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1. Introduction. Martin [1] derived a new form for the basic equations governing

the plane flow of viscous, incompressible, non-conducting fluids. He used this new form

of equations to prove the following:

(i) If the streamlines are straight lines, the straight lines must be concurrent or

parallel.

(ii) The streamlines can be involutes of a curve only if the curve reduces to a point

and the streamlines are circles concentric at this point.

Following Martin's approach, we show that when streamlines ^ = constant and

magnetic lines 4> = constant of plane, non-aligned flow of a viscous incompressible

fluid of infinite electrical conductivity are taken as the curvilinear coordinate system

0, ^ in the physical plane the fundamental equations governing the flow can be replaced

by a new system of equations. In these equations <t>, ̂ are the independent variables.

In case of orthogonal flows we prove the following:

(i) If the streamlines are straight lines but not parallel, then they must be con-

current.

(ii) If the streamlines are involutes of a curve, then the streamlines are concentric

circles.

Finally, we find solutions to vortex and source flow problems.

2. Flow equations. The steady flow of an incompressible fluid of infinite electrical

conductivity, in the absence of heat conduction, is governed by the system of five

non-linear partial differential equations

(dvt/dx) + (dv2/dy) = 0, (2.1)

/>(». S +». +1? - •>(§ + S) - - €*). e.2)

p

dx dy) dx \dx dy / \ dx dy

„ dl'2 -L „ dvA I dP (I I TJ (d//j\ . .

+ ~dy) + dy = "Ito5 + ~dyV + ~ ~dyl ' (2"3)

vJ12 — v2H i = k, (2.4)

(idlljdx) + (dH2/dy) = 0, (2.5)

where i'i , v2 are the velocity components, H1 and II2 the components of the magnetic

field vector H, p the pressure, p the constant density, jj the constant coefficient

of viscosity, /j. the constant magnetic permeability and lc an arbitrary constant.

* Received October 16, 1972.
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Throughout this paper, we assume that the streamlines are nowhere parallel to

the magnetic lines i.e. k 9^ 0.

On introducing the functions

co = (dv2/dx) — (dVi/dy),

a = (dll2/dx) - (dHJdy), (2.6)

h = (p/2)F2 + p,

where

V2 = + v2 , (2.7)

Eq. (2.2) can be written as

/ dv, 0v2\ fd^! ( d\ dco\\ „
" V' Tx + "• TJ " 'Is? + " M ~ *a"< •

n\v _l „ ^1) 4. d2i -(..§»1 1 .. _ ../<>>
dx 2 dy) dx

or

(dv2 dvA dh du d(dv1 dv2\ u

-pV\te ~ ~dy) + Tx = Ty + " Tx \dx + Ty) ~ '

Using (2.1) and the first equation of (2.6), we get

7j(3co/dy) — puv2 -}- nQH2 = —(dh/dx).

Similiarly, (2.3) gives us

t](do>/dx) — pwi'i + pQH! = dh/dy.

The system of five partial differential equations (2.1)-(2.5) may be replaced by the

following seven partial differential equations:

(dvi/dx) + (dv2/dy) = 0, (2.8)

ri(d(i}/dy) — pcoV2 + h$IH2 = —(dh/dx), (2-9)

r](du/dx) — pwVi -J- = dh/dy, (2-10)

ViH2 — v2H 1 = /c 5^ 0, (2.11)

(dHJdx) + (dH2/dy) = 0, (2.12)

(dv2/dx) — (dVi/dy) = to, (2.13)

(dH2/dx) - idHJdy) = U. (2.14)

The set of equations (2.8)-(2.14) is a system of non-linear partial differential equa-

tions in seven dependent variables t>i , v2 , Hi , II2 , w, 0 and h. Although the number

of equations and dependent variables has increased by two, the order has decreased

from two to one.

3. Some results from differential geometry. Let

x = x(4>, ̂), y = y{<j>, *) (3.1)

define a system of curvilinear coordinates in the (x, ?/)-plane. In the curvilinear co-

ordinate system (<p, &) the squared element of arc length is given by

ds~ = Ed(j> -f- 2F d<t> -f- Gd\V2 (3.2)
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where

E = (dx/d<t>f + (dy/d<t>)2,

F = (dx/d<t>)(dx/dV) + (dy/d4>)(dy/89), (3.3)

G = (dx/dV)2 + (dy/d<frf.

