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Abstract. The optimum tapering of Bernoulli-Euler beams, i.e. the shape for which

a given total mass yields the highest possible value of the first fundamental frequency

of harmonic transverse small oscillations, is determined. The question of the existence of

a solution to the optimization problem is considered. It is shown that, irrespective of the

relationship between the flexural rigidity and linear mass density of the cantilever beam,

the necessary conditions for optimality lead to a contradiction. This result is in partial

disagreement with that obtained by earlier investigators. By imposing additional

constraints on the optimization variable, a numerical solution for the case of the canti-

lever beam is obtained, using the formulation of the maximum principle of Pontryagin.

Introduction. Optimization of elasto-mechanic systems in which the behavioral

constraint is a deformation bound has become a standard design procedure. However,

optimization with a frequency constraint is a more difficult problem. The object of

optimization in such problems is to establish, from among all designs of given style

and specified total mass, the one for which the lowest natural mode is a maximum.

This design is at the same time the minimum-volume (or -mass) structure for a specified

fundamental natural frequency.

The proper vehicle for modelling the above optimization problem is the calculus

of variations. The theory for the extremum problem of Bolza, which is the classical

mathematical tool, was developed by Bliss, McShane, Hestenes and others. On the

non-classical side two principles have evolved and since become popular, namely the

Maximum Principle of Pontryagin [1] which will be used here and the Principle of

Optimality of Bellman. These represent the necessary extremum conditions obtainable

by the use of first derivatives.

This paper is motivated by two publications, one by Brach [2] and the other by

Karihaloo and Niordson [3]. Brach has raised the questions of the existence of the solution

of the optimization problem for a cantilever beam (and free-free beams) for the restricted

case where the flexural rigidity and the mass distribution along the span of the beam

are linearly related. Although the distinction between the simply supported case and

the cantilever/free-free cases is not very clearly brought out, it is clear that the existence
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of nontrivial solutions hinges crucially on the nature of the boundary conditions. Weiss-

haar [4] and Karihaloo and Niordson [3] have arrived at the same result with less rigorous

reasoning. But the interesting and not entirely convincing result obtained by the latter

authors is that an extremal fundamental frequency exists when the restriction of linearity

between flexural rigidity and the linear mass density is dropped.

In the following, we discuss a few shortcomings of the above proofs, and present

alternate proofs for existence and nonexistence with the help of the maximum principle.

1.0 Statement of the problem. The systems under consideration are Bernoulli-

Euler beams of length I performing small harmonic transverse vibrations of magnitude

y(x, t). The following relationship between the flexural rigidity a and the linear mass

density n is assumed:

a = c^", n > 0. (1)

Without loss of generality, c may be assumed to be unity. The motion of the beam may

then be characterized in any of the following ways:

a. By minimizing the integral

I' Ldt = [' (T - V)dt = [ ' f (-cnY'1 + M) dx dt
J to * t o J to Jo

(2)

with appropriate boundary conditions. L, T, and V denote the Lagrangian, kinetic

energy and the potential energy respectively.

b. By obtaining the stationary value of the Rayleigh quotient

2
CO =

f mY'2 dx
  (3)

fJo
ny2 dx

among all functions y(x) £ C2 (twice differentiate) satisfying the geometric boundary

conditions.

c. By solving the partial differential equation

(p-YT + v-y = o (4)

with appropriate boundary conditions given by the expressions

KmYWIo = o, iwrym = o, (5)

where the by represent small variations in y, and 5y = tt], as in the usual notation.

2. Formulation of the equations. The optimization problem may be formulated

in each of three different ways corresponding to the above approaches. We are interested

primarily in optimizing the natural modes of the system. The natural modes are solutions

of the form

V = 1(x)g(.t), (6)

since for such solutions all elements of the system are in phase with each other.

