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Abstract. In this paper we have considered the problem of diffraction of a plane
compressional harmonic elastic wave by a rigid spheroidal inclusion embedded in a
homogeneous isotropic medium. For simplicity we have confined our attention to the
axisymmetric case when the incident wave propagates along the axis of symmetry of
the spheroid. The inclusion is assumed to be movable. Since the exact solution to this
problem is not obtainable analytically we have used a boundary perturbation technique
that is applicable at any finite frequency. We have derived exact analytical expression
for the amplitude of oscillation of the inclusion correct to first order in a shape correction
factor e. It is shown that the low-frequency expansion of the amplitude agrees with the
expansion derived by other means correct to first order in frequency. We have also given
a high-frequency expansion of the amplitude. Furthermore, we have derived the asymp-
totic expansion of the field in the illuminated zone and have shown that these are com-
patible with those obtained by an application of Keller's ray theory.

1. Introduction. The problem of diffraction of elastic waves in three dimensions
by finite obstacles has been the subject of some recent studies. As is evidenced from the
literature, most of these studies consider spherical inclusions [1-5]. The radiated waves
from an oscillating rigid spherical inclusion have also received considerable attention
in [6-9]. The departure from these are the studies concerned with the diffraction by
rigid circular discs [10-12]. For the purposes of application, however, it is important to
be able to analyze the diffraction by, and response of, an arbitrarily shaped inclusion.
But these problems are not amenable to exact solutions, unless the vector elastodynamic
equations are separable in the orthogonal coordinates associated with the shape of the
boundary. Even then, unless the boundary is a sphere or a disc, the separation of vari-
ables technique leads to solutions in series of appropriate wave functions, which, on use
of the boundary conditions, lead to an infinite set of linear algebraic equations for the
determination of the unknown coefficients. This system of equations does not lend itself
to the analytical determination of the unknown coefficients. So it seems that unless we
have better mathematical tools available we have to use some suitable approximate
methods.

One such method, applicable in very general situations, is the boundary perturbation
technique which is used extensively in the electromagnetic diffraction problems (see [13]
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for relevant references) and which has also recently been used by us [14, 15] in elastic
problems. Its advantage is that its usefulness is not limited to low frequencies, although
it cannot be applied at very high frequencies. At high frequencies, however, the ray
theory of Keller or progressing wave expansions [16] can be used. For very low frequencies
we also have various approximate methods available to us [17, 18].

The details of the method and other relevant references can be found in [14], In the
next section we apply this method to studying the response of an axisymmetric rigid
inclusion to an incident plane harmonic compressional wave. There we present a formal
solution of the problem in powers of a suitable shape correction factor e. In Sec. 3 we
obtain the amplitude of oscillation U of the inclusion in the particular case when it is
a spheroid correct to first order in e, and show that the low-frequency expansion of U
agrees to 0(aC) with that obtained by a simple method outlined in [19]. This method,
however, gives U only to 0(aC). Here C is a characteristic dimension of the body and a
is a measure of the reciprocal of the wavelength of the disturbance. In Sec. 3 we also
give a high-frequency expansion of U. This expression agrees with that obtained for
a sphere as e —> 0. In Sec. 4 we obtain the leading term, at high frequencies, of the field
in the illuminated region and show in Sec. 5 that this agrees to O(aCe) with the expansion
in powers of aCe of the field obtained by the ray theory of Keller et al. [20].

2. Method of solution. The displacement equations of motion in the linear theory
of isotropic homogeneous elastic solids can be written as

(X + 2/x)VV-u — A V A u = p(d2/dt2)u (1)

where u(r, t) is the displacement at position r, X, n are Lame constants, and p is the density.
We shall assume that u(r, t) = u(r) exp ( — iut), so that u(r) satisfies the equation

(X + 2Ju)VV,u — mV A V A u + pco"u = 0. (2)

Suppose that the equation of the surface S of the rigid inclusion B is given in spherical
polar coordinates (r, 9, $) as

r = C (1 + eim (3)

where C, e are constants (|e[ < 1), j(6) is continuous single-valued with continuous
derivatives in 0 < 9 < ir and satisfies the condition |«/(0)| < 1. In writing (3) we have
assumed that the origin of the coordinates system is on the axis of symmetry (9 — 0, ir)
of B. It may be pointed out that any smooth surface S which admits of a "radial single-
valued explicit representation" can be written in the form (3) by a suitable choice of C
and a suitable location of the center of the "unperturbed sphere" (r = C). This choice
is obviously not unique.

