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Introduction. The triangular plate bending element with the three nodal values

w, wx and wv at the vertices has a particular appeal—its simplicity. But a C1 polynomial

interpolation scheme defined over the whole element does not exist. To overcome this

Clough and Tocher [1] resorted to subdividing the element into three subelements

with the transverse displacement w interpolated individually [2] over each subtriangle

so as to maintain a C1 continuity both in the interior of this complex element and on its

boundaries. Bazeley et al. [3] interpolated w by some rational functions to obtain the

desired variation of w and its derivatives along the sides of the element for assuring

a C1 continuity of displacements. They considered also the use of elements which violate

the continuity requirements (non-conforming) and for which the variational principle

on minimum total potential energy does not hold any more. These elements may,

nevertheless, sometimes produce a valid, stable difference scheme and converge to a

useful solution. But their excessive flexibility and precarious convergence did not endear

them to engineers. Severn, Taylor and Dungar [4, 5] and Allman [6] used a mixed varia-

tional principle [7] for generating a compact hybrid [8] finite element.

Stricklin et al. [9] (and also others) made a more radical approach to the generation

of plate bending elements in general and the nine-degrees-of-freedom triangular element

in particular. They started from the basic equations of elasticity rather than from a

ready plate theory and did away with the Kirchhoff assumption (the shear) except at

the vertices and along the sides of the element (this is the "discrete Kirchhoff assump-

tion" [10]). Since the plate is now considered a three-dimensional solid, the in-plane

displacements are introduced independently of the transverse displacements and the

continuity requirement for them is only C°, as in three-dimensional elasticity. Assuming

that the shear energy is at any rate negligible in thin plates, Stricklin neglected it

altogether.

Removing the Krichhoff assumption from the finite-element analysis of plates and

starting with the basic three-dimensional elasticity would seem the most natural approach

to the generation of bending elements, particularily since the thin plate is obtained as

a limiting case from a three-dimensional solid. However, without the a priori assump-

tions of Kirchhoff, and with the shear energy retained, the global stiffness matrix becomes

violently ill-conditioned [11] as the thickness t of the structure is reduced. The difficulties,

then, in constructing thin-plate bending elements directly from three-dimensional

elasticity are of a numerical or computational nature. The decline in the conditioning

of the matrix may cause, in the computational stage of the solution, grave numerical

(round-off) errors, or for a computer with insufficient significant digits the matrix may

even be numerically singular.
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If the goal is convergence to the Kirchhoff solution then the addition of shear (re-

moving the Kirchhoff assumption) can be considered as an error, which in the energy

is 0(t2), t being the thickness of the plate [12]. Apart from this idealization error the

finite-element discretization causes an error in the energy which is 0{hT) where h denotes

the diameter of the element and where r is positive. Thus if the plate is thin there is no

reason for using the exact small t if h is large—the discretization errors might be over-

whelming. The principal idea of this paper is, then, to relate the thickness t of the plate

to the mesh size h so that the shear and discretization errors are balanced. This eliminates

the factor 1 /f from the stiffness matrix and consequently from its condition number,

while retaining the full rate of convergence provided by the shape functions.

This can be applied to plates and shell elements of any degree but we will concentrate

on the simplest triangular elements with w, wx and wy at the nodes. As the shape functions

for the in-plane displacements include a complete polynomial of the first degree the

discretization error with this element is 0(h2) [13]. A balanced shear and discretization

error is obtained then with t2 = h2/c, where c is a proportionality coefficient. This

parameter c governs the stiffness of matrix; its increase causes an increase in the stiffness

of the matrix while its decrease causes the element to become more flexible. In this

manner a continuous control over the element is provided.

We believe that the element presented here is of great practical importance, but

above all its derivation provides a remarkable example of the interaction between the

computer, the discretization procedure and the theory of plates and shells.

Addition of shear. Consider a Cartesian coordinate system 0xyz attached to the

plate such that x and y lie in its middle surface and z is normal to it. By u, v and w we

denote the displacements of a point in the plate in the x, y and z directions, respectively.

We assume that the cross-sections of the plate remain straight during bending and we

denote by 6 and 4> the inclinations of the cross-sections with respect to x and y, respec-

tively. Then

u = — 8z, v = — <fiz, (1)

and the direct strains exx , e„„ and e2, become

exx = — (dd/dx)z, e„„ = — (d<t>/dy)z, ez, = 0. (2)

The shear strains exv , exz and eyz are given by

_ (d9 d<t>\ dw   , | ,Q\

+ dxh 6" + dx ' 6di/ ' ( )

For an isotropic material (and for simplicity with zero Poisson ratio) the elastic energy

UE for the element A becomes

UB =~— ~r \ f [2(eIX2 + ev2 + ez22) + (ex2 + ej + e2X2)] dx dy (4)
^ J-t/2 •'A

where E is the elastic modulus of the material. With the transformations

x — h%, y — hi, 6 — 9h, <f> = 4>h (5)

the energy expression in Eq. (5) becomes
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di, dr)

\2"1
dHdV>- (6)+ 12'

The kinetic energy expression UK is of the form

/(/ 2 /.
/ (w2 + v2 + w2) dx dy dz (7)

■t/2 J A

where p is the mass per unit area, or

f/K = ph'{f w2 dtdv + j^ (fj f CO2 + 4>2) ^ d„}■ (8)

In the subsequent numerical examples we will neglect the rotary inertia and calculate

the mass matrix from

UK = Ph2 f w2 da dr,. (9)
J a'

Spectral condition number of global stiffness matrix. The element stiffness and

mass matrices k and m derived from Eqs. (6) and (8) are of the general form

7 1 P ' 1

2 12 h2

and

= Ph2[

kb + 12( k.

1 t
nh ' 12 \h.