From Eq. (4),

™^ = 0. (7)
Ai/ g
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The first term is a function of x and the second term a function of t. Consequently,

0*7")" 9 ,«*
 X— \o)

M 9

The second of these equations yields

g(t) — Y exp (iut) (9)

where Y is a constant depending on initial conditions at t = 0. Thus, the equation of

a natural mode is given by

0*7")" - mco2/ = 0, (10)

with boundary conditions

10*7") 5/'] J = 0 (10a)

and

IW'ysfYo = 0. (10b)

In what follows, we write y for /, noting that it represents the maximum amplitude of

the motion.

To obtain the variational form for Eq. (10) we multiply throughout by y and inte-

grate by parts where necessary in order to obtain the quadratic functional

H* = [' [WT - rftf] dx. (11)
Jo

a. Corresponding to the energy functional H* we may formulate the optimization

problem as an isoperimetric problem in the calculus of variations.

It is required to find the shape function n(x) of the beam with a fixed total mass

M = f n dx (12)
*>0

while simultaneously performing the operation

sup {inf I [nn(.y")2 - n<.o2y2] dx\- (13)
/xeai KvEQ Jo )

b. The use of the Rayleigh quotient by Niordson [5] and Prager [6] yields somewhat

similar expressions. Thus,

co = sup inf
i,£Q

f w
Jo

dx

fJ 0
ny2 dx

(14)

subject to the constraint that

M = f n dx (12)
«'0

is fixed.
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To obtain stationarity conditions, one can adjoin the additional constraint by a

constant Lagrange multiplier A so that the problem is transformed to that of finding

J = sup {inf / (jui
«'n

oj y — ffy" — Ky) dx(-\- A M
fxG'U. \i/£Q *0

= sup Sinf /
H 6 'U 6 Q *0

$ dx) -\- Ail I (15)

where g is the integrand of the function in (15). For stationarity,

i- {if) -1 (I-)+1 -0 (16)
and

dg/dn = 0. (17)

Eq. (16) yields the equation of motion (10) obtained already. It is Eq. (17) which is

mainly of interest in optimization studies. It yields the following additional equation

which may be termed the optimality condition:

wif - nfy"2 - A = 0 (18)

which can be rewritten as

a> 3 nX) / j ri\
  = constant (19)

where 3 = maximum amplitude of kinetic energy density = ny2 and V = maximum

amplitude of strain energy density = nny"2. This relationship has been obtained by

Prager [6] using a different argument.

Corollary 1: The optimal structure is characterized by the property that a linear

combination of the kinetic energy density and the strain energy density is proportional

to the optimization or design variable.

c. The problem which has been most thoroughly investigated in the classical calculus

of variations is the problem of Lagrange, namely the problem of minimizing a functional

subject to differential constraints. It is in the justification of the Lagrange multiplier

method when applied to the nonclassical problems of the calculus of variations that

major advances have been made by Pontryagin and his associates. The objective is to

minimize the mass

/'^0
M = I y dx

subject to

OxV)" - ^2y = o, (io)

[(mV) sy'}'0 = o,

\W)'5yVo = o. (10a)
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Eq. (10) may be rewritten as a first-order system

q' = Aq, (20)

0 10 0

A =
0 0^0

(20a)

0 0 0 1

jUCO2 0 0 0

forming the Lagrangian

<5 = -PoM + Pr(q' - Aq) = pTq' - PoV - prAq. (21)

We define II, the pre-Hamiltonian, as the Legendre transform with respect to the

momenta p:

n(q, p, n) = pTq' - $ = PoU + p'Aq = pofi + qrArp, (22)

since

PrAq = q'A'p,

n(g, p, /*) = Pofi + Pi<72 + ~^r + p3?4 + PiQiVM . (22a)

The equations governing the optimal solution are the canonical equations

q' = dn/dp = Aq, (20)

p' = — on/dq = — ATp. (23)

Pa is a constant Lagrange multiplier [1] and the optimality condition is

dU/dii = 0. (24)

In other words, the optimal /i can be shown to maximize the pre-Hamiltonian

an np2q3 2
= Po n+r + P4qiu = 0, (25)

dp n

B + l np2l3 /r>p\
M —  1 2- (2b)

Po + Ptqiu

Introducing variables y* adjoint to y, we can write the relationships between q, y, p

and y*:

qi = y, Pi = y* i

32 = y' i p3 = -y*',

q3 = nnlP2 = nny*",

q< = OA/")', p. = - WO'.
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Eq. (23) may be rewritten in terms of y* as

(My")" - mco2y* = 0 (27)

with boundary conditions [(n"i/*")Sy*']'0 = 0, [(v.ny*")8y*]l0 = 0- At this point we note

that the adjoint equation governing y* is identical to the system described by (10).

