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1. Introduction. Recently there have appeared [1, 2] two theories for the behavior

of rigid conductors of heat composed of materials with memory. The theory developed

in [1] has associated with it finite wave speeds, a feature of considerable interest in light

of the well-known shortcomings of the classical theory.

In [1], Gurtin and Pipkin deduced the linearized form assumed by their constitutive

equations for isotropic and homogeneous conductors. Nunziato [3] established the

corresponding linearized version of the results of [2], finding for the internal energy e

and heat flux q,

e = c6 + [ a(s)0(t — s) ds, q = — kV0 — f /3(s)V 0(t — s) ds. (1.1)
* 0 ^0

Here 9 denotes the departure of the temperature from its reference value, c and k stand

for the respective instantaneous heat capacity and thermal conductivity, and a and /3

designate the energy and heat-flux relaxation functions. For k = 0, the constitutive

relations (1.1) reduce to their counterparts in [1],

Nunziato's investigation [3] also contains two uniqueness theorems for history-value

problems appropriate to the linearized theories. One theorem entails assuming

k > 0, c > 0, «(0) > 0, (1.2)

and the other

k = 0, c > 0, (3(0) > 0, a(0) > 0, «'(0) > 0. (1.3)

Further results on uniqueness were found by Finn and Wheeler [4] in an investigation

aimed mainly at wave propagation aspects. Their hypotheses include

K = 0, c > 0, 0(0) > 0, 0'(O) < 0, «(0) > 0. (1.4)
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Finally, Nunziato reconsidered uniqueness for the case k = 0 in [5], and concluded that

the conditions

c > 0, 0(0) > 0 (1.5)

are adequate in this case.

In the present paper we are able to establish that uniqueness holds if either

* > 0, c > 0, (1.6)

or, as Nunziato asserts in [5],

K = 0, c > 0, 13(0) > 0. (1.7)

The conditions (1.6) are weaker than those hitherto invoked for the case k 0. Perhaps

equally interesting is the approach of the present paper, which differs significantly from

those employed in [3], [4], [5],

2. Uniqueness. For a rigid stationary heat conductor, the energy-balance law

assumes the form

e = — V-q + r on R X (— 00, co), (2.1)

in which r designates the heat supply and R denotes the region of space occupied by the

conductor. Since the divergence theorem is essential to the developments that follow,

we assume that R henceforth stands for the interior of a bounded regular region as defined

in Kellogg's book [6], For such regions, the divergence theorem is applicable to vector

fields in class C1 on the closure, R = R\J dR, of R, where dR refers to the boundary of R.

Theorem 1. Let ey , qT (y = 1, 2) be in class e1 on -R X (— 00 , co) and assume that

ey = — V-qT + ry on R X (—°°, 00). (2.2)

Then

/.[I* dVe2)2 - 2(Ve, - Ve2)-(q, - q2)

= 2 [ (e, — e2)(r1 — r2) dV — 2 f (e, - e2)(q, - q2)-n dA, (2.3)
J R JdR

where n denotes the unit outward normal to dR.

Proof. By (2.2),

{ex — e2)(ci - e'a) = -(ex - e2)(V-qi - V-q2) + (et - e2)(rt - r2).

Thus,

1 d
2 dt^1 ~ e^2 = ~V'^gl _ fi2^qi _ ^ + _ I*) + _ e2)(r' _ ^"2) •

The desired identity (2.3) now follows with the aid of the divergence theorem, which

completes the proof.

It is worth mentioning that the foregoing theorem is free of assumptions concerning

the material of the conductor. Conceivably, (2.3) may have interesting implications for

conductors whose constitutive behavior is not accounted for by (1.1).
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Theorem 2. Let ey , qT , ry (7 = 1, 2) obey the hypothesis of Theorem 1, let

T > 0, and let t0 £ (0, T) be such that

(a) for every i£fi,

e^x, t0)= e2(x, t0); (2.4)

for every t E [t0 , T],

(b) f [ [e>(x, t) - e2(x, r)][q,(x, r) - q2(x, r)]-n(x) dA dr = 0; (2.5)
Jt0 •'aft

(c) - f [ [Ve,(x, T) - Ve2(x, r)]-[q,(x, t) - q2(x, r)] dV dr > 0; (2.6)
Jl 0

(d) r„{-, t) = r2(-, t) 011 R.

