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Abstract. As a mathematically tractable example, we have investigated the sto-
chastic dynamic problem of an irreversible second-order chemical reaction. A generalized
direct-interaction approximation has been devised to close off the hierarchy of moment
equations at the arbitrary moment level, and then the results of such a closure technique
have been compared term-by-term with the exact moment solutions. This shows quali-
tatively how the expansion terms summed up in the direct-interaction approximation
are different from the classes of expansion terms present in the exact moment solutions.
A quantitative comparison of the covariances indicates that the direct-interaction
equations which are closed at the triple moment level represent a meaningful statistical
approximation of the lowest order for the second-order reactive problem at hand.

The problem statement. As a mathematically tractable example, we shall
consider in this paper the stochastic dynamical problem governed by

dy(0)/dt = —Ky(t)’, (1.1)
where K is assumed constant. Physically, (1.1) describes the depletion of the reactant
species ¢ (f) by an isothermal, irreversible second-order chemical reaction with the
reaction-rate constant K [1, 2]. Considering an ensemble of realizations each governed
by (1.1), a stochastic dynamical problem can be formulated by assigning certain statistical
properties to the initial ensemble. For the deterministic solution of (1.1)

9o = ¥ (t) 1.2)

1+ Ky(t)(t — )’

where t, is the initial time, the stochastic dynamics may be described by the statistical
distribution of ¢(f,). In particular, the moments of one time argument are completely
determined by the initial distribution P[¢(¢,)]. For ¢, = 0, the mean value is

%0 = 4oy = [ ((2) Pe. 8
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And the covariance and triple moment about the ¥(¢) are
U(®) = ((¥() — ¥®)") = (¥(®*) — @), (1.4
V@) = (@) — ¥@)) = (¥@°) — v + 2¥()°, (1.5)

where (y(®)™) = [ (z/(1 + Kiz))" dP(z). Furthermore, similar expressions can be
written down for the quadruple moment W (¢), the quintuple moment X (t), the hextuple
moment Y (f), etc.

For the turbulent flow problem, however, it is not practical to evolve an ensemble of
flow systems each of which obeys the Navier-Stokes equations. Therefore the most
practical alternative is to recast the Navier—Stokes equations into a set of moment
equations, thereby evolving as many moments as are necessary for conveying the desired
statistical information. This is the moment formulation. Due to the nonlinearity of the
Navier-Stokes equations, the moment formulation will give rise to the hierarchy of
unclosed moment equations. Although many suggestions have been made in the past
for the closure problem, it appears that closing of the moment equations is still an art
rather than a science [3]. In this paper, using the simple system (1.1), we shall demonstrate
how the hierarchy of moment equations can be closed at any moment level by a general-
ized direct-interaction (DI) approximation, and then compare the results of such a
closure scheme with the exact moment solutions qualitatively as well as quantitatively.
First of all, the first three sets of closed statistical equations have been constructed
respectively for the covariance, triple moment, and quadruple moment levels of closure
(Secs. 2-6). The closed statistical equations of the covariance level are the same as the
Kraichnan’s DI equations [1, 4], and the DI system closed at a certain moment level
contains all the DI systems of lower-order moment level (Sec. 7). For this reason we are
justified in calling the present closure scheme a generalized DI approximation, whose
consistency is demonstrated by the shell structure of the DI systems. Secondly, the
exact moments (1.3)-(1.5) have been transformed into the same form as the DI approx-
imation results (Sec. 8). The term-by-term comparison shows qualitatively how the
expansion terms included in the DI approximation are different from those terms present
in the exact moment solutions. For the second-order reactive problem, the DI system of
the triple moment level represents a meaningful statistical approximation of the lowest
order in that it can describe the decay of the reactant species fluctuations whose distri-
bution is not only asymmetric but also defined only for the positive random variable.
On the other hand, the usual DI equations of the covariance level collect only the terms
whose coefficients are of the even powers in (—K), and hence the reactant fluctuations
must be restricted to have a symmetric distribution at this stage of moment formulation.
The covariance level formulation is inadequate because the distinction is completely
lost between the depletive and generative type of chemical reactions. This has been
substantiated by a quantitative comparison of the covariances evolved from an initial
Helmert distribution [5] (Sec. 9).

2. The collective representation. To obtain the moment equations about the mean
value, we split ¢(¢) into the mean ¥(f) and the fluctuation ¢’(f). The mean equation is

@d/dt + K¥(@)¥(t) = —KU({), 2.1)
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and the fluctuation equation becomes

(d/dt + 2K¥@)¥' () = K{U®) — ¢'(®)°). (2.2)
Associated with (2.2) is the linearized response equation
(d/dt + 2K¥($))G(@, ¢') = —2Ky¢'()G(¢, ') + ot — '), 2.3)

with respect to an infinitesimal disturbance. Although we wish to work with the more
familiar discrete Fourier modes, the absence of spatial coordinates in (2.1)-(2.3) prevents
us from seeking a Fourier representation. Therefore, we shall resort to Kraichnan’s
artifice [4] of the collective representation by introducing an ensemble of M identically
and independently distributed systems. The ( ) now represents an average over such
M realizations; we shall be concerned with the limit as M — . Although the collective
representation for the present problem can be obtained directly from (2.2), we shall
follow the formal procedure of Kraichnan [4] in the interest of general readers.

Upon denoting the ¢ (f) of an individual realization by ¢, ;(f), we write (1.1) for
the nth system as

Ay @) /dt = =K (@)°. (2.4)

Further, denoting by G,.,..(¢, t') the response of the nth system with respect to an
infinitesimal perturbation of the mth system, the linearized response equation for the
nth system is

dGam (@ t)/dt = —2K¢ s )Gia,m(t, t') + 8 — t). (2.5)

For the collective representation, we introduce (o, v = 0, &1, --- , &8, S = integers,
M=28+1)

valt) = M7 32 exp (2xom/M) Y1 (#), (2.6)
Ga.r(t, ¥) = M7 3 exp (2r(a — Y)n/M)Gin m(t, ¥'). 2.7
The reality requirement states ¢,(f) = ¢*,(¢). Using the identities §,., =

M7 Y, exp (2ra(n — m)/M) and 6., = M~ >, exp (2an(a — B)/M), the set
of (2.4) and (2.5) gives

ay.(t)/dt = —KM™* ; V() Va-s(?), (2.8
dG.. @, t)/dt = —2KM™'"* ; Vs()Gacp. (t, t) + 8a., 8¢ — 1), 2.9

where @ — 8 is interpreted using the cyclic convention @ = a = M. Using the statistical
sharpness (M ~*y,(t) — ¥(@t)|*) = O(M™"), (2.8) gives the mean equation for @ = 0

(d/dt + K¥()¥() = —KM™ 32' C20L0) (2.10)
where ) 4 omits 8 = 0. For « and & > 0, (2.8) and (2.9) give
(d/dt + 2K¥()y.(H) = —KM™* ; Ve(t)Vans(®), (2.11)

(d/dt + 2K¥(#))G. ., (¢, t)) = —2KM™? ;" Vs()Gacp.n (b, V') + 4., 8t — ¢), (2.12)
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where E{,’ omits both 8 = 0 and 8 = «. Egs. (2.11) and (2.12) are the collective repre-
sentations of (2.2) and (2.3), respectively; they may be compared structurally with
Kraichnan’s Eqgs. (11.12) and (11.13) of [4].