This is a consequence of the self-adjointness of the governing equations. Hence we

may assume

y* = y/cl (28)

For the sake of definiteness, the proportionality constant has been assumed to be positive.

The optimality condition (26) may be rewritten as

_ Po + yy*co2
A4 — n /

ny y*

Using (28) we get an expression identical to (18):

n—1 //2 2 2 2
nix y — cot/= p0ct .

Dividing and multiplying throughout by p., we get

= constant,
co2 3 - nV

whieh we have already obtained by other methods.

A similar expression has been obtained by Niordson, but the corresponding equation

in Brach's paper is incorrect. The right-hand side is zero, which is equivalent to assuming

that p0, the multiplier associated with the total mass, is zero. Such an assumption violates

the normality requirement in the Lagrange multiplier rule (see Bliss [7], for instance).

Since all his conclusions on the existence of solutions are based on this incorrect equation,

they are suspect.

3. Existence of optimal solutions. We consider the case of the cantilever beam

noting that similar arguments hold (but not the same conclusions) for the free-free case.

Inspection of (26) shows that as a result of the boundary conditions (q3 = 0 at x = I)

the mass density /j at the free end is 0, or

n = 0 at x = I. (29)

To proceed further we need an additional property of the optimal solution, namely that

H(q, p) = sup n(q, p, n) = constant.

If II is not an explicit function of x,

dTL 3ii , an , an
-7- = r- q + ~ p + — JU •
ax dq dp d/i

Noting that by definition

q' = dll/dp and p' = — dll/dq,

and that for optimality dll/dp = 0, it follows that dll/dx = 0, or

II = sup II = constant in 0 < x < I. (30)
mG'U
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The multiplier p0 can be chosen to be arbitrarily greater than 0 and /* at x = 0 is greater

than 0 as a result of Eq. (26). The value of n at x = 0 is

TT i _ln ,_0 = Pom H——

ql
— PoM + (31)

C iH

Therefore H\x,0 ^ 0 at x = 0, and H(x) = constant 5^ 0 in 0 < x < I; at x = I

II I*., = p0ii +

= fi(p0 + u q\)/c\

H |x_, =0 at x = I (32)

since ju = 0 at x = I from (29). But this contradicts the result obtained in (31) and (30).

These considerations indicate that there exist no nontrivial solutions which satisfy

the conditions of optimality for a cantilever beam. No restriction need be made with

respect to the exponent n in (1).

Corollary 2: The problem of minimizing the volume or weight of a cantilever beam,

keeping the first fundamental frequency in transverse vibration constant, does not

possess a solution in the absence of geometric constraints on the design variable.

Contrary to the contention of the author of [2], one does not arrive at a similar

conclusion in the case of free-free beams. It is clear that it is the nature of the boundary

conditions which is significant, rather than the relationship between the flexural rigidity

and the mass density, in the demonstration of existence. This result does not agree with

that obtained by Niordson and his co-workers [3]. Karihaloo and Niordson have proved

the non-existence of a solution, in an indirect manner, for the case where the flexural

rigidity and mass density are linearly related, i.e. when the exponent n in (1) is equal

to unity. These authors imply, however, that a solution to the problem exists when the

restriction of linearity between a(x) and fi(x) is dropped. The question arises as to what

conditions are necessary in order to ensure that an optimal solution exists. This may be

done in either of two ways:

(1) by the introduction of non-structural mass, ensuring a non-zero density at all

sections of the structure,

(2) by the introduction of inequalities in the optimization variable, with the result

that dTl/dn is not necessarily zero at all points in the beam. Consequently H — sup„eni n

is no longer constant along the beam.