Eq. (3.1) can be used to obtain <j> = 4>(x, y), XI' = xl'(x, y) such that

dx _ T cM dy _ _ T d^[ Ar _ r d<t> dy_ * d<j>

d<t>~ dy ' d<j> dx ' 6V dy' d* dx { ' J

provided that 0 < |J| < °°, where J denotes the Jacobian

J = (dx/d<t>)(dy/d*) - (dx/d*)(dy/d<t>). (3.5)

From (3.3) and (3.5), we have

J = ±W (3.6)

where W = (EG — F2)in. Let /S be the angle made by the tangent to the coordinate

line <t> = constant, directed in the sense of increasing Sl>, with the x-axis. From the third

equation of (3.3), we write

(dx/dty) = y/G cos 0, (dy/dV) = y/G sin/3. (3.7)

Substitution of dx/d^f and dy/d^ from (3.7) in the second equation of (3.3) yields

F = VG [g cos0 + fjsin/s]- (3.8)

Eliminating dy/d<j) between (3.8) and the first equation of (3.3) and solving for dx/dcfr,

we obtain

dx/d<j> = (F/y/G) cos 0 + (J/y/G) sin j8. (3.9)

The first equation of (3.3) and (3.9) require

dy/d<t> = (F/y/G) sin /3 — (J/y/G) cos /3. (3.10)

From (3.7), (3.9), (3.10) and the conditions that the second-order mixed derivatives

of x and y with respect to 4> and ^ are independent of the order of differentiation, we

find that

dp/d* = (J/G)y122 , 3/3/3* = (J/G)y„2 , (3.11)

where

dG~
d4>_

2 1 ["„ dG ordF r,

= _L [F§2_rdE ~|
2w2 L d<t> J

(3.12)

2
Yl2

Proceeding exactly as Martin [1], it is found that if E, F, G are given functions of <t>

and ty, then (3.1) will serve as planar curvilinear co-ordinate system if and only if

d/d<a((J/G)yi2) - d/d<t>((J/G)T„2) = 0 (3.13)

where yu2 and y122 are given by (3.12).
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When the condition (3.13) is satisfied, the functions x(<f>, St'), y(4>, M*) can be obtained

from the relation

z = x + iy = / {(F - iJ) dt + Gd*j (3.14)

where /3 as a function of <f> and ^ is given by

P = I £ (t122 d4> + Tn2 £»} • (3.15)

4. New form for the fundamental equations. Eqs. (2.8) and (2.12), respectively,

imply the existence of a stream function ^(x, y) and the magnetic function 4>(x, y)

such that

v3 = -(3tf/0x), v1 = dV/dy (4.1)

and

H 2 = d<p/dx, Hi = —{d<ji/dy). (4.2)

We assume that the curves ^ = constant and the curves <£ = constant form the cur-

vilinear coordinate system discussed in Sec. 3 of this paper.

Using (4.1) and (4.2) in (2.11), we find

f f-%- f (4.3)dy dx dx dy d(x, y) J

where J is defined by (3.5). Eq. (4.3) implies that if we know x and y as functions of <t>

and \F, then we can obtain 4> and SF as functions of x and y.

In what follows we transform the flow equations to such a form that their solution

gives us vx , v2 , Hi , II2 , co, 12 and h as functions of 4> and 1Jr.

Solenoidal condition on H. Using (3.4) in (4.2), we get

dx/d^ = Jlh , dy/d* = JH2 . (4.4)

Let 6 be the angle made by the magnetic field H with x-axis. The components Hi and

II2 of H can be written as

Hi = II cos 6, H2 = H sin d (4.5)

where H — |H|. From (4.4) and (4.5) we have

dx/d'ty = JH cos 6, dy/dV = JII sin 6. (4.6)

Now two cases arise:

1: 9 = 0, where 0 is defined in Sec. 3. In this case (4.6) becomes

dx/dty = JH cos 0, dy/d^ = JH sin /3. (4.7)

From (3.7) and (4.7), we get

JH = VG, (4.8)

i.e. J > 0.
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2: 6 = 0 + ir. From (4.6), we obtain

dx/dty = — JH cos/S, dy/d^r = — JH sin /3. (4.9)

Eqs. (4.9) together with (3.7) give

— JH = VG, (4.10)

i.e. J < 0.
From the above two cases, we conclude that the magnetic field acts along the mag-

netic lines towards higher or lower parameter values ^ accordingly as J is positive

or negative. In either case (3.6) requires that

WH = VG. (4.11)

Eqs. (3.7) and (4.4) imply that

Hi + iH2 = (\/G/J) exp (i/3). (4.12)

Equation of continuity. Martin [1] has shown that the equation of continuity

implies that the fluid flows along the streamlines towards higher or low parameter

values 0 accordingly as J is positive or negative. He has also proven that

WV = VE (4.13)

and

Vi + iv2 = (VE/J) exp (ia) (4.14)

where a is the angle between the tangent to the coordinate line ^ = constant, directed

in the sense of increasing <£, with the x-axis.