In what follows we shall consider the response of the inclusion B to an incident
compressional wave represented by

uco(r) = V^" = V exp (iar cos 9), a = J. ,P 0 Y"■ (4)
a \X + 2/1/

From symmetry it is seen that B will undergo rigid body oscillations along its axis.
Let U = U exp ( — iut) i2 be the displacement of B along its axis, U being the amplitude
of oscillations (assumed to be small).
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Let u("(r) = v(r) represent the time-independent part of the scattered field. Then
on S, v(r) must satisfy the condition

v + u(° = U = U (f cos 6 — d sin 0), (5)

f, 6 being unit vectors along the r and d directions, respectively. Furthermore, v(r) will
satisfy a suitable radiation condition at infinity [21].

The solution of Eq. (2) that is independent of $ and that satisfies the radiation
condition can be written as

v(r) = V x + V A {-{di/dd)4>), (6)

X = E aXMPM, ^ = E b„hJfSr)Pn(ji). (7)
n=0 n = 0

Here /3 = <o(p/m)1/2, U = COS e, and hn(z) = (tt/2z)UiH™in (z) is the spherical Bessel
function of the third kind, Pn(v) is the Legendre polynomial of degree n, and PlJv) is
the associated Legendre function of the first kind of degree n and order 1.

In the following we shall formally derive expressions for a„ and bn in series of powers
of e so that v given by (6) will satisfy (5). In order to do this let us assume*

a„ = E eva* , 6„ = £ fbl . (8)
V 0 p —0

Also, we shall expand /t„(aC(l + ej)), etc., in Taylor's series about aC and write

KiaC(1 + 6/)) = Ze'^, d = [f; Wjr_c ,

K08C(1 + ej)) = ft,
j>=o V'

1 h ( p/1 . |U V Cf „ v _ U fh„(ar)\
C(1 + ej) ( + ^ S p! Idr* \ r )_

wi + «,
r-0 (9)

in(«C(l + ej)) = ± f ,
v-o V'

PZ , 51 are obtained from , tJ , respectively, on replacing a by fi. n* , v* are obtained
from a® , 7® , respectively, on replacing h„ by jn . Here jn(ar) = (ir/2ar)1/2J„+1/2(ar).

Using (9) and (8) in (6) and (7) we obtain, because of (5),
» CO p r~\QlQ

EE^fp-0 n—0 a-0 Vl •

• [aT'or* + »(n + 1) 5X~' - f tm(2n + 1K+1 5Pa] = UP.O,), (10)

* The superscript on a letter without subscript will denote the power to which that is to be raised.
Otherwise, this will denote an index.
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CO CO P f-iQfQ

Ee" T,nv)
p = 0 n-0 o-0 <!'•

■ [«"■ + (5: + PDK-° - ^ *-(2n + IK «,.] = UPifo), (11)

1, p 5,

= 0, p t* q.
If we now equate the coefficients of e in (10) and (11), we obtain the following set of
linear equations in the coefficients av„ , bvn (p > 0):

£ Pn(v)WX + n(n + 1) SX] + £ Pn(r,) ±
n-0 n=0 a=1 Q'

■ [ar'or5 + n(n + 1) ««"• - ^ r(2n + i)M^ J = UP.O,) 5P„ , (12)

± pxtibx + (5° + /si) 6a + i: Pi(,) e
n-0 n-0 (7 = 1 Q'

■ [yWr + (SI + PDK- - f t"(2n + 1) *«,.] = UPl(v) 5v0 , (13)

Multiplying Eq. (12) by P„(y), Eq. (13) by Pl(y), and integrating the resulting equations
from —1 to +1 with respect to rj, one obtains for p = 0:

aX + n(n + 1) SX - — »-(2n + 1)£ = U 5nl ,
a

yyn + (5° + M - — »'(2n + 1),: = U 5nl ; (14)a

and for p > 0:

anal + n(n + 1) S°K

+ EI7 [+ rn(m + 1) b°mv~° - ^ T(2m + 1K+1 J/L = 0,
•n-0 q-1 Q- L a J

y°n(C + (8°n + Pl)bn

+ EE7 \ylar + (8l + Oft-' - ~ r(2m + 1K S„]jL = 0, (15)
m-0 a-1 1- L a J

where

= 2j~A £ fPm(v)Pn(v) dr,,

J fPl(v)PUv) d„, J°„ = 0 if m = 0 or, n = 0.r« _ 2n + 1
2 n(n + 1)

