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TWO-TIMING SOLUTION OF MATHIEU EQUATION TO SECOND ORDER*

By Y. S. JORDAN (College of William and Mary)

Introduction. We consider the Mathieu equation

vtt + k2 (1 -f- e sin It) v — 0 (1)

for small e in the neighborhood of k = 1, which is the first positive instability region [1],
The solution in this region has been found to first order by Cole [2] by means of a two-
timing perturbation. The method can be extended to higher orders for more accuracy,
or as a test of the range of the method. In this paper the two-timing solution of the
Mathieu equation is extended to second order and is found to differ in some interesting
mathematical details from the first-order procedure.

First-order solution. Let k1 = 1 + at, where a has any constant value. Then (1)
becomes

Vtt + v + e(a + sin 2t)v + e2(a sin 2t)v = 0. (2)

Define the two-timing variables r = tt,y = et, and let v(t, e) be represented by a function
of the slow and fast time scales u(t, r, y, e). Then the second derivative of v is replaced by

utl + 2 eutT + t(uTr + 2 uty) + 0(e3).

Let u be expanded in a perturbation series in e: u(t, r, y, e) = u0(t, t, y) + r, y)
+ e2u2 + • • ■ . Substitute this series into the Mathieu equation and separate by powers
of e:

Mo,ii + m0 = 0, (3a)

Mi.u + M, = — (2u0,lr + crt<o + m0 sin 21), (3b)

M2.11 + m2 = —(2u1,lr + auI + Wi sin 21) — (2u0,ly + u0.T7 + au0 sin 21), (3c)

The zero-order solution found from (3a) is

w0 = Aa(j, y) exp (it) + B0(t, y) exp (—it). (4)

We substitute this into the right-hand side of (3b) and suppress secular terms of the
form exp (=tit) in order to avoid growth of Ui in t. To do this requires that the coefficients
A0 and B0 satisfy

A0,r - \B0 — |icxA0 = 0, B0,r — i-Ao + |?aB0 = 0. (5)
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The solution of these two first-degree equations in r is

A0 = a,(7) exp (Xr) + a2(7) exp (-Xr), ^

B0 = '"1a1(7) exp (Xr) + r2a2(y) exp (—Xr)

where X = J(1 ~ 4a2)I/2, = 4(X — §ia), and r2 = —4(X + \ia). Thus as a function
of t and r (but not of 7) the complete first-order solution of Cole is given by (4) and (6).
Using these in (3b) now determines the inhomogeneous part of ut :

ux = Aj(r, 7) exp (it) + B,(r, 7) exp (—it) + -(A0 exp (3it) — B0 exp (Sit)). (7)

Second-order solution. The functions A 1 and B1 must be determined from the next
higher order equation. Proceeding in a similar manner as above, we suppress terms of
the form exp (±it) in the right-hand side of (3c) by having the coefficients subject
to the equations

A 0.7 — %i(\2 + ttVMo — \&B0 + {AliT — \iaAl — J5,} =0, ^

B0.y + I i(X2 + ~s?)B0 — faA0 + {Blr + \iaBx — = 0.

We have to determine both the dependence of A0 , B0 on 7 and the dependence of Ax ,
B1 on r from the two Eqs. (8). Assume that A, and B, have the same form of dependence
on the slow variable as do A0 and B0 , namely,

Ai = Ci exp (Xr) 4- c2 exp ( — Xr), Bt = dx exp (Xr) + d2 exp ( —Xr). (9)

The fact that Eqs. (8) are first order in 7 indicates that all the coefficients that depend
on 7 have the same exponential form of dependence on 7, so we assume

ffli(v) = an exp (Vl7), Cj(7) = c„ exp (57,7),

a2(y) = «22 exp (^7), c2(y) = c22 exp (^7).

and similarly for di , d2 where the >?, (i — 1, 2) are yet to be determined.
It is clear that (8) really describes four conditions to satisfy because the four coeffi-

cients of exp (rj,7 ± Xr) must be separately set equal to zero, which makes it possible
to determine the four functions A1(t), B, (r), A0(y) and B0(y). Substituting the appro-
priate terms into (8) gives the equations

rjCn — dn = — 4 {77, — ji(\2 + A) — j<xrijan , (11a)

Cn -(- r2 du = 4{r7i?'i 4- ^i(\ -(- 4al®ii j (lib)

r2c22 d22 = ~4{?j2 5^(X ~t~ "sir) \oit2)^22 , (He)

c22 "I- 7*1 ̂22 = 4{ 772r2 -j- |z'(X ^?)r2 l<2}d22 • (lid)

Note that we cannot simply calculate cu and dn as functions of an (or c22, d22 as functions
of a22) because the determinant of the coefficients of the left-hand side is zero, since
r1r2 = —1. It is just this fact, however, which gives the values of the 77, . Eq. (11a) is
a multiple of (lib), and Eq. (11c) is a multiple of (lid); by inspection,

r2(?"iCii dn) = (cn -f- t"2 (in), 7"i(^2^22 ^22) = (^22 ~l~ 7"i ^22)■ (12)

Solving for the v, gives
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= lfx ("2 + 1) = <13>
Now the terms dlx and d22 are determined as

du = rjCn + r3au , d22 = r2c22 + rta22 , (14)

where

r3 — 4[ij — §i(X2 + -jnr) — 4ari]i r4 = — 4[t/ + §i(X2 + -jV) + i^]-

This leaves two independent constants, au and a22 , to be determined by the two
zero-order boundary conditions, and two more independent constants, cn and c22 ,
to be determined by the first-order boundary conditions; all other terms have been
found, and the total solution to second order in t is given by u = u0 + e«i .

Further remarks. It is clear that A0, Ax will occur only in the combination A 0 + eAlt
and similarly B0 , BL will occur only as B0 + tBx . Let <j> = X + trj and define the inde-
pendent constants P = an + ecu , Q = a22 + ec22 . Then the solution can be written
in terms of Floquet theory as

v = P exp (t4>i) ^exp (it) — exp (3it) J + fti^exp ( — it) + exp (— ?>ii)

+ Q exp (—e<t>t) ̂exp (it) — y| exp (3it)) + R2(exp ( — it) + || exP ( — 3*0 j (15)

where

Ri — rx + er3 = 4(1 — ea)(<j> — |ia) — 2 ie(\2 + ^),

^2 = t2 + trt = —4(1 — (a)(<p + %ia) + 2it(\2 -(- -jV)-

Some terms of order t which u2 may be expected to supply are included in (15) without
altering the accuracy to second order.

The usual transition curve between the regions of stability and instability near
k2 = 1 is located wherever 4> crosses from real to imaginary values. To first order this
occurs when X = 0, at a — ±§. To second order, however, we must determine the value
of a that satisfies

0 = x [x2 + ii ("2 +1). = 0. (16)

Assuming that a = ±(J + to), we find that S = 7/64, and the transition boundaries
lie at

(! + i)k =l + ea=l±^e(l+rx) +
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