(10)

(11)

where the subscripts b and s refer to bending and shear.

It has been shown [13, 14, 15, 16] that the spectral condition number C2(K) of the

stiffness matrix K (defined as the ratio between its maximal and minimal eigenvalues)

is bounded by

 max (Q < c (k) < max (\nk)pm!iI

Pi max (X„'")pmax - 2 - A, min (A")

where \i and pt are the exact and finite element eigenvalues of the structure, \nk, A„m

and Aj" are the extremal (nth and 1st) eigenvalues of k and m, denotes the maximum

number of elements meeting at a nodal point and where max ( ) and min ( ) refer to

extremal values in the mesh. The maximum eigenvalue \„k of the element stiffness

matrix k is, from Eq. (10), of the form

* = Ipi-I
2 12 h2

Cl + 12 {-Jc2 (13)

where cx and c2 are independent of h and i. For the element mass matrix m we have from

Eq. (11), after neglecting the rotary inertia,

A„m = cji2, A r = cji2 (14)
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where c3 and c4 are again independent of h and t. Substituting Eqs. (13) and (14) into

Eq. (12) we obtain

— h~ + 12[-) c2

2

< C2(K) < ^h~
Al

Ci + 12\-j c2 (15)

in which Ef /12 and p were set equal to 1. Eq. (15) clearly indicates that if mi is near

enough to Xx (as with a fine mesh or sufficiently high degree in the polynomial shape

functions) then C2(K) grows like 0(h~2t~2). The condition number [13, 14, 15, 16] for

pure bending C1 elements grows like ()(h~4).

Triangular plate bending element. We restrict our attention here to the nine-

degrees-of-freedom element for two reasons: first, other elements can be constructed in

precisely the same manner; secondly, C1 interpolation schemes exist for higher-order

elements.

We assign to each vertex of the triangle the three nodal values w, dw/dx and dw/dy,

and interpolate w by an incomplete polynomial of the third degree. For an element with

vertices at (0, 0), (1, 0) and (0, 1) the polynomial terms in the shape functions are

1, x, y, x , xy, y2, x3, x2y — yx , y and include a complete quadratic. The inclinations

d and <f> of the cross-sections are chosen so that at the nodal points Q = dw/dx and

<t> = dw/dy. Also, shear is suppressed along the sides of the element and the inclination

of the cross-section normal to the sides of the element is made to vary linearly. This

assures C° continuity for both the transverse and in-plane displacements and amounts,

in fact, to an independent variation inside the element of w, dw/dx and dw/dy.

The discretization error estimate for this element is precisely that of three-dimensional

elasticity. There [13], if the shape functions for the displacements include a complete

polynomial of degree p, the global error in the energy is 0(h2p). Since in the present

element 6 and <j> are interpolated linearly (p = 1), the error in the energy with this

element is OQi2). A balance of discretization and shear errors is therefore obtained with

r = h2/c. (16)

Introducing Eq. (16) into the element stiffness matrix results in

k = lE 12~t2 {h + 1M%) (17)

and the factor 1/i2 is removed from it and consequently from C2(K), which is now 0(h~4)

as with C1 elements.

The parameter c in Eq. (17) is arbitrary and any positive value of it will assure the

asymptotic convergence 0(h2). By varying c we can continuously control the stiffness

of the matrix. The hybrid model also permits a certain control over the stiffness of the

matrix by varying the degree of the polynomial interpolation functions for the stresses.

However, this control is restricted by numerical stability considerations and is not

continuous.

Numerical examples. Several numerical examples will illustrate the effect of

c in Eq. (17) on the stiffness of the matrix, suggesting a numerical choice for c.

Fig. 1 refers to a simply supported square plate discretized by right-angular elements.

It shows the convergence of the central deflection wc due to a central point load vs. the

number of elements per side Nfor different values of c. It is clearly seen from Fig. 1
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Wc102

Fig. 1. Simply supported square plate point loaded at the center and discretized by a uniform mesh

of right-angular triangular elements. Convergence of the central deflection wc vs. the number of elements

per side N„ for different values of c in t2 = h?/c.

how the choice of c influences the stiffness of the element. Wishing to have an element

which is not too flexible ("soft"), we choose c — 6. Fig. 2 compares the performance of

the present element, on the same plate, with the HCT element of Clough and Tocher,

with the Allman hybrid element and with the QQ3-3 element of Striclclin et al. Fig. 3

shows the convergence of the first eigenvalue Xi of the simply supported plate, discretized

with the present element (c = 6), with the HCT element and with the DST hybrid

element used by Dungar et al. In Fig. 4 the convergence of the central deflection in a

clamped plate point loaded at the center is shown for the present element with c = 6,

the HCT element and the Allman hybrid element. In Fig. 5 we compare the convergence

of the central moment Mx in a uniformly loaded clamped plate for the present element

with c = 6 and the hybrid element of Allman.
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Wc102
exact wc-0.0116

Fig. 2. Simply supported square plate point loaded at the center. Convergence of the central deflection

w, vs. the number of elements per side N„ for discretization with the present element (c = 6), the

HCT element, the hybrid element of Allman and the QQ3-3 element of Stricklin et al.
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Fig. 3. Convergence of the first eigenvalue Xi in a simply supported square plate discretized with the

present element (c = 6), the HOT element and the DST hybrid element of Dungar, Severn and Taylor.
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exact Wc-O.OOfii
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A A4s_

8
Fig. 4. Clamped square plate point loaded at the center. Convergence of the central deflection for

the present element with different values of c in t2 — h2/c, for HCT element, for the hybrid element

of Allman and the QQ3-3 element of Stricklin.
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Fig. 5. Clamped square plate uniformly loaded. Convergence of the central moment Mx for the present

element (c = 6) and the hybrid element of Allman.
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