Eq. (14) determines the coefficients or° , b° and once these are known, Eqs. (15) determine
< ,bv„ (p > 1) recursively in terms of a®-', (<7 = 1, • • • , p).
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In order to derive explicit expressions for avn ,Vn , let us write

al = (iu0/a)Avn + UAZ ,

bZ = (iua/a)Bl + UBZ . (16)

Thus, if AZ and BZ are used in place of avn , bl , respectively, in (7) the resulting x,
\p give the scattered field when B is kept fixed. The terms arising from A" , B® give the
radiated field from the oscillating inclusion.

Using (16) in (14)—(15), we get for p = 0

= *"(2n + 1) f2 , Bl = f (2» + 1) , (17)

An = 0, Bl = 0, n 1,

= (18)

with

A„ = K(aC) C) + | W)] - n(nct 1} hn(aC)K(fiC),

IK = ~ h„(J3C) + £ A„(/3C)] - n(Wct 1} jJaC)hn((5C).

For p > 0 we get

with

X = 7- £ £ % [n(n + 1) - (S°„ + £)3TC.a„],
m«0 a = l Q-

bz = EE? (19)
m = 0 q = 1 (/ •

= JUtUS" + («. + HT)B°-° - ia(2m + IK U,
9TC.°» = + m(tn + 1) 8°mBl-° - »-(2m + 1K+1 5J. (20)

P-«
m 7Expressions for A* , B° are obtained from AZ , BZ , respectively, on replacing 4

5®"° by A®~", B"_a, respectively, and omitting the last terms within brackets in (20).
These expressions were derived in our earlier paper [14]. This completes the determination
of the perturbation coefficients. It may be noted here that if f(fi) is a polynomial in
sin ft (cos 0), the series over m will contain a finite number of terms. This will be clearly
seen in the applications considered in the following section.

3. Response of the inclusion. Here we shall derive the expression for U in terms
of the amplitude u0 of the incident displacement field. For this purpose we assume that
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Pi is the density of the inclusion and V its volume. Then the equation of motion of B gives

-p,Vco2U = f 2ttC2

•[(1 + ef)(arr COS e — <rr6 sin 6) + e/'(cf>« sin 0 — are cos 0)](1 + ef) dij. (21)

Here arr , arB, aee are the time-independent parts of the stresses rrr , r,e , , evaluated
at r = C(1 + ef). These are

°t - £1 Cf6)- ««»- «->}L  
^ = -Efiw

M n-0

„ d (hjficr)\ , j. /d2 t ^ , (n + 2)(« — 1) , ,n ,
a- ir w/+ nw (r)  7—'n(/3r)

- ^ 2t"(2n + 1) -f , (22)a dr I r J_Uc<i + ./>

£89
2M'i § [«■{-? «<»> + I11 <"■<"» - »■«>•

+ &« p (rhn((3r)) + n(n + l)An(/3r)P„

% *-(2n + l)(-i J„(ar) ̂ + 0 ;„(ar) - 'rZJnK ' dd

Using (22) in (21) we obtain, after some lengthy calculations,

U =   , P = p./p (23)
* F + ^-V/f

47rp

where

f = E ev E E ? + ^tjg: + - i-(^ - g°) 5jx„,5
p-o »=-i <1=0

+ E ep+1 E E t - *>» - 2°) ,
p-0 n-0 <1-0 Q-

(24)

X.lf = J" fPnAv) dn, Yn„ = f f'fPli(n) du- (25)

The expressions for F® , /° , etc., are given in the Appendix A. The expression for F is
obtained from F on replacing A^~", etc., by A®-" and omitting the last terms within the
square brackets in Eq. (24). Thus U can be determined to any desired 0(e"). In the
following subsections we shall confine our attention to calculating U correct to 0(e)
when S is either an oblate or a prolate spheroid.
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1.3 Oscillations of an oblate spheroidal inclusion. When the surface S is an oblate
spheroid of eccentricity e and semi-major axis a, its equation is

r = a( 1 - e2)1/2/(l - e2 sin2 0)U2. (26)

