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ON THE FADING MEMORY OF INITIAL CONDITIONS*

By R. C. BATItA (The Johns Hopkins University)

1. Introduction. In [1], I attempted to derive the two-dimensional balance laws

for loading devices from their three-dimensional counterparts. Loosely speaking, the

loading device L was defined to be a three-dimensional deformable continuum which

occupies a region R in the exterior of the region Rb occupied by the body and is such

that dR r\ dRb ^ 4>. Taking a half space as a loading device, I derived, by mechanistic

calculations, the linear representations for some of the two-dimensional constitutive

quantities from their known three-dimensional counterparts. These calculations suggest

that, in a purely thermal problem, a possible choice of the independent variables for

the surface constitutive quantities would be the fields of temperature 6 or heat flux

q defined on the boundary dR of R. In a purely mechanical problem, one could take the

fields of displacement u or surface tractions f defined on dR as the independent variables.

It should become clear from the details of these calculations [1, Sects. 3, 4] that these

surface constitutive quantities would also depend upon the initial state of the loading

device, i.e. the deformation of the loading device at the instant of glueing to the body.

Here we show that such is not the case when L is linearly heat-conducting and the

history of either the temperature or the heat flux at the boundary points of L is known.

Rather, we prove such a result for a general three-dimensional continuum. In particular,

we show that for an inhomogeneous, anisotropic, linearly heat-conducting continuum,

the memory of the initial conditions fades away exponentially. The rate of the fading

of the memory depends upon the shape of the body, the specific heat, and the thermal

conductivity. Said differently, one can determine, merely from a knowledge of the

history of the boundary conditions, a unique solution of the heat equation.

In [2], Meizel and Seidman studied a somewhat similar problem. For a homogeneous,

isotropic, linear heat conductor of special geometry, they established the following

result. For a thermally insulated continuum occupying a region D+ = (0, 1) X D C Rn,

the mapping A from L2(D X (0, T)) to ViP^) defined by

A : g = g{Y, t) = <7(0, Y, t) ~ 0(X, Y, T), 0 < t < T, (X, Y) £ D, ,

is a well-defined, bounded (using L2 norms) linear map for the solutions of the heat

equation. It may be remarked that no information about the initial temperature distri-

bution is required. However, on the portion D of the boundary of , one knows

both the heat flux and the temperature g(Y, I); the latter is assumed to satisfy certain

consistency conditions. Meizel and Seidman [3] have proved a result similar to the

above for more general regions. It seems that the result proved below is slightly different

in spirit.
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Notation: We refer the deformation of the deformable continuum to a fixed set of

rectangular cartesian set of axes. The vector X denotes the position of a material particle

in the reference configuration which we take to be the one occupied by the continuum

at time t = — co. A comma followed by an index i designates differentiation with respect

to X,- . The superposed dot stands for the partial differentiation with respect to time t.

We adopt the summation convention. En denotes Euclidean n-space; ct , c2 , etc. denote

positive constants. The vector n(X, t) designates the outer unit normal to the current

configuration of the boundary dR of Ii at the point X £ OR. OR, and dR2 denote com-

plementary parts of the boundary dR of R, i.e. dR = dR, VJ <)R2 and <)Rl C\ dR2 = cj>.

2. Thermal Problem.

Theorem 2.1: Let R £ En be a bounded open region with a smooth boundary. Then

the solution of

C(x)0(x, t) = (tf„(X)0.,(x, /))..-, (x, t) e R x (- -, t],

6(X, t) = 0„(X, t), (X, t) £ dR, X (- -, t], (2.1)

q(X, t) = q0(X, t), (X, t) £ dR2 X (- -, t],

is unique provided

dRi ^ 4>, 0 < c(X) < c2 ,

/ KijOjO.i dv > Cj / 6,i6,i dv.
Jr Jr

(2.2)

Remark 2.1. In stating the above theorem, the existence of a solution is presumed.

Here c denotes the specific heat and Kdesignates the conductivity tensor. For a

thermoelastic body, c > 0 was shown by Ericksen [4] to be a necessary condition for

stability. The positive semidefiniteness of Kif can be established by thermodynamic

arguments, see e.g. Day [5], The requirement (2.2)! is a necessary condition for (2.6)

to hold.