A minimal set of the statistical properties necessary for the present work will be
summarized. First, the averages of the ¢’s obey

W) -~ ")) =0, (@+B8+ - +u#0) (2.13)

and

Wal®) = PaIu(s) ==+ ¥y () = Wa(®) - PoE))Wu(8) -+« ¥ (sN)) +0(MT), (2.14)

wherea + -+ +8=0and u + -+ + v = 0. The Fourier modes in the homogeneous
velocity field obey the statistical properties quite similar to the above, as shown by
Orszag [6]. Secondly, the moments containing a factor of G, obey

(Gams, o, )P’ -+ (")) =0, (3#B+ -+ +u (2.15)
and

(Gacs.alty )P - - YsE")We(5) -+ ¥y (5))
= (Gamsallty (") - GE)W(8) -+ ¥ () + 0T, (2.16)

where § =8+ -+ + pandp + --- + v = 0. Kraichnan [4] has shown (2.13) and (2.14)
from the fact that M realizations have identical and independent distributions, and a
similar argument can be used to justify (2.15) and (2.16). Lastly, using the statistical
sharpness of G, ,, , the diagonal G, . can be separated from the average of the y factors

(Ga.a(ly )¥s(5) - -+ Yu(s)) = (Ga.a(t, O)NW5(5) -+ Yu(s)), (2.17)

in the limit as M — o. Orszag [6] has criticized (2.17) on the ground that it destroys
the Galilean invariance of the DI equations for the turbulent flow problem.

3. The class A moments. Instead of (2.11) and (2.12), let us consider the following
equations:

(d/dt + 2K¥()Ya(t) = —KM™* ; ba.8.a-p¥s(t) Yas(t), (3.1

(@/dt + 2K¥(1)G.., (2, 1)
= _2KM—U2 é' ¢a.ﬁ.a—ﬁ‘l’ﬁ(l)Gc-ﬁ.1(t) t,) + 8«.1 6(t - t’)- (32)

Unlike the random coupling model of Kraichnan [4], the ¢, s,.-s Will have no dynamic
significance since all ¢ = 1. We have introduced the ¢ into (3.1) and (3.2) simply to
construct diagrams by the following rules. () Associate the ¢, 4,.-s With an open circle
to which three broken lines are attached. (77) Label each broken line with one of three
indices of the ¢. (¢7z) Indicate the sense of indices by attaching an incoming arrow head
with « and an outgoing arrow head with both 8 and & — 8, so that the incoming indices
add up to the outgoing indices. (7v) Reverse the arrow head of, say, « to represent —a.
(v) Replace the broken line with « by a wavy line to represent ¢, . And (vi) replace both
the incoming broken line with « and the outgoing broken line with « — 8 by solid lines
to represent G, 4,4 -

First of all, the covariance (¢.¢*) will be treated as diagrammatically equivalent to
(Da.p.a-pPs.a.p-a¥a¥*), as shown in Fig. 1. We shall then call the following higher-order
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-~

'~ —— -
a-B
Fia. 1. Covariance.

moments the class A moments:
L <¢a.ﬁ.a—ﬁ¢ﬂ'pa-ﬁ‘,’: )1
II° <¢a.ﬂ.a-ﬂ‘bﬂ,v.ﬂ-a'ﬁa\bﬂ—owu—ﬁ\l’t)’
III. <¢a .B.a—ﬁd’ﬁ.0.B-vd’v-u.v-uwu",’v—u\l’ﬂ-u‘l’a—ﬁ‘pt):
IV. <¢a .ﬂ.a—ﬁ¢ﬁ.¢.ﬂ-c¢a.u.v-ud’n.p.u—p‘l’p\bu-p'l’c-u‘pﬁ—v'l’a-ﬁ\b:))
V. <¢a .B.a—ﬁ¢ﬂ.¢.ﬁ—¢¢v.u.c—u¢ﬁ—v.p.ﬁ—a—p¢p\0ﬁ-v-p¢u¢v-n‘pa-ﬁW:):
The above moments are represented diagrammatically in Fig. 2. We have replaced the

- B - -8
(I (I NVV\/\DQ\/VVV\D
«-8 P P
o B-o
-a a-B -« a-B
(I MWWWWeOWwies () /wvv—vaw
i B P B
' B-o B-o
| o 1o
By o { o-p
|k
Py KBP
-a «-B
X) N\NV\-—Q\ANV“D
\ B
Sl
b o B-o-p
P o-p

Fig. 2. Class A moments.
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first a of the leading ¢ by — e, so as to assure zero sum of the indices as required by (2.13).
The class A moments all have a unique feature of containing the least number of open
circles to connect the wavy lines in each diagram. Hence, we include in class B all other
moments that would involve more than the minimum number of open circles as required
by (I)-(V). For instance, a typical triple moment of class B that we shall encounter
later is of the form

(¢a B.a —ﬁd’a-ﬁ.v, a —B—vd’a —B-0,—B-0,a ¢ﬁ¢a‘/’§‘+c)y (3'3)

whose diagram is given in Fig. 3.

F1a. 3. A triple moment of class B.

Next, the averaged response function is (G., ). For the higher-order associated
moments containing a factor of @, we include in class A the following ones with the
diagrams shown in Fig. 4:

Again, the class A associated moments involve the smallest number of open circles to
connect the two solid lines and several wavy lines in each diagram; all other moments
requiring more than the minimum number of open circles will be included in class B.
The particular configurations of the diagrams are, of course, immaterial because the
diagrams are a topological representation.

4. The hierarchy of moment equations. The objective of this section is to build
up the hierarchy of moment equations containing only the class A moments. To do this
requires defining precisely certain moments which will appear in the statistical equations
to be derived. Comparing the right-hand sides of (2.1) and (2.10), we arrive at the
covariance definition

ug,¢) =M™ >;' (Va()PEP)).

And analogously we define the averaged response function as

G, ) = M D' (G...(2, 1).