We shall assume that e ^ 1. Then (26) can be put in the form (3) by choosing

C = | [1 + (1 - e2)1/2], e = (1 - (1 - e2)I/2)/(l + (1 - e2)1/2),

- (i + .-+I«coS2»r -1 = '<2 6 - « +
Thus correct to 0(e) the equation of S may be written as

r = C [1 + e(2 sin2 6 — 1)], f(d) = 2(sin2 6 — §). (28)

Using this value of j(0) in (24) one obtains X„„ , Yn „ . Since we are interested in cal-
culating F, F correct to 0(e), we only need the values oi Xn,0, XnA , Yn,a, and these are

Xn.o = 0, n 9^ 1,

= 2, n = -1,

XnA = 2/3, n = 1,

= -8/15, n = 1,
= 0, n ^ —1, 1,

Yn.o =0, n 1,

= 16/5, n = 1,

Thus from (24) and (A.1)-(A.3) we obtain, after some simplifications,

F = -|/32C2[-3 in + A°Ma C) + 2B°Mi3C)

+ e^A'XiaC) + 2B\hl(j3C) + | Al(-aCh0(aC) + 8^(aC))

1 ^7
+ ±BKWCh0(t3C) - 8htfQ) - f (8jMC) - aCj0(aC))o o

- 3^ A^aClh(aC) + f§ BlpCh2(pC) + iaC | ja(«C))} • (29)

Similarly, F can be written as

F = -^2C2[l?/i1(aC) + 2B°A(PC)

+ e{i}M«C) + 2B\h1(@C) + |i?(-«C/io(aC) + 8/^aC))
+ iBliWCfUPC) - 8K03C)) |]. (30)

This last expression agrees with the corresponding result obtained in our earlier paper
([14], Eqs. (47)-(49)). Use of (29), (30) in (23) gives U.
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For a sphere of radius C, V = ItC3, and U can be obtained by first putting t = 0
in (29), (30), and using the resulting expressions for F, F in (23). We get

U = AaOSC) (31)a CA

This checks with the result derived by Mow [2], Here

A = - /3C(1 - p)h1(aC)h2(l$C) - 2(1 - p)aCh1(pC)h2(aC) + at3C2h2(aC)h2(pC)

In the following we shall derive low and high jrequency expansions for F, F, and U.

3.1a Low-jrequency expansion. First we shall obtain expressions for F and F
correct to O(aG). These then can be checked with those derived by the integral equation
method used by Williams [19] and Lawrence [17]. This latter method gives in a very
simple and straightforward manner expressions for F, F correct to O(aC). However,
it does not give higher-order terms, whereas Eqs. (29) and (30) are valid for all fre-
quencies as long as aCe is small. To obtain the low-frequency expansions from (29),
(30) correct to 0(aC) we first note that

A\ = iaA? + 0(a3C3),

B'l = ia£>l + 0(a3C3), (32)
Al = 0(a5 C5), B\ = 0(a5C5).

Then from (19) for p = 1, n = 1 we find that correct to 0(aC)

A\ Pti Aj , B\tt B; . (33)
Thus we arrive at the result

F = iaF + 0(a3C3). (34)

This agrees with the general result derived in [17]. In [14] we derived a low-frequency
expansion for F correct to O(aC') that was shown to check with that derived by the
method of [19]. We obtained

F~_ 3C f 12 1-g2/6F ~ q2 + 2 L1 + € 5 q2 + 2
]

q = oc/p. (35)q + 2 \ 5 q + 2 /J
Eq. (31) now gives

U = u0 + 0(a2C2). (36)

This shows that at very low frequencies (so that terms of 0{a C2) may be neglected)
the amplitude of oscillation of the inclusion is independent of the shape of the inclusion
and is the same as the amplitude of the incident field.

