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ON THE BOUNDARY-VALUE PROBLEM OF A SPHEROID*

By JOHN G. FIKIORIS (University of Toledo, Toledo, Ohio)**

Abstract. The surface charge density of a charged spheroid is obtained in exact,
closed form using a Green’s function expansion in spherical coordinates. The possibility
is thus established of solving boundary-value problems analytically using coordinates
that do not correspond to boundary shapes. The present approach, used previously
in numerical solutions of related problems, requires the potential function to be constant
in the interior of the conductor. Its advantages from the theoretical standpoint and its
further possibilities are discussed.

1. Introduction. Solution of boundary-value problems by separation of variables
is severely limited by the shape of boundaries. For general shapes, problems in potential
theory or electromagnetic scattering are formulated in terms of surface (two-dimensional)
singular integral equations [1]. Even then analytical solutions are limited to separable
systems which fit the boundaries and in which the kernel function 1/R = [(z — z')*® +
(w — ¥)® + (2 — 2)’I"* can be expanded in a series of orthogonal eigenfunctions.
If these conditions are not met numerical methods are the only alternative.

It is the purpose of this paper to show that analytical approaches need not be so
limited. The method is best explained by considering the electrostatic problem of a
charged perfect conductor. Let S denote the closed surface of a perfect conductor and,
following Kellogg [1], let points on S be designated by small letters (such as ¢, p), while
capitals (such as @, P) are used for points not on S, as shown in Fig. 1. Use of Green’s
theorem in the region T outside S yields the following equation for the potential function
V(P) arising from surface charge densities on S [1, pp. 219 and 223], [2, p. 15]:

V(P)] 1 [; av K (le)] , [in T, i.e. outside S,
[ 0 ] 4r fs R an’ V(9 ' s’ for P| it of T, i.e. inside S,
where R is the distance from ¢(+’, ¢, ¢’) to P(r, 6, ¢). In particular, for a perfect con-

ductor at constant potential on 8, say V(g) = 1, the second integral can be evaluated
by careful application of the divergence theorem [1, pp. 67-68], giving:

L Qo -2 @es -2

The surface charge density on S is f(¢q) = ¢,(3V/an’). These two results substituted in
the preceding equation yield:

V(IP)] -1 fs [f(q)/R) 48’ for P[gl‘s';fiig‘igs- )
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As defined in (1), the potential function V(P) is continuous throughout space. It is
analytic (possessing continuous derivatives of all orders in », 6, ¢) at all points P not
on S (a property shared by solutions of elliptic differential equations) and non-analytic
on S [1]. If P is allowed to approach a point p on S, a singular integral equation results
for f(g) under certain restrictions on the smoothness of S. Existence of a unique solution
for f(q) is a classical problem treated authoritatively in [1]. With the origin O of a spherical
system of coordinates inside S there are always points P(r, 8, ¢) inside S with r <
for all points q(r’, 6’, ¢') on S (see Fig. 1). Then [3]:

/R = 3 3% en S P2cos 0)P3(cos 6) cos m(e' — ) e

6 =1,¢6, =2 (m > O)’ (2)

where (2) is valid for all points P interior to the circle of radius r,, shown in Fig. 1.
Substitution of (2) in (1) for P inside S expresses the constant 1 as a double infinite
series expansion in terms of 7*, P7(cos 6) and cos m¢, sinmgpover0 <r <r,,0< 0 < «
and 0 < ¢ < 27. The orthogonal properties of the angular functions can then be invoked
to evaluate the coeflicients of the expansion resulting in the set of equations:

4me, 8,0 Omo = P—((/}?_«?Tg—) °08 me'f(6', ¢") dS’;

n=01,2.-; m=0,1, --- ,n. 3)

Here 6, = 1forn = 0, §,, = 0forn # 0. Expansion of 1/R in eigenfunctions of Laplace’s
equation in other coordinate systems provides forms equivalent to (3), which are more
suitable for certain boundary shapes.