The above definitions, however, do not require (¢.¢¥*) and (G...) to be independent
of a, as in Kraichnan’s formulation [4]. The higher-order moments are systematically
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VL <¢a B -ﬂ‘l’ﬁGa -B,a )7
VII- <¢a .8, a—p¢a—ﬂ.v. a-ﬂ-c'pﬂ‘bfGa —B-ag,a ))
VIIL <¢a B -ﬁ¢a-ﬁ.v. @ -ﬁ—v¢’a —B-c.pu,a —ﬂ-a—n‘l’ﬁ\l’v‘l’uGa —B—e—p,a );
IX. <¢a B.a —ﬂ¢a —B.0,a -ﬁ-vd’a—ﬂ—d.n- a —ﬂ-v-ud’a —B—a—p,p, a-ﬁ—o-—u-p’pﬂ'l’v\l’u'l/pGa —B—o—u-p, a)~

« B « B
(¥) m —=OwWwe
«-B i a-g
<rimnd—
a-B-o
B « B
(v ——Q\N\M- (IX) —————Q\M/\M’
| «-B P -8
&\Nf» e)v\/\g\/»
E a-B-0 i a-B-o
B ! ! B
«-f-o-n | ab-on
<niond—~
«-B-o-p-p

F1g. 4. Class A associated moments.

defined as
V(t) t" t") =M Z, Z" <¢a.ﬂ.a—ﬂ'l’ﬂ(t)"l’a-ﬂ(t')¢t(t")>:
W, ¢, ¢, 80 = M7 3 3 Z" (Ba.p.5-098.0.8-¥o(t) Vo-o () Vanp(t) VE(E""),

oxa
#p-a

X(t t' t” t”' t") = ]‘[_5/2 Z' Z" Z” E" <¢a.ﬂ.a—ﬂ¢ﬁ.d.ﬂ—v¢c.ﬂ.¢-u¢u<t)

o a
#“B—a ¢v—ﬂ

Voun() Vp-o (1) Yums(t" ) WEET)),
Y(t t’ t" t"' t" t) = M3 Z/ Z// E/r Zn Eu <¢a'p’a_ﬂ¢p'¢'6_’¢"“"_p

oHFa n# B pHEc
#B-a #o—f Hp—c

“Pupou- ,,lﬁ,,(t) \bu—p(t,) 'pv—u(t”) \l’ﬁ-c(t"’) 'l’a-ﬁ(ti.) ‘V:(t.)):
Y(t 2L t" t) = M3 Z/ Z// Z// Zn Z/r <¢a 8. atBp.0.8—cPop.0n

oHra  uEB  pr—o
“B—a HAc—f »B

'd’ﬂ-v.p.ﬂ-a—p'l’u(t) \l’r—u(t’) ‘l’p(t’ ,) ‘l’ﬁ-v-p(t"') Kl’a—ﬁ(t“) ‘Pt(t'»;
P, ¢, 87) = M7 200 300 (ba.p.a-sGams.all )06,
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E(t) t,, t"’ t",) = M—z Z’ ;” - ;’ <¢¢»#.a—ﬂqsa-ﬁ.v-a—ﬁ—vGa—ﬁ—v.a(ty t')‘/’a(t")%(t"')),
D(t; t’7 t”’ t,"» t“) = M—s/z E, ;" Z” E” (¢a.B.a-ﬁd’a—ﬁ.v.a—ﬂ—vd’a—ﬁ-v.n.a-#-v—n

oA—-B pA-0
.Ga—ﬂ—,-n'a(t’ t') l[/,.(t") 'ﬁa(t’") 'Pﬁ(ti'»,
C(t, v, t'.', to)

=M E, Z" E" Z" Z” (d’a.ﬁ.a—ﬁ¢a-—ﬂ.v.a—ﬁ—a‘i’a—ﬁ—v.u.a-ﬁ—v-n

a B oA—B pHE—0 pHE—p
’¢a-ﬂ-v-u.ﬁ. a—ﬂ—v-»—pGa—B—d—u—ﬂ- a(ty tl) '/’p(t”) ‘/’u(tnl) \bv(ti') ‘/’ﬁ(t'»°
Note that only the class A moments (I)-(IX) are involved in the above.
4.1 Covariance equations. For the covariance and averaged response equations, we

apply M™' 2_2 % (') and M~ D/ respectively to (3.1) and (3.2) and obtain the following
equations after averaging:

@/dt + 2K¥@)U(, ¢) = —K V@, &, 1), @4.1)
@/dt + 2K¥())G(t, ') = —2KF(t, ¢, 1) + o(t — 1), 4.2)

with G(¢, ') = 0if t < ¢'. The covariance is symmetric in ¢ and ¢’; hence the redundant
equation for U in ¢’ can be written down immediately from (4.1).

4.2 Triple moment equations. Apply M™>* 30 34 ¢o 5. acsta_s(t)PE(") to the
equation for y,(¢). Upon averaging, we have

(@d/dt + 2K¥@) V@, ', 1)
= —KM™ 3 3 3 Gapa-sbpes-boObo-OVas®WEED).  (43)

The right-hand-side moment has the diagram (II) of Fig. 2 which reduces to a closed
loop similar to Fig. 1 when o = e and 8 — «. This means that analytically the right-hand
side becomes

_2KM-2 ;, ‘Z" <¢a.ﬂ.a-ﬂ¢ﬂ.a.ﬂ~a‘pa(t)‘l/ﬂ-a(t)'Pa-ﬂ(t,)'pt(t"))
_KM-z ;, ;” 02” (¢a-ﬂ.a—ﬁ¢ﬂ.v.ﬁ—c¢v(t)'llﬁ-v(t)¢a—ﬁ(t,)¢t(t',))'

#p-a
Therefore, in view of (2.14), the V equation becomes

@d/dt + 2K¥@)V (L, ¢, ') = —2KU(t, 1)U, ) — KW, 8, U, ¢").  (4.4)

Since V is symmetric in all time arguments, the redundant equations for V in ¢ and ¢”
can be obtained by interchanging the time arguments in (4.4).

For the derivation of the F equation, we apply M™% 3_1 >4 ¢ 5. «—s¥s(t"’) to the
equation for G, -4,.(t, t') and obtain after averaging

(@/dt + 2K¥()F(@¢, ¢, 1)
= —2KM-2 ;, ;" ;” <¢¢.ﬁ.a-ﬁ¢a—ﬂ.'.a-ﬂ—vGa—ﬂ—c.a(t: t,)‘l’v(t)',’ﬁ(t”»' (4~5)
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Since ¢ = —g gives rise to a term which involves the diagonal G, . , we write the right-
hand side as

—2KM™? Z;j' S {bas. a-pPavp.-p.aGa. oty )VER) L))
—2KM™ ;' Z" Z" (Db, atbap.o,ap-eGasa,«(t, 1)V Ys(")).

a%—B
Then, invoking (2.17), the F equation becomes

(d/dt + 2KY())F(t, ¢, t") = —2KU(@, ¢')G@, t') — 2KE(@, ', t, '), (4.6)
with F(¢/, ¢/, ') = 0and F = 0if t < ¢.