3.1b High-frequency expansion. For large aC we find that

(37)



INTERACTION OF ELASTIC WAVE WITH RIGID SPHEROID 225

It is interesting to note from the above expression that for large /3C the time-independent
part of the force necessary to maintain the steady oscillation of the spheroid along its
axis is 0(/3C). This result is to be compared with that obtained by us [15] for the torque
necessary to maintain steady angular oscillations of the spheroid about its axis. There
we calculated the torque correct to 0(e3) and found that it was of 0(j3C) for large /3C.
This suggests that if we had calculated F keeping higher powers of e we would obtain

F ~ | ipC2 [ £ a„e" + 0(/+1)] (38)

where the coefficients an are independent of the frequency of oscillation of the spheroid.
However, we have been unable to prove this result without carrying out the tedious
calculations for obtaining the coefficients of different powers of e.

For F we find

BF »£- C
a

1 + iaCA 1 + ~ (39)

provided aC« is very small. Using (39) and (37) in (31) we obtain

U ~ —m0 inr exp (—iaC)
a V

1 + toCti 1 + ^) (40)

For the sphere e = 0 and one recovers the result derived in [2],

3.2 Oscillations oj a prolate spheroidal inclusion. If the surface S is a prolate spheroid,
then its equation is

r = a( 1 - e2)1/2/(l - e cos2 0)1/2, (41)

a, e having the same meaning as in (26). It is easily shown that all the results for this
case can be obtained from the previous subsection (3.1) on changing e to — e. So in the
next two sections we shall confine our attention to an oblate spheroid.

4. Diffraction by an oblate spheriod. For the analysis in this and the following
section we shall assume B to be fixed. In this section we shall obtain the leading terms in
the asymptotic expansion for high frequencies of the potentials x and valid in the illum-
inated region. We shall confine our attention to obtaining these expansions correct
to O(aCe). The method is a standard one used in [22, 23]. For the purpose of illustration
we shall only consider the region away from the shadow boundary and the caustics.
The field in these latter regions can be obtained by the usual methods (see [24]).

Let

with

and

X = Xo + eXi , i = io + , (42)

x„ = ^ E AX(ar)Pn(v), = — Z B°xm ^ (43)
OL n = o «« Oi n = 0 ttv

Xi=i~il AlM*r)Pn(v), ^ = — Z BX(M (44)
OL n = o U U Oi n = Q
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Here A°n and B°n are given by (17). For j(d) given by (28) 2 it is easily shown that

Imn = ^2('0 Sm,n + 2 Co(lt) bm n C ~2(ll) ^m,n-2 )

«/«» = 4(w) <5„,.„+2 + d0(ri) Sm,n + <L2(n) 5m,n_2 (45)

where C2(n), etc., are given in Appendix B. It is to be noted that for large n

C2 ~ C_2 ~ d2 ~ d-2 ~ — 5, C0 ~ d0 ~ 0. (46)

Also, note that

C2(—n — 1) = C_2(n), d2( — n — 1) = cL2(n). (47)

From (19) i for p = 1 we then obtain

, ^ in+2'(2n + 4s + 1)
«C A„ A„+2, n(n + 1) (k+2.(PQ + ~ C))

(re + 2s) (w + 2s + 1)
ai3C:20/S3 ^n + 2s(/3C)

- W)) + ^(/3C))c2,{2(n + 2s^ + 28 + 1} /in+2,(/3C)
V/3C nVK y V a2/SC

+ (l - (W + ^^c+jL+il)^ /,n+2s(0C) + K+2,(J3C)

n(n + 1) d2, ̂  K(fiC){h'n'+2,(§C) + hn+2.(p(J)j )4- -tL-
+ a2C .

- (n + 2s) (n + 2s + 1)C2.(^ M0C) + K(P C)){~ fc„+2.(/3C))'}] • (48)

Here A„ = (l/a/3)A„ and the primes denote derivatives with respect to the arguments.
Similarly, from (19)2 we shall get

Bl = ~k .5 '"+2'(2£tl!+1) /i-(aC) d2*{^ ^ ^+..oso)
(w + 2s) (ra + 2s + 1) , ,„rn

a2fiQ3 nn + 28\P^J

- ± hn(aC)C2.{2(n + 2S^ + 25 + 1} h„+2,(pC)

(i - (n + 2S + 1))(^+2,(i6C) + ~ hn+2l(l3C))

{d2.^(aC)(^'+2.(/3C) + ^+S.C8C))')

C2.(» + 2a)(n + 2s + 1) ̂  Kw(— hn+2l((3C))

+

+

(49)

The series expressions (43), and (44), for xo , to , Xi , are suitable for evaluating
the field at any point when aC is very small. However, these are useless when aG is
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large. In the following, then, we shall obtain asymptotic expansions for these field
quantities valid for large aC(aC 2> 1, aCe « 1).