4. Computational procedure (cantilever beam). The equations to be satisfied in

order that optimality be attained, in the sense of minimum weight, are repeated for

convenience:

q' = Aq with associated boundary conditions, (20)

p' = — A'p with associated boundary conditions, (23)

M =  j 5- (26)
Po + ViQiU
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If the lower bound is placed on the solution of n, as indeed one must in order to obtain

a solution, these equations must be supplemented by

M > j"6 (33)

where nb — lower bound on the linear mass density of the beam.

The numerical method used is the Min-7/ method described by Gottleib in [8].

Since the equations are self-adjoint, the systems of equations (20) and (23) are identical.

The calculations have been carried out for the case of a circular cross-section, in which

case

= (34)

where y = density of the material, E = Young's modulus, and r = radius of cross-

section. Comparing with Eq. (3.1), therefore, we obtain

c — ~t^~2 and n = 2.
4tt7

As a result of the self-adjointness of the system equations, there are only two unknown

initial conditions in the system, and as a consequence only two integrations are required

to obtain the characteristic determinant. The numerical procedure is as follows:

Step 1: The design variable n(x) is assumed to be of a certain shape.

Step 2: The resulting linear boundary value problem is solved, q' = Aq with

associated boundary conditions, and the fundamental frequency of the system is ob-

tained.

Step 3: Since p4 = qx/c\ and p2 = q3/c\ , n = 2, the design variable satisfying the

optimality condition (26) can now be computed:

3
Mc (-2 y , 2) (35)\c,p0 + <7iw /

or n — nb . If Gu<m+1) — M<m))/M<m> is less than a small quantity (e.g., lCT4), the computa-

tion is terminated (superscripts represent successive number of iteration). Before

proceeding to the next iteration, one can choose to solve either of two dual problems:

(a) keeping the mass constant, the natural frequency of the system can be optimized,

or (b) keeping the natural frequency constant, the mass can be minimized. Due to the

practical difficulty of solving the boundary-value problem with a fixed natural frequency,

the former alternative is more convenient.

Step 4-' To force the resulting mass to remain constant, the computed values of

the design variable must be scaled by a factor c2 such that

i'lb i'1

M = / C2iir{x) dx + / c2Mt dx (36)
• 0 J 11

where lb = spanwise location in beam where m = m& , and M — the constant total mass.

In order to avoid oscillatory instability in the iterative process the value of n(x)

chosen for the succeeding iteration is a weighted mean:

= w("-» + (l _ ^)c2/x'm)0 < x < k
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or

(m) (to —1)
n m = Tin m + (1 — ii)c2tib" lb < x < I

with 0<?j<l;7j = 0.5isa satisfactory value.

The iteration is continued by returning to Step 2. Step 2 in the computational

procedure, namely the linear boundary-value problem, is amenable to solution by dif-

ferent methods. Apart from the variational formulation of self-adjoint eigenvalue

problems described for instance in Collatz [9], finite difference methods can also be used.

The method adopted is as follows:

(a) Two sets of values are assumed for g3(0) and g4(0) such that the matrix

B „ =
(i)/n\ „<2>/

(37)
S3 (0) ?32,(0)

g"'(0) gf'(O)

is nonsingular. The B0 matrix can be chosen to be the unit matrix.

(b) For a chosen value of co, the system of four simultaneous differential equations

is integrated from x = 0 to x = I. The Runge-Kutta procedure has been used in this

investigation. The resulting end conditions must be such that

co) + b2q?\l, co) = 0,

biq?\l, co) + b2q[2\l, co) = 0.

A nontrivial solution for bt and b2 can occur only if

q?\l,w) ql2\l,u)
det Bl =

q?\l, co) co)

= 0. (38)

If the determinant is not sufficiently close to 0 this integration is repeated with a different

value of co.