The junction 0. By the definition of £2 and (3.4) we find that

jo — (2 _ dH2 dy\ . /dHI dx _ dHi dx

\d<t> dV d* d<t>) \d<t> d¥ d<t>,

On substituting Hi = ±11 cos /3, //2 = ±H sin 13, we find

zfc J £1 —
dH .

_\d4>
■ „ , TT „dp\dy (dH . a . TT a dp\ dy]

sm/3 + H cos/?-J — - sm/3 + H cos/?-J ~J

+

Using (3.7), (3.9) and (3.10), we get

dH TT ■ a dp \ dx (dH „ .
L_ cos/3 - Hem?-) - - {— cos /? - H sm

m ^ dV/ d<j>\ '

^awa-G§£-F§ + HJW <4'15>

Eliminating H and /3 between (3.11), (4.11) and (4.15), and using the identities

(d/d<t>)(G/2W2) = (l/Tf2)(GT222 - F7l22)

and

{d/df){G/2W2) = (\/W2){GyJ - F7l22),
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where

722 2W2
-g — -l op_ p —

d<t> d<f> tN'.

we find that

Wit = ^ |GW - 2F7l22 + £T„2!. (4.16)

On differentiating (G/W) with respect to <t> and (F/W) with respect to we see that

(I) - » (f) - w(0y"' ~2Fy" + Ey"">■ (4'17)

From (4.16) and (4.17), we get

d_

d<j>

W {d<t> \W)

The vorticity co. Martin [1] has proven that

) - h (I)} <4-I8>

_L /A (L) -A-f1
u w W \w) a* Vt

Equations oj momentum. Eq. (2.9) can be written as

( dw d<j> . 9co a^A dty d<(> (dh d<f> . dh asA
v\d<{> dy + d* dy) + ^ dx + 11 dx ~ _ \d<t> dx + a* dx) ^ ^

where (4.1) and (4.2) have been used to eliminate v2 and Il2 ■ Eq. (4.19), on using (3.4),

becomes

/ dco dx_ , 3co daA dy - ( dh dx_ dh^ §y\ . .

v\ d<t> a* d* d<f>) pco ^ d* \ <30 a^ d<f>)' ^

Similarly, (2.10) gives us

— Ql-   A. _ —mo — — — — -i- — — rj. 9T\
v s<t> d* a* d<t> ~ ^ d<t> + M a* ~ ~d<t> a* a^ d<p' ^ '

Multiplying (4.20) by dy/d<j>, (4.21) by dx/d<t> and adding, we get

~F(S+Mfi)+E(S+= vJ % (4-22)

where E, F and J are given by (3.3) and (3.5). Again, multiplying (4.20) by dy/d^,

(4.21) by dx/dty and adding, we obtain

G(§ + "°) " Hat + "") = ~vJ W (4'23)

Eqs. (4.22) and (4.23) are the new forms for the momentum equations.

Eqs. (4.22) and (4.23) can be written in another form by eliminating dh/d^ and
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dh/d4> respectively between them; the resulting equations are

dh rj (r du „ dco

w + P03 = j\gw~fm,

(4.24)

Summing up the results obtained thus far, we have

Theorem 1. When the streamlines Mr = constant and the magnetic lines <j> =

constant of steady, plane flow of a viscous, infinitely conducting (electrically), incompres-

sible fluid are taken as the curvilinear coordinate system 4>, Sf' in the physical plane,

the set of seven partial differential equations (2.8)-(2.14) for vx, v2, Hx, H2, «, Q and h

as functions of x, y may be replaced by the system

— F((dh/d<t>) + H&) + E((dh/dV) + pa>) = riJ{d<j}/d<t>),

G((dh/d4>) + yuO) — F((dh/d'ir) + pw) = — -qJ (dco/cM'),

(d/dmJ/G)y122) - (d/dMJ/Ghn ) = 0,

n = ±[±(G-)_±(lX] (4-25)
w Ld<j> VtW as? \w) J '

= i_ T A (L) _ A (e.)
u W ld<t> \w) d* \w)

w2 = J2 = EG - F2 = l/k2

of six partial differential equations for E, F, G, o>, 0 and h as functions of <j>, Here

E, F, G are given by ds2 = E d4>2 + 2F dxfr dty + G d^2, where ds is the element of arc

length in the physical plane. The Jacobian J is positive or negative as the parameter ^

increases or decreases in the direction of the magnetic field vector H.