4.8 Quadruple moment equations. It is by now evident how the quadruple moment
equations can be constructed. First, to obtain the W equation, we apply

M Z Z" 2" bas.amsBs.0.8-aVa-o(t) Wacs(t)WEE")

oHa
#B-a

to the equation for ¥,(¢):
(d/dt + 2KY@O)YW(t, ¢/, ¢/, 8"7) = —KM ™% 27 337" 33 3" (bup. atbs.o.pms
a B8 »

oxa

#“f—-a
'¢¢.u.v-n‘l’u(t) ‘Pv—n(t) ‘pﬁ-'r(tl)‘pa-ﬂ(t") 'pi(t",))' (47)
We see from the diagram (III) in Fig. 2 that there are three possibilities for splitting
the right-hand side into lower-order moments. For the first case of 4 = 8 and ¢ — 8,
the right-hand side gives rise to
—2KM™" Z' Z" 22" (Da.b.a—698.0.6-0Br.8.0-8

o*a
#“B-—a

V() Vop(O) ¥p-o(F)Vap(()WEE")),  (4.8)

which, by virtue of (2.14), represents the decomposition into the lower-order moments
of class A. On the other hand, the second (u = @ and 8 — @) and third (v = ¢ — « and
o — a + B) cases result in decompositions into the lower-order class B moments. For
instance, in the second case, the right-hand side of (4.7) gives rise to

—"21{M_6/2 ;, ;“ Z” <¢a.ﬂ.a—ﬂ¢ﬁ.a,3—a¢¢.a.w—a\bv—a(t)wﬂ—u(t,)¢a—ﬂ(t,,))

cHa
#B—a

(PDPEE)).  (4.9)
Note, however, that the first ( ) factor is a triple moment of class B which has the

diagrammatic representation of Fig. 3. Thus, considering only the decomposition (4.8)
into the class 4 moments, the W equation becomes

(d/dt + 2K¥ (@)W (L, ¢, ¢, ¢"") = —2KUQ, )V, ¢, ¢") — KX, ¢, ¢, ¢, t"). (4.10)

Again, the three redundant equations for W in ¢, ¢’ and "’ can be written down im-

mediately from (4.10) because W is symmetric in all time arguments.

Next, for the derivation of the E equation, we apply M™> D 1 D4 D'% s bu.p.ams
@ap.e,ap-oVe (') )Ys(t'") to the equation for G._s_s,.(¢, t'):
(d/dt + 2KY()E(E, ¢, ¢, ¢'") = —2KM™"* 3 Z" Z)" Z" (Darp,a-tPap.o.amps

a¥—f

'¢a-ﬁ-¢.n. a-ﬂ-c-uGa —B—o—p, a(t) t’) \[/u(t) lﬁ,(t“) 'l/ﬁ(t”,))' (4'11)
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Under ¢ = —o, the right-hand side gives rise to
—2I{M_5/2 Z' ﬁZ” ;;, <¢a.ﬂ.a—ﬂ¢a—ﬁ.v,a—ﬂ—v¢a-ﬂ-o.—c.a—3

Ga-ﬁ, a(t: t’) ‘l’:‘(t) ‘Pv(t") \I/ﬁ(t"'»’

which can be decomposed into the lower-order class A moments. Hence, considering
this decomposition, the E equation becomes

(d/dt + 2KY(A)E@, ¢, ¢, ¢"") = —2KU@, t")F(t, ¢, ¢""") — 2KD(t, ', ¢, ¢, "), (4.12)

with E(, ¢/, ¢, t"") = 0and E = 0if t < t'. For p = —B — o, the right-hand side
of (4.11) can further be split into lower-order moments; however, it gives rise to a
triple moment of class B.

4.4 Quintuple moment equations. For the moment equations for U, V, and W, it
was possible to derive the redundant equations in ¢, ¢/, and ¢” by simply interchanging
the time arguments. This came about from the complete symmetry of U, V, and W
diagrams with respect to the time arguments in that arbitrary relabeling of the wavy
lines did not alter the diagrammatic structure. On the other hand, the diagram (III)
in Fig. 2 is symmetric only with respect to the four wavy lines with —a, & — 8, p, and
¢ — u, but not with respect to the wavy line with 8 — ¢. Therefore, we must have two
distinct moment equations for X; one to represent the four moment equations in ¢, #,
", t**, and the other in #”. To obtain the first X equation, we apply

M7 3 2 B basamsbp.es-bemso-sbos(V)a- o) Wana( ) WEE)

oHa
“B-a !‘v—ﬁ

to the equation for ,(t). Of the several decompositions, only the case of p = sand p — o
will result in decomposition into the lower-order class A moments; hence, we have

(d/dt + 2K¥ ()X (¢, ¢/, ¢, ¢, t**) = —2KU(t, )W (L, ¢, ¢, t™)
— KY(t, t, t,, t”, t’”, t“). (4.13)

This represents the redundant equations in #, ¢/, t** because X is symmetric in those
time arguments. For the second X equation in ¢/, we apply

M—wz E Z” 2” Z” ¢’a 8. a—ﬂ¢ﬁ e.8- c¢¢ '8 v-u‘ﬁn(t)',’v—u(t')‘Pa—ﬂ(t",)'p*(t")

oF a
H“f-a "o—ﬁ

to the equation for y,_,(t""). Considering only the case of p = —¢ and 8, which gives
rise to the lower-order class A moments, we have

(d/dt" + 2Ky NX@, t, 7, ¢, t'°) = =2KV(@, ¢, )V {E", ¢, t)
— K¥@ ¢, ¢, ¢, 0, 60, (4.14)
Finally, for the derivation of the D equation, we apply
M3 3 3 B basa-tbatieas-dBascina-s-e-sbilE V() (L")

on—f pr—eo

to the equation for G, _g—,-,,. (¢, t'). Considering only the decomposition under p = —p,
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we have
(d/dt + 2K¥(t))D(t, ', ¢, ", t*) = —2KU(, ¢")E(@, ¢, ¢, )

— 2KC(t, ', t, 87, 1", ¢, (4.15)
with D@, ¢, ---) = 0and D = 0ift < t.

