduction. We consider the Mathieu equation

$$v_{tt} + k^2 \left(1 + \epsilon \sin 2t\right) v = 0 \tag{1}$$

for small ϵ in the neighborhood of k=1, which is the first positive instability region [1]. The solution in this region has been found to first order by Cole [2] by means of a two-timing perturbation. The method can be extended to higher orders for more accuracy, or as a test of the range of the method. In this paper the two-timing solution of the Mathieu equation is extended to second order and is found to differ in some interesting mathematical details from the first-order procedure.

First-order solution. Let $k^2 = 1 + \alpha \epsilon$, where α has any constant value. Then (1) becomes

$$v_{tt} + v + \epsilon(\alpha + \sin 2t)v + \epsilon^2(\alpha \sin 2t)v = 0. \tag{2}$$

Define the two-timing variables $\tau = \epsilon t$, $\gamma = \epsilon^2 t$, and let $v(t, \epsilon)$ be represented by a function of the slow and fast time scales $u(t, \tau, \gamma, \epsilon)$. Then the second derivative of v is replaced by

$$u_{tt} + 2\epsilon u_{t\tau} + \epsilon^2(u_{\tau\tau} + 2u_{t\tau}) + 0(\epsilon^3).$$

Let u be expanded in a perturbation series in ϵ : $u(t, \tau, \gamma, \epsilon) = u_0(t, \tau, \gamma) + \epsilon u_1(t, \tau, \gamma) + \epsilon^2 u_2 + \cdots$. Substitute this series into the Mathieu equation and separate by powers of ϵ :

$$u_{0,i} + u_0 = 0,$$
 (3a)

$$u_{1,tt} + u_1 = -(2u_{0,tr} + \alpha u_0 + u_0 \sin 2t), \tag{3b}$$

$$u_{2,tt} + u_2 = -(2u_{1,t\tau} + \alpha u_1 + u_1 \sin 2t) - (2u_{0,t\gamma} + u_{0,\tau\tau} + \alpha u_0 \sin 2t), \quad (3c)$$
...

The zero-order solution found from (3a) is

$$u_0 = A_0(\tau, \gamma) \exp(it) + B_0(\tau, \gamma) \exp(-it). \tag{4}$$

We substitute this into the right-hand side of (3b) and suppress secular terms of the form $\exp(\pm it)$ in order to avoid growth of u_1 in t. To do this requires that the coefficients A_0 and B_0 satisfy

$$A_{0,\tau} - \frac{1}{4}B_0 - \frac{1}{2}i\alpha A_0 = 0, \qquad B_{0,\tau} - \frac{1}{4}A_0 + \frac{1}{2}i\alpha B_0 = 0.$$
 (5)

^{*} Received November 4, 1971. This work was partly supported by NASA under Grant NGL-47-006-055.

The solution of these two first-degree equations in τ is

$$A_0 = a_1(\gamma) \exp(\lambda \tau) + a_2(\gamma) \exp(-\lambda \tau),$$

$$B_0 = r_1 a_1(\gamma) \exp(\lambda \tau) + r_2 a_2(\gamma) \exp(-\lambda \tau)$$
(6)

where $\lambda = \frac{1}{4}(1 - 4\alpha^2)^{1/2}$, $r_1 = 4(\lambda - \frac{1}{2}i\alpha)$, and $r_2 = -4(\lambda + \frac{1}{2}i\alpha)$. Thus as a function of t and τ (but not of γ) the complete first-order solution of Cole is given by (4) and (6). Using these in (3b) now determines the inhomogeneous part of u_1 :

$$u_1 = A_1(\tau, \gamma) \exp(it) + B_1(\tau, \gamma) \exp(-it) + \frac{1}{16i} (A_0 \exp(3it) - B_0 \exp(-3it)).$$
 (7)

Second-order solution. The functions A_1 and B_1 must be determined from the next higher order equation. Proceeding in a similar manner as above, we suppress terms of the form exp $(\pm it)$ in the right-hand side of (3c) by having the coefficients subject to the equations

$$A_{0,\gamma} - \frac{1}{2}i(\lambda^2 + \frac{1}{32})A_0 - \frac{1}{4}\alpha B_0 + \{A_{1,\gamma} - \frac{1}{2}i\alpha A_1 - \frac{1}{4}B_1\} = 0,$$

$$B_{0,\gamma} + \frac{1}{2}i(\lambda^2 + \frac{1}{32})B_0 - \frac{1}{4}\alpha A_0 + \{B_{1,\gamma} + \frac{1}{2}i\alpha B_1 - \frac{1}{4}A_1\} = 0.$$
(8)

We have to determine both the dependence of A_0 , B_0 on γ and the dependence of A_1 , B_1 on τ from the two Eqs. (8). Assume that A_1 and B_1 have the same form of dependence on the slow variable as do A_0 and B_0 , namely,

$$A_1 = c_1 \exp(\lambda \tau) + c_2 \exp(-\lambda \tau), \qquad B_1 = d_1 \exp(\lambda \tau) + d_2 \exp(-\lambda \tau). \tag{9}$$

The fact that Eqs. (8) are first order in γ indicates that all the coefficients that depend on γ have the same exponential form of dependence on γ , so we assume

$$a_1(\gamma) = a_{11} \exp (\eta_1 \gamma), \qquad c_1(\gamma) = c_{11} \exp (\eta_1 \gamma),$$

 $a_2(\gamma) = a_{22} \exp (\eta_2 \gamma), \qquad c_2(\gamma) = c_{22} \exp (\eta_2 \gamma).$ (10)

and similarly for d_1 , d_2 where the η_i (i = 1, 2) are yet to be determined.