Given a solution

E = S?) F — F(<t>, fi); G ~ G(<f>, ^)

co = a)(<£, S?); £2 = fi(<£, MO; h — h(<I>, ^)

of the system (4.25), we can find x, y as functions of 4>, ̂  from

2 = Z + iy = J exP/(^) {(F - iJ) dxt> + G d*}

where /3 = f J/G(y 12 d<j> I 7n , and thus obtain !'• > F, G} co, 12 and /1 as functions

of x, y, since 0 < | J\ < . Once we obtain E, F, G and h as functions of x, y then Hi ,

II2 ,Vi , v2 and p as functions of x, y are given by

H\ + iH2 = (VG/J) exp (z/3),

Vi + iv2 = (VE/J) exp (ia),

p = h - (P/2){E/W2).
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5. Application of the fundamental equations in the new form. Eqs. (4.24) can be

rewritten as

5"-"" + 3('*-'£)■

Differentiating (5.1) with respect to Sf', (5.2) with respect to 4> and using the condition

that the second-order mixed derivative of h with respect to 0 and Sf' is independent

of the order of differentiation, we find

17/A2C0 + ju(30/3^) — p(dco/d0) = 0

where

A2co = j <L}L(rt— — F — )i 4- (f— — F —
_d<t> IJ \ d<t> awj d^\j\'d^ o<p (5.3)

Therefore, the system of equations (4.25) is reduced to five equations

tjJ A2co + n{dQ/d^) — p(d(xi/d<t>) = 0, (5.4)

n =
'd_ (G\ _ d_ IF
~d<t> \JJ d* \J

A _ A. (]A
_d<t> \J) \J

(5.5)

(5.6)

EG - F'2 = 1/k2, (5.7)

= ° <5-8)

in five dependent variables E, F, G, u and 12. If the solutions to these equations are

given, we can find h = h{<f>, Sir) from the equations of momentum.

We shall now study two examples in which the curves ^ = constant and the curves

<p = constant form an orthogonal curvilinear coordinate system.

Example 1. In this example we prescribe the streamlines to be straight lines.

We assume that they are not parallel but envelop a curve F. We now take the tangent

lines to the curve T, and their orthogonal trajectories, the involutes of T as the system

of orthogonal curvilinear coordinates. The square of the element of arc length ds in

this orthogonal curvilinear coordinate system is given by ds2 = ds 2 + ds22 , where

ds 1 and ds2 are the elements of arc length of the involute and the tangent respectively.

The element of arc length of the involute is [2]

ds! = (£ — (t)k da

where a denotes the arc length, k the curvature of the curve T and £ is a parameter

constant along each involute. Therefore, we have

ds2 = d? + ft - <r)Y da2. (5.9)

But

k = drf/da (5.10)
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where r? is the angle subtended by the tangent line with x-axis. Eqs. (5.9) and (5.10)

give us

ds2 = d£2 + (£ — a)" d-q2 (5.11)

where a = <r(rj). In this coordinate system, the coordinate curves £ = constant are the

involutes of the curve F and the curves r? = constant its tangent lines.

We now investigate the flows for which

0 = *(£), * = ¥(,). (5.12)

Using (5.12) in (3.2), we get

ds2 = («i>')2E df + 2FW dH dv + G(*')2 dv\ (5.13)

Comparing (5.11) and (5.13), we find

E = (W)2, F = 0, <? = (£- <r(„))/*')2,

J = (€ - *(„))/*'¥'.

Since F = 0, (3.12) gives us

(5.14)

2 i 2 i

711 ~ 2J2 d<t> ' 712 ~ 2J2 0 d

Using (5.14), we get

2 £ i / 2 /r- 1 rN
Til = — <t> , 712 =0. (5.15)

Substituting for G, J, yuJ , yl2~ from (5.14) and (5.15) in (5.8), we find that it is auto-

matically satisfied. Using (5.14) in (5.5) and (5.6), we find

(5'16)

and

 d ( ■*' \
£ - ff(ij) dv \£ - «r(ij)/' ( ;

From (5.4) and (5.14), we obtain

ft - *(*)) ̂ r + 1 + ̂  If " I =0 (5-18)_d£ ( d£j dt] [£ — dv) -

l5r,*'(<r'Y + (£ - a)[10rl9W + 15^"(cr')2]

+ (£ - <x)2[9ifZ'a' + 4+ rfU'o'" + 6tj*"V + 3p(^')V]

+ (f - <t)3[4^ "+ r,* (,,,+ 2P^'^"] - (£ - o,)4[/i(0')ao,/] = 0. (5.19)

The curve T appears as the curve £ = <j(j)) in the plane of variables £, rj- For the

relation (5.19) to hold identically, it must hold on the curve £ = <r(y), and therefore

we have [1] </ — 0, i.e. k —» .