5. The closure procedure. Starting from the mean equation (2.1), us let summarize
the unclosed moment equations derived in the previous section:

(d/dt + K¥())¥(t) = —KU(@), (5.1)
(d/dt + 2K¥ (@)U, t) = —KV(, t, t),
Redundant equation for U in ¢; (5.2)

(d/dt + 2K¥()G(t, ¢) = —2KF(t, ¢, t) + 8¢t — t'),

(d/dt + 2KY@))V(, ¢, t") = —2KU@, )UE, U') — KW, t, ¢, ),
Redundant equations for V in ¢’ and ¢”, (5.3)
(d/dt + 2KY@))F(@, ¢, ¢") = —2KU, )G, ¥') — 2KE@, ¢, t, ),

(d/dt + 2K¥@)W(, ¢, ¢, ¢") = —2KUQ, )V, ¢, ") — KX, ¢, ¢, ¢, "),
Redundant equations for W in ¢/, t”, and ¢'”/, (5.4)
(d/dt + 2K¥Y(WEQ, U, ¢, ¢"") = —2KU(@, ¢")F(t, ¢, t'"") — 2KD(, U, ¢, ¢, "),

(d/dt + 2K¥ @)X (¢, ¢, ¢, 0", t°) = —2KU(t, tYW(L, 7, ¢, ") — KY (¢, t, ¢, 8", 8", 1),
Redundant equations for X in ¢, ¢, and ¢*°, (5.5)
(d/dt" + 2K¥(")NX @, U, ¢, ¢, t7") = —2KV(t, ¢, )YV {", ¢, ™)

— K¥@ v, ¢, ¢, ¢, 1),
(d/dt + 2K¥(®))D(, ', 7, ¢, t°) = —2KU({, t)E(, ', ", t*)

— 2KC(t, ¥, t, ", ¢, £7).

Similarly, the moment equations of any order can be derived by the procedure of Sec. 4
so as to build up the hierarchy of unclosed statistical equations. We must point out that
the first right-hand-side terms of (5.3)-(5.5) are the decompositions of the respective
second right-hand-side terms into the lower-order moments of class A. In the hierarchy
of moment equations formulated by Orszag [6], a similar decomposition has been achieved
by invoking the ordering property of the Fourier modes in a homogeneous velocity field.
His decomposition, however, does not differentiate the lower-order moments of class A
from those of class B which are excluded from our hierarchy.

Considering the first right-hand-side terms of (5.3)-(5.5) as a small perturbation,
we can close the statistical equations at any moment level by using the modal-interaction
perturbation technique of [7].

Covariance level closure. For closure at the covariance level, we restrict ourselves
to (5.1)-(5.3). Then, by treating the first right-hand-side terms of (5.3) as being small
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in comparison to the second terms, we can write down the perturbation solutions by the
following prescription, to be justified in the Appendix. For the V equation in ¢, we have
the perturbation solution

va, ¢, 17y = f " G, [—2KUW, YU, ), (5.6)

where the square bracket contains the first right-hand-side term of the V equation.
And for the perturbation solution for F we have

F@, v, ") = ‘/“ dsG(¢t, )[—2KU(t"”, s)G(s, )], (5.7

where the square bracket contains the first right-hand-side term of the F equation. In
fact, (5.6) reflects the perturbation of V induced by —2KU(t, ¢')U(t, t”'), and similarly
the perturbation of F due to —2KU(t, t")G(t, ') is expressed by (5.7). Since (5.6) repre-
sents the perturbation in ¢, similar perturbations in ¢’ and ¢/ can be obtained from the
redundant equations for V in those time arguments. Then, adding up the three perturba-
tions, the perturbation solution reflecting evolution in three time arguments becomes

VER ) = Vi) — 2K f dsG(t, U, U, 9)

- 2K f ) dsG(', U, U, s) — 2K f a dsG(t”’, U, HUW,s),  (5.8)

L

where V(t,) = V(t , to , t). Note that (5.7) is consistent with the initial condition
F@,t,t") =0.

Triple moment level closure. For the triple moment level of closure, we consider
(5.1)-(5.4). Then, using the prescription similar to (5.6) and (5.7), the perturbation
solutions of (5.4) can be written down at once:

WG £, 7, ) = W) — 2K [ dsG(, 9UE, 9V, 17, 9
te

iy e
— 2K f dsG(¢, YU, HV(E", ¢, ) — 2K f dsG(", YU, YV (L, ¢/, 9)
to t

— 9K f dsG", UW", 9V, 1, 9), (5.9)
to
where W(t,) = W(t,, --+), and
E(t, ¢, 1, 1) = —2K f &G, YU, HFG, I, 1), (5.10)

under E(, ¢, ---) = 0.

Quadruple moment level closure. We consider (5.1)-(5.5) for the quadruple moment
level of closure. The perturbation solutions of (5.5) are
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13
x@, v, v, ¢, ) = X(t) — 2K f dsG(t, U, YW, ', £, s)
to
.
— oK f dsG(, YU, SWE", 177, 1, 5)
to

e
— 2K dsG@", UG, YW, ¢/, ¢, 5)
to
tse

— 9K / dsG(E", UW", YW, 1!, 1, 5)

— 9K f G, HVE, ¢, )VE", 17,9,  (5.11)
where X(t,) = X, --+), and
DG, ¢, 17, 07, %) = —2K f ‘ dsG(t, U@, EG, ¢, 17, F%),  (5.12)
under D(’, ¢/, --+) = 0.

6. The systems of the direct-interaction equations. We can now close (5.2) by
introducing into the right-hand sides the perturbation solutions (5.7) and (5.8). To be
consistent with the covariance level of formulation, the triple moment V (¢,) in the final
result must be suppressed. We then find that the statistical equations so closed are
identical to Kraichnan’s DI equations [1] for U and G. For this reason, we shall call
the set of (5.1)-(5.3) closed by (5.9) and (5.10) the DI equations of the triple moment
level and, similarly, the set of (5.1)-(5.4) closed by (5.11) and (5.12) the DI equations
of the quadruple moment level. Our use of the DI approximation here has been motivated
by the structural similarity. The DI systems of both the triple moment and quadruple
moment levels do not, however, seem to satisfy the realizability requirement that
Kraichnan [4] has exhibited for the DI equations of the covariance level from the existence
of a model dynamic representation. It is not certain whether the existence of a model
dynamic representation is so essential for a good turbulence theory. At any rate, let us
denote by DI-(n) the DI equations closed at the nth-order moment level. For con-
venience, we set {, = 0 and define 7 = K¥(0)¢. Further, ¥(r) = ¥(7)/¥(0), U( ) =
U()/U©), V() =V()/U©)** and W( ) = W( )/U(0)> Then the first three systems
of the DI equations containing the parameter « = ¥(0)/U(0)'/* become
DI-(2)

(d/dr + H(N¥(r) = —a*V(n), (6.1)
@/dr + 2¥()U(z, 7

=4 ff dsG(r, 3) U(T’ s) ﬁ(T" s) + 2o j:' dsG(+', S)U(T’ s)zy (6.2)

d/dr + 2¥(2))G(r, ') = 4a”* ‘/: dsG(r, )U(r, 8)Gs, ) + 5(r — 7). 6.3)

DI-(3)
¥—Eq. (6.1),

@/dr + 2¥()0(r, 7') = —a ' V(r, 1, 1), 6.4)




168 JON LEE

@/dr + 2¥(1))G(r, v') = —2a7'F(r, 7', 1) + 8(r — 7'), (6.5)
d/dr + 2¥(7) V(z, 7, ')

= _2a-l U(T) T,,)U(T) T,) + 4(2_2 .[;T dsG(T’ S)U(Ty 8) V(T,) T”’ 3)
+ 207 [ a6, 9067, 9905, 7,9