(c) Once the correct value of co has been obtained, the solution q(z) can be obtained

by combining the results of the two integrations in the ratio

h = ") = ")
b, qi2)(l,u) qi2)(l,u)

so that q(x) = 61q<1)(a;, co) + b2qvl'(x, co).

5. Discussion of results. The results are shown in Figs. 1 through 3. In Fig. 1 are

shown some representative cross-sectional area distributions for different values of the

lower bound of n, the linear mass density. The increase in frequency, keeping the volume

constant, in the cases shown is demonstrated in Table 1, where novl = optimum linear

mass density distribution, fiu = uniform mass density distribution of a beam with the

same total mass, £ = Mopt/Mu > Mi = lower bound on linear mass density, = mi>/mu =

lower bound on £, ju0 = density at clamped end, and £0 = Mo/W .

The last column in Table 1 is the ratio of the minimum weight cantilever beam to

that of the uniform beam, with the same first fundamental natural frequency. The

relationship between the two is obtained by noting that for any cantilever of length I

co2 = (const. /l4)(a//ji.) = Cin/l4 = CiM/l&



338 KOSLA VEPA

10 -
opt

1 1.0x10 6.0434
2 0.01 4.6366
3 0.10 3.2580

0.2 0.4 0.6 0.8 1.0
xll - Span of Beam

Fig. 1. Optimal cross-sectional area distribution in a vibrating beam.

0.2 0.4 0.6 0.8 1.0

x/i - Span of Beam

Fig. 2. Distribution of the Hamiltonian function in an optimal vibrating beam.
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2.4

1.6

0.2 0.4 0.6 0.8 1.0

x/i - Span of Beam

Fig. 3. Lateral deflection mode of optimal vibrating beams.

where M = total mass of the beam, Cj = constant depending on the cross-sectional

shape of the cantilever, co2 = cuMu/Z5 = cOEt Mopt/f, and Movt/M„ = cu/covl = (aj„)2/Wopt.

The resulting savings in volume or mass are seen to be quite spectacular. The interest-

ing feature of this result is the contrast with the case of the simply-supported vibrating

beam where the increase in frequency is only 6.6%. It is also obvious that the quantity

"opt/"* can be made as high as desired by choosing smaller values of nb . However, the

actual computational procedure does not permit the choice of arbitrarily small values

of fib , since the integration of the differential equations involves division by this number.

The iteration procedure in the program is terminated when the difference between

successive solutions is an arbitrarily small number. A check is provided by the distribu-

tion of the Hamiltonian function II along the span of the beam. The value of II should

be constant in the region where dll/dju = 0. In the case where nb/nu = 0.1, Fig. 2 indicates

TABLE 1.

tb £o Wopi/oJu Mopl/M„ (cOuA^opi)^

0.10 2.44 3.258381 0.09460
0.01 2.83 4.636576 0.04660

1.0X10"' 3.09 6.043409 0.02736
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o f)'nj £■ m\J.

Fig. 4. Optimal area distribution in a vibrating beam.

that II is indeed constant over the region where dll/dn = 0. For the case where fib/fiu =

1.0 X 10-5, the value of n drops off in a region near the free end of the beam where

dll/dju 5^ 0. Fig. 3 shows the wide variation in the lateral deflection configurations of

the different optimal beams. Fig. 4 shows a profile of the optimum mass distribution,

when a percentage of the material is assumed to be nonstructural but distributed uni-

formly along the length of the beam.

In conclusion it is necessary to remember that the analysis as carried out is only

valid for small deflections, since the simplified expression for curvature is no longer

sufficiently exact for large slopes and deflections. Furthermore, the state-space approach

and the principle of superposition are used in various stages of the algorithm, the former

being essential for the application of Pontryagin's principle. This remark seems necessary

in view of cases (2) and (3) in Fig. 3, indicating the occurrence of large slopes in the

deflection modes. However, as a consequence of the homogeneous nature of the problem,

the analysis yields no information on the absolute magnitudes of y and y' and the figure

merely shows the mode shapes.
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