First, let us consider xo • This is the dilatational potential for the scattered field
due to a fixed rigid sphere of radius C. We shall denote by x the total potential of the
incident field given by (4) and the scattered field given by xo • So

X = ± i"(2n + 1) [j„(ar) - ^ hn(ar)
& n-0 L A„ Pn(v). (50)

This may alternatively be written as

X

Here

--£(£)"" 5 **+I) H™in(ar) - ^ H^Uar) Pn(v) (51)

Dn = h(n2)'(aC)[±hn(pC) + K(P C) h?\aC)hn03C),

h?\z) = (*/2 z)1/2H?+\/2(z).

Using Watson's transformation we may write this as

*" fe) exp (~W4)

•/„. 'Zt™ - fel * <52>
where the contour Cw is shown in Fig. 1. Since

P-,-1/2(1) = P.-vzW), H'-l(z) = exp (z), H™(z) = exp (—iirv)H[2) (z),

we see that the integrand is an odd function of v. So the lower half of the contour C„
may be replaced by its reflection about the origin and (52) may be written as

* = fe) exP ti ^
■ [ y exp + 1/2)) i?<2,(ar) - H?\ar)

J-co L ^f-1/2

Now for large aC the zeros of A„_1/2 qua function of v are approximately those of
//"' (aC) and //"' (/3C), and the zeros of these with positive imaginary parts lie along
the dashed curves , h2 , respectively, shown in Fig. 1. The first set of zeros lying
along hi is given by

(pXl/3
~J exp (z'tt/3), n = 1, 2, ••• (54)

where — xn is the nth zero of the Airy function Ai(x). Similarly, the second set of zeros
lying along h2 are

Pv-1/2(1) dv. (53)

v2n ~ /3C + Xn(^fj exp (tV/3), n = 1,2, ■ • • (55)
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The next step is to reduce the integral in (53) to a sum of residues at the zeros of
A„_1/2 . In order to do this we close the contour in the upper half of the v-plane by a
sequence of large semicircles Cn of radius Rn passing between the zeros (see Fig. 1).

Fig. 1. Contour for Watson's transformation.

It can be shown in a manner similar to that employed in [24] that the contribution from
the integral over C„ tends to zero as Rn tends to infinity for 0 < 0 < ir when m 0
and for 0 < 6 < it/2 for m = 0. So for m = 0 we cannot replace the integral (53) by
its residue series if 6 > ir/2. Now it is shown in [24] that m = 0 term gives the dominant
contribution in the illuminated region (0 > 0o — sin-1 C/r). The same result can be
shown to be true in the present case also. To obtain, then, the dominant terms in the
illuminated region we shall evaluate the integral in (53) for m = 0.

For m = 0 we shall write

fe) exp ("-/4)
• f v exp (iirv/2)g(v, aC, /3C, ar)[Q[llin{n}) + Q"'l/2(i?)] dv (56)

J — oo

where g(v, aC, f3C, ar) stands for the expression within the square bracket in (53).
Qy-1/2 > Ql-1/2 are defined in [24] (Eq. (C.l)). The dominant contribution comes from the
integral involving Ql-l/2 as long as we are not close to the line d = x. We shall restrict
our attention here in the region away from the line Q = t, and away from the shadow
boundary and from the surface of the sphere r = C. The saddle-point approximation
of the integral

I = J v exp (ivir/2)gQl„1/2 dv
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gives
7 = 7(<) + 7<r)

where
(i) /2ar\1/2 ,. . ...

~ I—I exp (tar cos 6 + zx/4)

7(" ~

Here

/2ar\1/2/C2 sin2A1/Tsi
V 7r / \ 4sr sin 0 / [_si

2°

sin f sin X — cos f cos X
sin f sin X + cos f cos X. exp (ia(s — |C sin f)) (57)

s = r cos w — — sin f, a cos f = /3 cos X, f = §(0 — w).