Proof oj Theorem 2.1: We first note that the whole problem is invariant with respect

to the translation of the time axis. Hence it suffices to show that the solution of

c(X)0(X, t) = (K<,(X)0, ,(X, 0)..- , (X,t)ERX (0, t] (2.3)

under the null boundary conditions approaches the null solution as t —> °°.

Multiplying (2.3) by 6, then integrating over the region R and using the divergence

theorem, we obtain

f odd dv = f Kijd jOriidA — f ti6dv. (2.4)
«ii JdR Jr

Since the boundary data are the null data, the first term on the right-hand side of (2.4)

vanishes. Use of (2.2)3 , (2.4) yields

f c66 dv < — c, I 6,iQ_idv. (2.5)
•'« Jr

For functions 6 £ C\R), 6 = 0 on dR, , we have Poincari's inequality [6, p. 355]
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f d~ dv < p f 6,id,i dv (2.6)
J R JR

where p is a constant which depends on R and dZ2i . Combining (2.5) and (2.6), we

obtain

•y [ cd2 dv < — — [ 92 dv,
dt J p Jr

— ~Cl f C2d2 dv.
VC2 Jr

Now, using (2.2)2, we get

d_
dt

f cd2 dv < — — I cdz dv,
J R C<2P J It

which upon integration gives

J cd2(X, t) dv < ^J cd2(X, 0) dvj exp (—2c1t/c2p). (2.7)

Thus

0(X, t) 0 as t —> oo.

When dlh = 4>, the solution of (2.1) can be expected to be unique only to within

an arbitrary constant. In order to rule out this trivial non-uniqueness, we normalize

the initial data by setting

[ 0<X, 0) = 0. (2.8)
Jr

This entails no loss of generality. Integrating (2.3) over the region R, using the divergence

theorem and the boundary condition

g(X, t) = 0, (X, t) G dR X (0, t],

we obtain

[c(X)0(X,t) = 0, VtE[0,t]. (2.9)
Jr

If the specific heat is an absolute constant, (2.9) gives

i I «<x, t) - 0,

and therefore

[ 0(X, t) =0, VtE [0, t\. (2.10)
Jr

In order to obtain (2.10), we used (2.8). For continuously differentiable functions which

also satisfy (2.10), Poincare's inequality is [8, p. 284]

[ e3dv<rLf [ e.tO.tdv, (2.ii)
Jr A Jr
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where d is the diameter of R. Now, by following a procedure similar to the one used

in getting (2.7) from (2.5), we obtain

J d\X, t) dv < (f 02(X, 0) exp (-4Clt/n d2c). (2.12)

Thus we have proved the following

Theorem 2.2: Let R C E" be a bounded open region with a smooth boundary. Then

the solution of

C0(x, t) = (Kii(x)e.i(x, <))„•

under the boundary conditions (2.1)2,3 is unique provided (2.2)3 holds and the specific

heat c is a constant.

An immediate corollary of Theorem 2.2 is the following result:

Theorem 2.3: Let R C E" be a bounded open region with a smooth boundary. Then

0(X, t) = 9.ti(X, t), (X, t) G R X (- -, /],

0(X, t) = e0(x, t), (X, 0 G afl, x (— », /],

q(X, t) = qu(X, t), (X, t) G dR, X (- » , t],

has a unique solution.

Proof: Theorem 2.2 implies the uniqueness of the solution. Take any smooth field,

say

0(X, -») = 0

as the initial temperature distribution. Then the existence of the solution follows from

the known theorems [7, p. 320],

Remark 2.2\ The inequality (2.12) loosely confirms the intuitive idea that the

larger the region R, more is the time required for the fading away of the memory of the

initial state.

The physical idea underlying the above result is the following: whatever energy is

initially imparted to the continuum would be dissipated because of the thermal con-

duction. In a purely mechanical problem, the source of energy dissipation is the viscosity

and a simple example is provided by a linearly viscous material. For these materials

I can prove, by following a method essentially similar to the one used in the thermal

problem, that the history of the boundary conditions uniquely determines the stress

field in the body. Also, the memory of the initial conditions fades away exponentially

and the rate of the fading of the memory depends upon the shape of the body, the

density and the viscosity. This technique of proving the uniqueness of solutions seems

to work for linear thermoelastic and linear viscoelastic materials. But at present I have

not been able to obtain sharp estimates for these materials.
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