+ 2077 /f" dsG(+'"", )0, ) V(r, 7, 9), (6.6)
(d/dr + 2¥(2))F(z, 7', 7"")
= —9%70(r, ")Gr, 7') + 4o f " dsC(r, 90(r, 9FG, ', 7). (6.7)

DI-(4)
¥—Eq. (6.1), 0—Eq. (6.4), G—Eq. (6.5),

d/dr + 29NV (s, 7', 7)) = —2a70(r, '\O0(s, ') — &' W(r, 7, 7', 7""), 6.8)
@/dr + 2¥(2)F(r, ', 7'") = —2a7'0(=, 7')G(r, 7') — 227 'E(z, 7', 7, 7''), (6.9
@d/dr + 2¥(NOWW(r, 7', ", 7'"") = —20710(r, V)V (z, 7', 7'"")

+ da fo " dsG(r, )0(r, YW, 77, 77, 9)
+ 27 fo " G, )V, 7, )V, 7, 8)
+ 247 f " G, §0G, GW, 7, 7, )
+ 247 fo " asGE, 9 0GT, GW(, 1, 1), (6.10)
(@/dr + 2¥NE(r, ', 7, 7" = =207 O(r, +)F(r, 7/, 7'")
+ 4o [ " dsG(r, 90(r, 9EG, 7, 7, 7). (6.11)
Initially, #(0) = 0(0) = 1 by the normalization, whereas the ¥ (0) and W(0) will have

to be specified by the initial distribution. Furthermore, we have G(+',7) = 1, F(r, 7',.) =
0,and E(, +,.) = 0.

7. Series solutions of three direct-interaction systems. The generalized DI approx-
imation has closed the hierarchy of moment equations by the convolution type of
integrals involving only the known statistical functions at each level of closure. Since
these integrals represent summation of certain classes of the expansion terms, it is
essential that the nonlinear integral equations of DI-(2), DI-(3), and DI-(4) be solved
by means other than the series expansion technique. For instance, the DI-(2) has already
been integrated numerically in an isotropic mixing field [1], and a similar numerical
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scheme can be extended to both DI-(3) and DI-(4), although they are substantially
more complicated. However, for the purpose of exhibiting the structure of the DI
systems, we shall propose here to obtain the series solutions of the form

V(1) = V() + a7 ,(7) + a7 Fo(r) + -+,
U(T’ T,) = 00(77 T’) + a-IUI(T} T,) + a_202(7'; 7') + .-,
G(r, ') = Go(r, ') + a7 'G(7, ') + & *Go(r, 7/) + -+, (7.1)

No similar expressions exist for V, F, ete. For the consistent initial conditions, the zeroth
orders retain the exact initial values and all remaining higher orders have the zero
initial values:

\ilo(O) = ‘T’(O), UO(O) = U(O): GO(T,) 7,) =1,---,
V. 00=0, U0 =0, G',7)=0,--- for i>1, (7.2)
where the dots denote the initial conditions for V, F, ete.

7.1 The DI-(2) system. Introduce (7.1) into the DI-(2) and sort out successively
three equations of the same order. For the zeroth-order set, we have

@/dr + ¥o(D)¥o(r) = 0, (7.3)
@/dr + 2¥o()Uu(, ') = 0, (7.4)
(d/dr + 2%(1)Go(r, ') = 8(r — 7). (7.5)

Since the solution of (7.3) is ¥o(r) = (1 + 7)7}, it is convenient to introduce a new
variable » = 1 4 7 into (7.4) and (7.5):

(@d/dn + 207 Uo(n, v") = 0, (7.6)
(@/dn + 207 )Go(n, 7') = o(n — 7). (7.7

Integrating (7.6) from 1 — 7 and then the redundant equation for U, in 3’ from 1 — 4/,
we have

Uo(n, o) = OU@)n 9" % (7.8)
And the solution of (7.7) is
Go(n, ') = (n'/m)™ (7.9)

In view of (7.2), the first-order set is vacuous: ¥, = U, = G, = 0. Indeed, this is expected
from the fact that DI-(2) contains the parameter «~*; hence all the odd-order sets are
likewise vacuous. For the second-order set, we have

(d/dn + 207"V ¥a(n) = —Ts(w), (7.10)
@/dn + 297)0x(n, v') = —2¥,()Uo(n, ') + 4 fl ” dsGo(n, §)Uo(n, V(' 9)

+2 " 4G, 90un, 90(m, 9, (7.11)

@/dn + 2070Gn, W) = 200Gl v) + 4 [ dsGulm, 9Vln, 9Goe, ). (7.12)
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First of all, (7.10) gives
Bo(n) = =007 A — 27). (7.13)

With this ¥, -, the right-hand side of (7.11), denoted by Q(n, '), is known explicitly.
Let us consider (7.11) and the redundant equation in #’:

@/dn + 207 0u(n, 7') = Q(n, ), (7.14a)
@/dn’ + 20" 0u(n, ") = Q’, n). (7.14b)
We first integrate (7.14a) from 1 — 5 and then 7.14(b) from 1 — #':

n n’
Outn, ) = 7™ [ €06 D e+ 0 [ £Q 0 ok
Or, after some manipulations, we have

Oa(n, 1) = O "0 "B —27)* + 31 — v+ 201 =27 HA —2H].  (7.15)

For 5 = v/, (7.15) gives the simultaneous-time covariance

Ua(n) = 801" ~*(1 — 27 (7.16)
Note that (7.16) could have been obtained more directly from the following equation
(d/dn + 407" Uu(n) = 2Q(n), (7.17)

which was obtained by adding up the two equations of (7.14) and then setting n =
The nonsimultaneous-time information is lost in (7.17) because it evolves along the
diagonal of the  — 7’ plane. However, this is a useful short cut that we shall use for the
computation of the simultaneous-time moments. Lastly, to complete the solution of
the second-order set, we obtain from (7.12)

Go(ny ) = 200" /) (0™ = ™) = 3" = 27 + (' — 27 (7.18)

As pointed out previously, the third-order set is vacuous. Then, the mean value and
simultaneous-time covariance up to the fourth-order become

¥(n) = 2711 — OWn7'A — 27N/ — 300 07'(1 — 27 a* + -},
O@) = n*{0Q) + 80 (A — 77Y)/a)® + 450()%A — n")/&)* + --+},  (7.19)

where the three dots denote the higher-order terms in even powers of o™ .