It is clear that (8) really describes four conditions to satisfy because the four coefficients of exp $(\eta_i \gamma \pm \lambda \tau)$ must be separately set equal to zero, which makes it possible to determine the four functions $A_1(\tau)$, $B_1(\tau)$, $A_0(\gamma)$ and $B_0(\gamma)$. Substituting the appropriate terms into (8) gives the equations

$$r_1 c_{11} - d_{11} = -4 \{ \eta_1 - \frac{1}{2} i(\lambda^2 + \frac{1}{32}) - \frac{1}{4} \alpha r_1 \} a_{11} ,$$
 (11a)

$$c_{11} + r_2 d_{11} = 4 \{ \eta_1 r_1 + \frac{1}{2} i(\lambda^2 + \frac{1}{32}) r_1 - \frac{1}{4} \alpha \} a_{11} , \qquad (11b)$$

$$r_2 c_{22} - d_{22} = -4 \{ \eta_2 - \frac{1}{2} i(\lambda^2 + \frac{1}{32}) - \frac{1}{4} \alpha r_2 \} a_{22} , \qquad (11c)$$

$$c_{22} + r_1 d_{22} = 4 \left\{ \eta_2 r_2 + \frac{1}{2} i \left(\lambda^2 + \frac{1}{32} \right) r_2 - \frac{1}{4} \alpha \right\} a_{22} . \tag{11d}$$

Note that we cannot simply calculate c_{11} and d_{11} as functions of a_{11} (or c_{22} , d_{22} as functions of a_{22}) because the determinant of the coefficients of the left-hand side is zero, since $r_1r_2 = -1$. It is just this fact, however, which gives the values of the η_i . Eq. (11a) is a multiple of (11b), and Eq. (11c) is a multiple of (11d); by inspection,

$$-r_2(r_1c_{11}-d_{11})=(c_{11}+r_2\ d_{11}), \qquad -r_1(r_2c_{22}-d_{22})=(c_{22}+r_1\ d_{22}). \qquad (12)$$

Solving for the η_i gives

NOTES 149

$$\eta_1 = \frac{\alpha}{16\lambda} \left(\alpha^2 + \frac{5}{8} \right) = -\eta_2 \equiv \eta. \tag{13}$$

Now the terms d_{11} and d_{22} are determined as

$$d_{11} = r_1 c_{11} + r_3 a_{11}, \qquad d_{22} = r_2 c_{22} + r_4 a_{22}, \qquad (14)$$

where

$$r_3 = 4\left[\eta - \frac{1}{2}i(\lambda^2 + \frac{1}{32}) - \frac{1}{4}\alpha r_1\right], \qquad r_4 = -4\left[\eta + \frac{1}{2}i(\lambda^2 + \frac{1}{32}) + \frac{1}{4}\alpha r_2\right].$$

This leaves two independent constants, a_{11} and a_{22} , to be determined by the two zero-order boundary conditions, and two more independent constants, c_{11} and c_{22} , to be determined by the first-order boundary conditions; all other terms have been found, and the total solution to second order in t is given by $u = u_0 + \epsilon u_1$.

Further remarks. It is clear that A_0 , A_1 will occur only in the combination $A_0 + \epsilon A_1$, and similarly B_0 , B_1 will occur only as $B_0 + \epsilon B_1$. Let $\phi = \lambda + \epsilon \eta$ and define the independent constants $P = a_{11} + \epsilon c_{11}$, $Q = a_{22} + \epsilon c_{22}$. Then the solution can be written in terms of Floquet theory as

$$v = P \exp(\epsilon \phi t) \left[\left(\exp(it) - \frac{i\epsilon}{16} \exp(3it) \right) + R_1 \left(\exp(-it) + \frac{i\epsilon}{16} \exp(-3it) \right) \right]$$

$$+ Q \exp(-\epsilon \phi t) \left[\left(\exp(it) - \frac{i\epsilon}{16} \exp(3it) \right) + R_2 \left(\exp(-it) + \frac{i\epsilon}{16} \exp(-3it) \right) \right]$$
(15)

where

$$R_1 = r_1 + \epsilon r_3 = 4(1 - \epsilon \alpha)(\phi - \frac{1}{2}i\alpha) - 2i\epsilon(\lambda^2 + \frac{1}{32}),$$

$$R_2 = r_2 + \epsilon r_4 = -4(1 - \epsilon \alpha)(\phi + \frac{1}{2}i\alpha) + 2i\epsilon(\lambda^2 + \frac{1}{32}).$$

Some terms of order ϵ^2 which u_2 may be expected to supply are included in (15) without altering the accuracy to second order.

The usual transition curve between the regions of stability and instability near $k^2 = 1$ is located wherever ϕ crosses from real to imaginary values. To first order this occurs when $\lambda = 0$, at $\alpha = \pm \frac{1}{2}$. To second order, however, we must determine the value of α that satisfies

$$\phi = \frac{1}{\lambda} \left[\lambda^2 + \frac{\epsilon \alpha}{16} \left(\alpha^2 + \frac{5}{8} \right) \right] = 0. \tag{16}$$

Assuming that $\alpha = \pm (\frac{1}{2} + \epsilon \delta)$, we find that $\delta = 7/64$, and the transition boundaries lie at

$$k^2 = 1 + \epsilon \alpha = 1 \pm \frac{1}{2} \epsilon \left(1 + \frac{7\epsilon}{32} \right) + \cdots$$

REFERENCES

- [1] J. J. Stoker, Nonlinear vibrations, Interscience Publishers, Inc., N. Y., 1950
- [2] J. D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Co., 1968