The contribution 7(,) comes from the saddle point r = ar sin ® = ar sin 0 and represents
the direct ray reaching the observation point P(r, 0). 7<r) comes from the saddle point
v = ar sin w = «C cos f and represents the reflected P-wave reaching P (see Fig. 2).

P(r, 0)
w=0-2£

Fia. 2. P-reflected P-wave from a rigid sphere.

Note that the expression within the square bracket in (57)2 represents the reflection
coefficient of the PP-reflected ray from a plane rigid boundary (see [25], Eq. (3-2)).
So the first factor in (57) 2 may be interpreted as the divergence coefficient of the PP-
reflected wave. That this is true can be seen from the analysis in [20] for the reflection
of a scalar wave off a totally-reflecting sphere (see Eq. (219)).

The reflected shear-wave potential can similarly be obtained by converting (4) into
an integral of the form (53) and evaluating the dominant contribution from the m — 0
term. We get

dip a ^ _Wo / |3C2 sin2 X cos f Y/a
dd a \r sin 0[j8C sin2 X + (/? sin X + a sin f)(r cos W — C sin X)]/

2 sin f cos X•[
sin f sin X + cos f cos X.

• exp (i[p(r cos W — C sin X) — aC sin f]), W = 0 — X — f. (58)

This comes from the saddle point v = fir sin W = fiC cos X = aC cos f and represents
the reflected $-wave reaching P (see Fig. 3). Here the term within the square bracket
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IT

P(r,0)

/2-\v/W = 0"X^

Fig. 3. P-reflected S-wave from a rigid sphere.

represents the reflection coefficient of PS-reflected ray from a rigid plane boundary
([25], Eq. (3-2)), the square root expression representing the divergence coefficient.
In the next section we shall extend the ray theory of [20] to derive expressions for the
divergence coefficients for the PP- and PS-waves reflected off a rigid obstacle and show
that they agree with what we have obtained above when the obstacle is a sphere.

We can evaluate in the same manner the dominant terms in the asymptotic expan-
sions of the perturbation potentials for the reflected PP- and P»S-waves. We find

Xi ~ iaC( —2 sin f cos 2f)[— (iu0/a)(Tr/2ar)1/2 exp (tV/4)/<r>], (59)

d\pi/d6 ~ — £aC(sin f + (/3/a) sin X) cos 2f(dip0/dff), (60)

where d\p0/dd is given by (58). Thus the total reflected field (correct to O(aCe)) at the
point (r, 6) are derived from the potentials

1/2. iu0 sin f sin X — cos f cos X /C2 sin 2 A
X Xo €Xx a x _(_ cog g cog ^ ^ g )

•exp (ia(s — fC sin f))[l — 2iaCe sin £ cos 2f], (61)

dip _ d\pp di\pi iu0 2 sin f cos X 
dd dd 6 30 a sin f sin X + cos f cos X

/ /3C2 sin2 X cos f \1 /2
\r sin 0[/3C sin2 X + (/3 sin X + a sin f)(r cos IF — C sin X)]/

•exp (t/3(r cos 17 — C sin X) — t'aC sin f)£l — iaCe cos 2f^sin f + - sin X^ • (62)

We shall show in the next section that these results agree with those derived by the ray
theory.

5. Diffraction by an arbitrary rigid surface of revolution. The analysis in this
section is similar to that in [26] and follows closely that of [20]. In the illuminated region
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we have to compute the divergence coefficients for the P-reflected P and S waves to
obtain the geometric solution. The divergence coefficient for the P-reflected P is easily
shown to be

D„ = [Py/CR, + R)r sin 0]1/2 (63)

where Ri is the radius of curvature of the curve of intersection of the reflected P-wave
with the meridian plane through Q at the point Q, R = QP, and r' is the distance of Q
from the axis of symmetry (see Fig. 4). Similarly, the divergence coefficient for the
P-reflected S is

Fio. 4. P-reflected P-wave from an oblate spheroid when the wave is incident along its axis

Dv, = [R2r"/(R2 + R')r sin 0}l/2, (64)

R2 being the radius of curvature of the curve of intersection of the reflected iS'-wave with
the meridian plane through Q' at the point Q', R' = Q'P, and r" is the distance of Q'
from the axis (see Fig. 5).