7.2 The DI-(3) system. By repeating the series solution procedure of Sec. 7.1, we
obtain the following results for DI-(3):

Y(n) = { O)n™! (1 ’7 ) + P()q™ a—=n") = 1)
— 301! (L__a_ﬁl)s + - } ,
O(n) = '4{(7(1) - 217'(1)< ) + 80(1)2(———1)2 — 22001 V(l)(l —a 17-‘)s

+ (450(1)3 + 1317(1)2)(1_:0[_?1;')’ + } ,
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17"‘)2
— (6801 + 227(1)?%) (1—';;”——1)3 + } (7.20)

where the three dots denote the higher-order terms whose coefficients involve U(1) and/or
V(1). By comparing (7.19) with (7.20), we find that the DI-(2) is embedded in the
DI-(3). In other words, the ¥(n) and U(n) of (7.19) reappear in (7.20) as the terms whose
coefficients involve only the U(1).

7.3 The DI-(4) system. Finally, the series solution of DI-(4) yields
— -1
46) = {1 - D L7

V@) = n‘°{V(l) - 61?(1)’(1 ”_1) + 270(1) V(l)(l

+ V(1)q™ a—q7 — (W) + 3003y Q__a_)_ + } ,
U(n) = n"{U(l) - 217(1)(—7’7-1)

+ @01 + 137 (1) + 290(1)W(1))<1 - n“)‘ + } ’
7 = {70 - 6w + 0 (-5 + e (* )

— (630(1)* + 22V(1)* + 500(1)W(1))(“T_1)3 + } (7.21)

The solution for W(n) will not be presented here. Again, we observe that (7.20) is
embedded in (7.21). Therefore, from the structure of the lower-order DI systems, it
may be inferred that the DI-(n) is properly embedded in the DI-(n» + 1). This shell
structure of the DI systems will be taken as the consistency of the generalized DI
approximation. In closing, we must point out that the terms which are not underscored
in (7.21) can be traced to the zeroth orders, U, , V, , and W, ; hence, they reflect the
initial moment values. On the other hand, the underscored terms can be attributed
to the nonlinearity of the problem.

8. Expansion and partial summation of the exact moments. In order to provide a
term-by-term comparison of the DI approximation results with the exact moments,

we transform (1.3)-(1.5) into the same form as (7.21). Using the notations of Sec. 6,
we have

¥(r) = f (\ﬂ(_))_x-i-_mc) dP(z), (8.1)
0() = of{ [ (m)z dP() — \iz(r)*} , 8.2

3 z : 2 r ! 3
P = o { [ (m) dP&) — 3%(r) [ (m) dP@) + 24(r) } , 83
and similar expressions can be written for W(r), X(r), and P(r).
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8.1 Expansion in r. Expanding the factors (¥(0) + rx)™ in powers of 7, we
may put (8.1)-(8.3) in the form

¥(r) = ‘I’(O)_l{ Mz(\Ir(O)) + M3<q/(0))2 M‘(\I/(O)>3 + - } ; 8.4)

4

() = (\I/(O)) {M* 2M3<\11(0)) + 3M*(x1/(0)> 4M‘<\If(0))3 + 5M“(‘I'(0)) t

- [M 2M1M2<\P(0)) + @M, M, + M,)(\I,(O))z oM, M, + M,Ms)(\l, @)a
+ (M + 2M. M, + 2M2M4)<‘I/(0)>4 + - ]} , (8.5)

3

Vi) = (w(o)){ . 3M*(w(o)) + 6M5(W(O>)2 1OM"(‘I'«))) T

) + 3(M M, + M2M3)<\Ir(0))2

- 3[M,M2 @eM\M; + M2)<\I/(0)

— 2@M M, + 2M, M, + Mg)(\ll (0))3 L. ]

+ 2[M3 3M2M"<\I/(O)) + 3(MiM, + M‘M2)<\IJ(O))2
— BMiM, + 6M M. M, + M“)(‘II(O))3 + - :l} ’ (8.6)

where M,, = [ 2™ dP(x). Since the M’s are the moments about the origin, they can be
expressed in terms of the moments about the mean. To do this requires setting r = 0
in (8.1)—(8.3) and solving successively for the M’s:

M= 90, M, \1/(0)2(0(0) + 1) - w(0)° (V(O) 30(0) + 1) 8.7)

and M, — M, can be expressed similarly from the W, X, and ?.
Now introduce the M’s into (8.4)—(8.6). After regrouping the terms of the same
powers in a”}, the resulting expansions may be rearranged in the form

V) =Q—-r+7" =72+ 4+ ) = 00) (/A — 37 + 67 — 107° + -..)

+ VO) (/)1 — 47 + 107° + --+)

— WO)(w* /)1 — 57 + -+-) + 0@, (8.8
0@ = 00) — 4r + 107> — 207* + 35¢* + --+)

— 2V0)(v/a)(1 — 57 + 157° — 357° + --+)

+ W) — 0©0)))(+/a)’A — 67 + 217* + --+)

— (4X0) - 200 VO)(r/a)’(1 — 77 + -->)

+ 67(0) — V)7 — 2000W©O)(r/a)'1 + ---) + 0@™®), (8.9)
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V() = VO — 67 + 217" — 567° + --+)
— 3O — 0O)(r/a)(1 — Tr + 287" + -+
+ 3(2%(0) — 30(0)V(©0))(r/a)*(1 — 87 + ---)
— (107(0) — 1200)W(0) — 670 + 200)(r/a)’(L + -++) + 0(™).
(8.10)

8.2 Summation of the r expansions. At this point, we may consider (8.8)-(8.10)
as the two-dimensional expansions in r and &~ '. However; the r expansions can be summed
up to all orders by noting (1 + 7)™ = 1 — nr 4+ n(n + 1)7°/2! — ... . Under the as-
sumption that the = expansions in (8.8)-(8.10) represent the leading terms of infinite
series, we can replace them by the (1 4+ 7)™ factors and obtain the consolidated ex-
pressions

¥(r) = A+ D7 = 0O(/HA + 17 4+ VO /)M + 07

- WO)(r* /)@ + 1)™° + 0@™). (8.11)
U() = 00)1 + n)™ — 2VO0)(r/a)(1 + 7)° + @W(©0) — 00)")(r/a)’d + 7)™

— (4X©0) — 200 VO)(r/a)*(L + 1)

+ (570 — V(0)* — 200)W(©0)(r/2)*Q + »™* + 0", (8.12)
V() = 7O + 9™ = 3(W(©0) — 0O (r/a)(1 + 1)

+ 3(2X0) — 30(0)V(0))(r/a)*(1 + 7)°

— (107(0) — 120000W(©0) — 6V(0)* + 20(0)°) (r/a)*(1 + £)~° + 0(@)™.