The method has been used by Smythe [4, 5] in electrostatic problems (cylindrical
coordinates were used in one case) and, more recently, by Waterman [6, 7] in electro-
magnetic scattering. All these approaches solve equations equivalent to (3) numerically.
Here an analytical solution of (3) for f(¢) is obtained for the charged spheroid, a shape
that does not fit spherical coordinates used in (3). The result for f(¢) is the exact, closed
form known from separation of variables in spheroidal coordinates and shows that,
after all, even in analytical approaches, boundary shape need not exclude a certain
coordinate system in which a convenient Green’s function expansion is available.
Furthermore, it goes one step further than previous numerical results [4-7] in establishing
Eq. (3), orits equivalent forms, as a complete formulation of the boundary value problem.
Such proof is not yet available, in the same sense that the surface integral equation for
1(q) is established as a complete formulation of the problem, subject to precise conditions
on smoothness and yielding a unique solution. The analytical results herein justify use
of the method, although they do not constitute a general proof of it.

2. The charged prolate spheroid. In prolate spheroidal coordinates & 5, ¢ [3, pp.
1274 and 1284-96] a prolate spheroid of radius a with foci at + = y = 0, 2 = =g, is
defined by

E=¢& =1+ d"/N)" 4

When charged to unit potential its surface charge density is easily evaluated in spheroidal
coordinates [3]:
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1

) = e/la — Q) = 2/ [ate — ) lg et ], ®
Solving now the same problem on the basis of (3), we first observe that with cos ¢’ =
u, f = f(u) is an even function of » only, because of symmetry. In (3) 7/ is the distance
from the origin of points £, , 7 on the spheroid and diS’ = h,h, dn d¢’ = ac(E — 7°)**dndg’.

Substitution and integration with respect to ¢’ simplify (3) into:
B fac@ — D dn = 2 b0 m= 01,2, ©)

-1
Finally, the relations 7 = (a/c)u/(& — u*)'*, " = at,/(& — u*)""* can be used to express
all variables in the integrand in terms of «. The result is

[ P = w7 = (@€ = w0 du = e b0 5077

n=20,1,2 .. )

For odd values of n this relation is satisfied automatically, P,(u) being an odd and the
rest of the integrand an even function of u. For n = 2m the equations are satisfied
forallm =0,1, 2, --- if

(& — @/c’/(E — w)]'*f(w) = A, a constant. (8)
Indeed, for m = 1, 2, --- (7) becomes

A4 fl 1 — ¥ /)" ' Pynu) du = 0, 9)

a relation that is obviously satisfied since (1 — w®/£2)"", being a polynomial of degree
2m — 2, may be expanded into the finite sum ) 2732 a,P;(u), whereas [_! P,,.(u)P;(u) du
= 0 for j < 2m — 2. The remaining equation, for m = 0, serves to evaluate A. Thus,
with Py(u) = 1,

1
4 f (A — /8 du = 2t/a, or A = (2 /a)/logg + i (10)
-1
Substitution of this value in (8) yields for f(u) a form identical to (3), if (a®/c*)u’/(E —
u®) = 7” is also used. The uniqueness theorem in electrostatics suffices in establishing
this solution as unique for the problem at hand. A direct and more desirable approach
would be to establish uniqueness for the set of equations (7). It turns out to be a difficult
task, however.

A similar method can be used to solve the oblate spheroid problem. Conversely,
the corresponding sphere problem can be solved using spheroidal coordinates. Expansions
of 1/R in such coordinates are given in [3].

3. Possible generalizations. A general method starts from Eq. (3), which for axially
symmetric shapes reduces to

' P
A @)t

26‘, 6”0 =

f(u)h(u) du n = O) 1! 2’ Tty (11)
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where h(u) is a known function related to the shape of S. A possible approach is to use
Schmidt’s orthogonalization process to build an orthonormal set of functions g,(w)
(n =0,1, ---) over —1 < u < 1 on the basis of the set P,(w)w(u)/[r'()]**", where
w(u) is a suitable weight function. Expansion of f(u)h(u) in terms of the set g.(u) leads
to expansion coefficients that can be evaluated by means of diagonal matrices (explicitly).
Diagonal and nearly diagonal matrices are also obtained for g,(x) in terms of Paw/r"™**.
However, this general approach involves, among others, questions of convergence and
completeness. The spheroid, treated previously, is a special case in which the expansion
of f(u)h(u) contains only one term, the first. For further details and, in particular, for
related topics in electromagnetic scattering the reader is referred to [7] and the more
complete and up-to-date set of papers cited therein.
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Fi1e. 1. The geometry of an arbitrary conductor.