To compute Rx let us calculate the distance of two neighboring reflected P rays
on S. Let f be changed to £' — 5f. Then the elementary arc on S is p 5f. The inclination
of Ri changes by 25f. Thus Ri 25f' = p of' sin f. So

Ri = hp sin V (65)

(see [20], Eq. (187)). Here p is the radius of curvature of S at Q. For the reflected S rays
we have R2 5(f' + X') = p sin X'. Thus

R2 — p sin X'/(l + dX'/df ). (66)

We also have

cos X'/cos f = a//3. (67)
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Fig. 5. P-reflected S-wave from the same spheroid as in Fig. 4.

So the reflected field is obtained from the potentials

Wo sin f' sin X' - cos f cos X' / Pr' sin f' V/a
X — :i V V* I —:——:—V'—i odn / exP {k*(R ~ x )), (68)a sin f sin X + cos f cos X \rsin 0(psm f + 2it)/

dip _ vuq 2 sin cos X' 
dd a sin f' sin X' + cos f' cos X'

( /3pr" sin2 X' Y/2 ,
•I :—rrr • 2 w . p//a •—77 j : T7T7 I exp (t/3/S' — lax").\r sin 0(/3p sin X + R (/3 sin X + a sin £ ))/ (69)

It is now easily shown that if the equation of S is (28), then correct to O(aCe) the ex-
pansions of Xi d\p/dd in powers of e agree with (61) and (62). For R — x' is then given by

R — x' = r cos (d — 2f) — 2 C sin f — 2Ce sin f cos 2f + 0(e2),

Similarly,

/3jR' — ax" = 16r cos (0 — X — f) — j3 C sin X — aC sin f

— Ce(/3 sin X + a sin f) cos 2f + 0(e).

Furthermore, we note that when S is a sphere of radius C(68) and (69) agree with
the expressions for x<> , d\p0/dd given by (56)-(58).
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Appendix A. Here we give the expressions for Fvn , etc.

"•« = sw ~ ~»I (^)V.
+ <»+ 3' I H**)}-'.

ff.fr) - {(» + 1) | ff2) -1 (|; W) + (" + 2^" (A.l)

'•«=(" +2„2+%+ 3) {<"+2) IH®)
+ ^ (^5 + A„t2(0j-))jrs.

(2n + 1) l5„(r) and (2n + 5) 'S^r) are obtained from Fn{r) and Gn(r), respectively,
on replacing hn(ar), etc., by j„(<xr).

m = &tt {"7 +1 + nr I (^) - r=% 'W"'} ■
/ \ C /(n + 3)2 , , x d 1 , sg"(r) = 2w~+~5 IT" ^»(ar) ~ ^ *"#(af)

+ („ + 3)r|(^) + r^L_rt.„w}i

" ST! {-7 £ fr*.(»> + "■<« (A'2)

+ 1 »(, WW + (° + " *.<«)}

«'> - - <" + y + \„w
+ if" + S)(r J, />.«(« + <° + 4)r(° + B

(2n + l)-1w„(r) and (2n + 5)~izn{r) are obtained from /„(r) and gn{r), respectively, on
replacing hn(ar), etc. by jn(ar).

K ' [f>-(r)],.c
Similarly, one obtains Gv„ , etc.

Appendix B.

IL = -\\ 2~1 PMPM&n - l) dv

= C2(n) 5m,n+2 + C0(n) 5m,n + C_2(n) 5m,„_2 ,
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r / \ _ 2(n + l)(ra + 2) „ .. _   2n(n - 1)  
°2W ~ (2n + 3)(2n + 5) ' 2{ > (2n - 3)(2n - 1) '

P (n, _ , l(n + l)2 n2 \
C°(n) 2n + 1 \ 2n + 3 + 2n - 1/ '

~ I) ir,

= d2(n) dm,n+2 + d0(n) Sm,n + cL2(n) 5m,n—2 )

d (n) _ _2(n+2)(n + 3) = _ 2(n - 2)(n - 1)
2W (2» + 3)(2n + 5) ' 2W (2n - l)(2n - 3) '

2 (n(n + 2) (n - l)(n + 1)
d»(n) = 1 - 2^~+T + 2n — 1

= 0 for m = 0 or n = 0.
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