(8.13)

Finally, we introduce 5 = 1 + 7 into (8.11)-(8.13) and suppress both the X(0) and ?(0),
which are superfluous for the quadruple-moment level of closure:

¥() = n"{l - Oy &) —2"_1)
+ v L= G L g
06 = {00 - 270(1 )

+ @WQ) — U(l))( ) +20(1)V(1)( _l)a

- QUWQ) + V(l)"’)<_T") + }, (8.15)

”_l) — 90 V(1) (1 ';"—')2

V) = n"‘{V(l) - @) - 30(1)’)(1 ~

+ (120)W(1) + 6V(1)* — 217(1)")(l ‘m”_l)a + } (8.16)
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In analogy to (7.21), we have underscored the terms whose coefficients are the
products of initial moments. By comparing the underscored terms in the above with
those in (7.21), we see at once how the classes of expansion terms summed up in the DI
approximation are different from those present in the exact moment solutions. In par-
ticular, for V(1) = W(1) = 0, (8.15) gives

O@) = 2 *{0Q) — O*((1 — 271/}, (8.17)

which should be compared with the covariance of DI-(2) given in (7.19). Note that
(8.17) is a polynomial in (1 — 57')/a with the negative second-order term, whereas the
covariance of (7.19) is an infinite series with the positive coefficients.

9. Concluding remarks. Unlike the Burgers-model turbulence, the stochastic
nonlinear system (1.1) cannot serve as a meaningful prototype of the real turbulence
because it does not share certain dynamical features with the Navier-Stokes equations.
The dynamic system described by (1.1) is purely dissipative. Furthermore, the absence
of the convection term in (1.1) deprives the present problem of many of the dynamic
features, such as the energy conservation, equipartition energy state, and the Galilean
invariance, which distinguish the turbulent flow problem from other stochastic processes.
Nevertheless, the quadratic nonlinearity of (1.1) causes the same sort of closure difficulty
as the Navier-Stokes equations. Hence we can investigate the analytical structure of the
generalized DI approximation in depth, thanks to the mathematical amenability of (1.1).

From the standpoint of the moment formulation, it is not surprising that the DI(-3)
represents a meaningful statistical approximation of the lowest order for the second-order
reactive problem. This is because the DI-(2) collects only the terms whose coefficients
are of the even powers in (—K); hence the distinction is completely lost between the
depletive and generative type of chemical reactions. On the other hand, the DI-(3) can
adequately describe the decay of the reactant fluctuation intensity, for it can cope with
an asymmetric initial distribution which extends only to the positive range, to be con-
sistent with the requirement that ¥(f) is a positive random variable. For quantitative
comparisons, we consider for P(x) the asymmetric Helmert distribution [5]

1 % ..,
Px) = ﬁj; ye™" dy. 9.1
Here, for convenience, we taken = 3,1, 2, --- . O’'Brien [8] has used (9.1) withn = 3.5
to test his closure formula. For the initial distribution (9.1), we have
¥0) = o, V() =2/a, W(0O) =301+ 2/a%), 9.2)

where o* = n + 1. In the limit as n — o, (9.1) reduces to a Gaussian distribution.
Although the series solutions of the DI systems obtained in Sec. 7 were not meant for
computational purposes, we shall use them here to provide comparison of the covariances.
To avoid any convergence difficulty, we take a large value of @« = 3.0. Fig. 5 compares
the three covariances of the form U(r)(1 + 7)* computed by the second expressions
of (7.19), (7.20), and (7.21), respectively. Also included in the figure as a reference is
the exact covariance computed by (8.2). In support of the previous discussion, the
DI-(3) gives the best approximation to the exact covariance for the entire time range
of the figure. On the other hand, both the DI-(2) and DI-(4) appear to be the moment
formulations of the wrong order for the present reactive problem. As mentioned before,
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the inadequacy of DI-(2) can be ascribed to the imposition of a symmetric initial distri-
bution that reactant fluctuations cannot physically obey, whereas the failure of DI-(4)
is, perhaps, a manifestation that summing up more expansion terms does not necessarily
give a better approximation [3]. The mean value ¥(¢) is rather insensitive to the closure
scheme, for the effect of fluctuations is only secondary in the mean equation (6.1).

Appendix: The modal-interaction perturbation technique. Using the modal-
interaction perturbation technique of [7], we can obtain the perturbation solutions of
(5.3)-(5.5) to express the effect of the respective first right-hand-side terms treated as
a small perturbation. Without repetition, we shall discuss here only the solution of (5.3)
in detail because the solution of (5.4) and (5.5) ecan be carried out in a completely anal-
ogous manner. Returning to (3.1) and (3.2), the equations for yYs(f) and G._s (¢, ')
are respectively

(@/dt + 2KHEOWo) = ~KEM™ L7 bp.0.p-be V-0, (D
(d/dt + 2K¥(9))Ga-p.o(t, ¥) = —2KM ™ Z bapoa-p-o¥e(Gapsalt, ¥).  (A2)
Rewrite the above as
(@/dt + 2KYEOWRO = ~2KM"9p.0.5-0 VoD ¥250)
= KM 3 $pop b DVa-el),  (A3)

Hp—a

(d/dt + 2K\I’(t))Ga—ﬁ.a(ty t’) = _2KM_1/2¢a—ﬂ,—ﬂ.aw;(t)Ga.a(t, t’)
- 2KM_V2 ;;' ¢a—§.¢.a—ﬁ—c‘l’v(t)Ga-ﬁ—c.a(t) ﬂ)* (A4)
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Observe the following: if we apply M™% 3.2 34 ¢o 5. acsars)P* (") to (A3), then
the resulting equation after averaging is simply (4.4). Further, we can obtain (4.6) by
applying M™% 3.0 34 ¢4.5.0-s¥s(t”") to (A4) and averaging the resulting equation.
Here (2.14) and (2.17) have been used. Since the first right-hand-side terms of (A3)
and (A4) are of O(M~"?), this justifies our claim that the first right-hand-side terms
of (5.3) are small in comparison to the second terms of the equations. It has been shown
in [7] that the perturbation Ays(f) of O(M~'?) due to the first right-hand-side term
of (A3) is

AV = —2KM™" [ dsty,0.5-2Gslt, IuOV2-40)- (a5)

Upon applying M~ 3.0 34 ¢y 5. a-sast)P% (") to (A5) and averaging, we obtain
the perturbation AV (¢, ¢/, t"’) induced by —2KU(¢, {)U(¢, t"), i.e.

AV, P, 87) = —2K f dsG(t, U, YU, s).

Hence this justifies the prescription (5.6). Similarly, the perturbation AG,_s .(¢, t')
of O(M~""*) due to the first right-hand-side term of (A4) is

AGa—ﬂ.a(t’ t’) = _ZKM—IH ‘/;' d‘gqsa—ﬁ.—ﬂ.aGa-B.a—ﬁ(t) S)l//;‘(S)Ga',,(S, t,)° (A6)

By applying M2 32 34 ¢ 5. «—s¥s(t'”") to (AB) and averaging, we obtain the perturba-
tion AF(¢, t/, t'’) induced by —2KU(t, t")G(, V'), i.e.

AFG, U, 1) = —2K f dsG(t, U, G, 1').

Therefore this justifies the prescription (5.7). A similar argument can be used to justify
(5.9)-(5.12).
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