Then ex = e2 on R X [<0 , ?']•

Proof. By (a), (b), (d) and Theorem 1,

k [ [ei(x, I) - e2(x, t)f dV = [ [ [Ve^x, r) - Ve2(x, rXKq^x, r) - q2(x, r)] dV dr.
£ » R t0 J R

for every ( £ [i0 , T]. Thus, (c) furnishes

[ (ei-e2)2dV< 0 on [t0,T], (2.7)
J R

which, since the integrand is continuous and non-negative, implies ex = e2 on R X [to, T].

The proof is now complete.

The conjecture that Theorem 1 has significant implications beyond those of the

present paper pertains as well to Theorem 2, whose validity is likewise not contingent

upon the existence of constitutive relations. On the other hand, the usefulness of Theorem

2 may rest on the connection between (2.6) and restrictions on the response functionals,

as suggested by

Theorem 3. Let dy (7 = 1, 2) be in class e2 011 R X (— 00, 00), and suppose that

a, /3 are in C2 on [0, co). Suppose that the functions ey , qY defined for every (x, t) £

R X (— 00, 00) through

/i co

e7(x, t) = c07(x, t) + / a(s)dy(x, t — s) ds,

q7(x, t) = —kV07(x, t) — f p(s)V6y(x, t — s) ds (2.8)

are in class Cl on R X (— 00, ra) and obey (2.2).

Let T > 0 and assume

(a) 0, = d2 011 R X (— 00, 0], rx = r2 on .ft X (— 00, T];

(b) f f [e,(x, t) - e2(x, r)][q,(x, r) - q2(x, r)]-n(x) dA dr = 0
Jo

for every t £ [0, T\;

(c) either

c > 0, k > 0
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or

K = 0, c > 0, 0(0) > 0.

Then

0, = 62 on R X (—<*>, T) (2.9)

Proof. For convenience, let

e = 0, — e2 , e = el — e2 , q = q, — q2 . (2.10)

Define

to = sup

If ta = T, then

js E [0, T] | J e2 dV = 0 on [0, s]|- (2.11)

0 on R X [0, T],

and it follows at once from (2.8) 2 , and the assumption that 0t = 02 on R X (- °°, 0],

that

cd(x, t) + [ a(s)8(x, t — s) ds = 0, (2.12)

for e%Tery (x, t) G R X [0, T\. Since c > 0, (2.12) implies

6 = 9l - 02 = 0 on R X [0, T\. (2.13)

It therefore suffices to show that t0 = T in order to reach the desired conclusion (2.9).

Assume to the contrary that t0 < T. By (2.11), there exists a sequence C

(t0 , T] such that

lim tn = t0 , (2.14)

[ e2(x, Q dV y* 0 (n = 1, 2, • • •)• (2.15)
J R

Moreover, (2.15), (a), (b), and Theorem 2 imply that the function D defined for all

t e [<o , T] by

D(t) = J' fR Vc(x, Q-qfx, 0 dV d* (2.16)

obeys

D(Q < 0 (n = 1, 2, ••■)• (2.17)

From (2.16), (2.10), (2.8) there follows

m = I' I {c* |g(r)|2 + ^ S(s)g(r)-g(r - s) ds

+ J a(s)g(r — s) ds ■ /3(s)g(r — s) j dV dr, (2.18)*

* Here and in what follows, matters are somewhat simplified by dropping the explicit representation

of position dependence.
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where S(s) = c/3(s) + ica(s) and g = V 6. Introduce

h© = f' g(s) ds, (2.19)

and integrate by parts to get

[ i(s)g(r)-g(r — s) ds = h(r)-h(r) 5(0) + h(r)- f 5'(s)h(r - s) ds.
«^0 Jo

A second integration by parts furnishes

[ [ S(s)g(r)-g(r - s) ds = |h(/)|2 + h(/)- [ S'(s)h(t - s) ds
J o ^0 ^ ^0

— f h(r) • f 5'(s)h(r — s) ds dr.
J t0 Jo

Finally, integrate by parts in the last term to arrive at

[ [ <5(s)g(r)-g(r - s) ds dr = ^ |h(/)|2 + h(2)- [ 8'(s)h(t - s) ds
J to J 0 & *0

- S'(0) f |h(r)|2 dr - f [ ° a"(s)h(r)-h(r - s)dsdr. (2.20)
J to ^0

Similarly,

[o a(s)g(t - s) ds • ̂  (3©g(r - J) d£

= «(0)h(r) + f " a'(s)h(r - s) ds • /3(0)h(r) + f " /S'ft)g(r - 0 d£
Jo J L •'o -1