360 V. I. NATH AND 0. P. CHANDNA

Theorem 2. If the streamlines in two dimensional flow of a viscous fluid are

straight but not parallel, then they must be concurrent.

Example 2. In this example, we consider the involutes of the curve T as the stream-

lines and the tangents to the curve T as the magnetic lines.

As in the previous example, the square of the element of arc length in this orthogonal

curvilinear coordinate system is

ds2 = dt + ($ - v? di). (5.20)

For the flows under investigations, we have

<t> = *(„), * = *(£). (5.21)

Using (5.21) in (3.2), we get

ds2 = (<t>')2E dr,2 + 2FW d£ dr, + G(S>')2 df. (5.22)

Comparing (5.20) with (5.22), we obtain

E * (Hr)'- " - »• G - (?)*• J - w1' <5-23>

Condition (5.8) is again automatically satisfied. Using (5.23) in (5.4), (5.5) and (5.6),

we get

d
v da

4- 3+ 71
dr,

dw
+ ~ - p*' ^ = 0, (5.24)

£ — a dt]J dr,

and

(5-25)

1 T, [*'(* - *)] (5.26)

{ - odl

Elimination of O and w between (5.24), (5.25) and (5.26) gives

3<r'[r,^'<r' + /*(<£')"] + (£ — + 2 n<t>'4>"]

+ ft - <r)a[v*' - (¥')V] - *"(£ - cr)3 + 2¥"'ft - <r)4 + *(,"(£ - a)5 a 0

By the same argument as used in example 1, we have either </ = 0, i.e. k °°, or

v--M = a,
t](J

a constant. If = constant, Eqs. (5.23) imply that G = constant. This is not possible.

Therefore, we have

Theorem 3. If the streamlines in plane flow of a viscous fluid are involutes of a

curve T, then the streamlines are concentric circles.

6. Radial and vortex flows. In this section we study the radial and vortex flows

when the magnetic field vector H is orthogonal to the velocity vector V.
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A. Radial flows. The square of the element of arc length in polar coordinate system

is given by

ds~ = dr2 -j- r2 dd2. (6.1)

Since the flows are radial, we have

cf, = 4>(r), * = *(0). (6.2)

Using (6.2) in (3.2), we get

ds2 = E(<t>')2 dr2 + 2F4>'9' d9 dr + G(*')2 dd2. (6.3)

Comparing (6.1) with (6.3), we find

E = l/(4>')2, F = 0, G = r2/(*')2- (6.4)

From (5.7) and (6.4), we have

= kr/4>' = A, (6.5)

where A is an arbitrary constant. Using (6.4) and (6.5) in (5.5) and (5.6), we obtain

Q = 2k/A, co = 0. (6.6)

Eqs. (4.11) and (4.13) give

H = (k/A)r, V = A/r (6.7)

where A, an arbitrary constant, can be determined from the boundary conditions.

From Eqs. (5.1), (5.2) and (6.6), we get

h = -n(kV/A2) + D

kV p A2
p"~"Z"27+Z)'

where D is an arbitrary constant.

B. Vortex flows. We investigate the flows for which

¥ = *(r), 4> = 4,(8) (6.8)

where (r, 6) are the polar coordinates of a point in the plane of flow. For this case, we

have

E = r2/(0')2, F = 0, 0 = l/(*')2- (6.9)

Eq. (5.7), on using (6.9), gives

<t>' = rk/V' = A, (6.10)

where A is an arbitrary constant. Using (6.9) and (6.10) in (5.5) and (5.6), we obtain

12 = 0, co — -(2k/A). (6.11)

Substituting (6.9) and (6.10) in (4.11) and (4.13), we find

H = (A/r) and V = (k/A)r (6.12)
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From Eqs. (5.1), (5.2) and (6.12), we get

7 2 2

h = PJT+ D

or

7 2 2

P <

where D is an arbitrary constant.

2 A* + D'
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