= a(0)/3(0) |h(r)|2 + f " f " a'(s)/3'©h(r - S)h(r - Q ds df
^0 ^0

(*T — t 0

+ / [a(0)/3'(s) + /3(0)a'(s)]h(T — s) ds.
•'O

Substitute from this equation and (2.20) into (2.18) to get

D(t) = CK [ f |h(r)|2 dr dV + 4r [ lhW|2 dV + f [' " 5'(s)h(0-h(< - s) ds dV
Jto JR & Jr Jr Jo

+ [a(0)/3(0) - 5'(0)] [' [ \h(r)\2 drdV
Jt0 Jr

+ [ [ ' [ [a(0)/3'(s) + /3(0)a'(s) — 5"(s)]h(r)-h(r — s) dV ds dr
Jto ^0 Jr

+ ! ! '[ f a'(s)0'(&h(T -s)-h(r - QdVdsdEdr. (2.21)
Jt0 Jo Jo Jr

Therefore,
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D(t) > Ck [' f |h(r)|2 dVdr + ^ f \h(t)\2 dV
» u ^ it - *R

- M<[ [ jh(/)| |h(/ - s)\dVds+ [ f (h(r)|2 dV dr
Wo J R *t o ^ R

+ [ [ [ |h(r)| |h(r - s)I dVdsdr + [ f f " |h(T - 8)| ds dV dr\ ,
J to •*() J H J t0 Jr L^O J J

provided

M = sup (|«'| + \a0\ + 15"| + |ck/3'| + \a'f}'| + |«'jS|). (2.23)
10, ri

The inequality 2ab < a2 + b2 is valid for a and b real numbers. Consequently, (2.22)

and the Schwartz inequality for integrals give rise to

D{t) > ck [ f |h(r)|2 dVdr + ^ [ |h(0|2 dV
Jt0 Jr " R

- f |h(0i2 dV + | /' / \h(t - S)|2 dVds
\ ~ JR Jo J R

\ [' [ (r - t0) |h(r)|2 dV dr + [' I" " [ (i + r - /„) |h(r - s)|2 dV ds dr}-
£ J to JR J to J R J

+

Put fc(£) = f |h(£)|2 dV to get
P

'•r tmD(t) > Ck IL |h(r)|2 dV dr - ^ - Q -
AI

[' (| + "-)/<«) ds + f f [* + 2(2T ^]*(a) ds dr}- (2.24)+

But

r I rt 2
d\W) = \J g(r) dr '<(t~to)f [' \g(r)\2 dr dV,

JR Jt o

and the right-hand member in this inequality is nondecreasing in t. Accordingly, (2.24)

yields

(t — to) + (/ — to)2 + (/ — /„)'' —D(t) >\CK- 5M(t - to)

■ I J |g(r)2|
JR Jto

dr d V.

Therefore, and because of (2.17),

5(0)
ck - 5M(tn - tu) (t„ — to) + (4 — to)2 + {t„ — to)3

10:17.

•/ r|g(r)|2JR J0
dr.dV < 0,
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for n = 1, 2, • • • , which implies

CK + (/„ - to) < 5M(tn - - *„) + (4 - to)2 + (ln - O3]-

Since 5(0) = c/3(0) + /ca(0) and (t„ — t0) —> 0+ as n —* this contradicts (c). The

proof is now complete.

This theorem pertains to problems of the history-value type, as evidenced by hypoth-

esis (a). The class of boundary conditions to which the theorem applies is determined

by hypothesis (b). It is clearly sufficient to prescribe on dR the temperature or the heat

flux, or each of these on complementary subsets of OR. The standard boundary conditions

are therefore included, although they by no means exhaust the possibilities.

References

[1] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch.

Rat. Mech. Anal. 31, 113-126 (1968)
[2] B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,

Z. Angew. Math. Phys. 18, 199-208 (1967)
[3] Jace W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math. 29, 187-204

(1971)
[4] J. M. Finn and Lewis T. Wheeler, Wave propagational aspects of the generalized theory of heat con-

duction, Z. Angew. Math. Phys. 23, 927-940 (1972)
[5] Jace W. Nunziato, On uniqueness in the linear theory of heat conduction with finite wave speeds, SIAM

J. Appl. Math. 25, 1-4 (1973)
[6] O. D. Kellogg, Foundations of potential theory, New York, Dover, 1953


