
QUARTERLY OF APPLIED MATHEMATICS 285
OCTOBER, 1974

APPLICATION OF THE SONIN-POLYA OSCILLATION THEOREM*

BY

E. V. LAITONE AND WEN-FAN LIN

University of California, Berkeley

Summary. The necessary conditions for the Sonin-Polya theorem, which predicts
the variation of the successive relative maxima of the oscillating solutions of a second-
order ordinary differential equation, are evaluated for the confluent hypergeometric
functions to prove that the criteria for their decreasing sequence, as given in [1], [2]
and [3], are incorrect. The Sonin-Polya theorem is then applied to the differential equa-
tion for the linearized shallow-water edge wave that is produced by a beach of constant
slope. The final application is to Allen's differential equation for the angle of attack
oscillations of a re-entry ballistic missile, and new stability criteria are obtained for
both ascending and descending missiles that are coasting through the atmosphere.

1. Introduction. The linearized differential equation representing the shallow-water
edge waves that are formed perpendicular to a sloping beach when a periodic wave is
propagated parallel to the beach has an exact solution in terms of the confluent hyper-
geometric function defined by Kummer's differential equation

xy„ + (6 - x)yz - ay = 0. (1.1)
This has the two solutions

y(x) = Cl 1Fl(a, b, x) + C2 U(a, b, x), (1.2)

(see, e.g., Abramowitz and Stegun [1], Bateman [2], or Slater [3]). The first kind of con-
fluent hypergeometric function is defined by Kummer's series as

iF^a, b, x) = 1 + (a)(b)~1x + a(a + 1)(i>)_1 (£> + 1 )~V/2! + • • • , (1.3)

while the second kind represented by U(a, b, x) is the logarithmic solution containing
In x.
The exact solution for the linearized shallow water edge wave corresponds to b = 1,

so Eq. (1.3) reduces to

iF^a, 1, x) = 1 + ax + a(a + l)x2/2l2 + a(a + l)(a + 2)x3/3f + • • • . (1.4)

This series clearly shows that it is impossible to have an oscillatory solution for x > 0
if a > 0, and these conclusions are shown to be in agreement with the physical behavior
of shallow-water edge waves. However, [1], [2] and [3] have incorrectly applied the
Sonin-Polya theorem so as to predict a decreasing sequence for when a > 0 and
x > (b — 1/2). In the next section we state, and then correctly apply the Sonin-Polya
theorem to Eq. (1.1), so as to prove that i/'\ can oscillate only if a < 0.
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2. The Sonin-Polya oscillation theorem. As given by Szego (4), this theorem states
that if y(x) satisfies the differential equation

(Fyx)z + G(x)y(x) = 0, (2.1)

where F(x) > 0 and G{x) > 0 and both Fx and Gx are continuous, then the relative
maxima of |?/| form an increasing or decreasing sequence as x increases, according as
F(x)G(x) is decreasing or increasing. Writing Eq. (1.1) in the self-adjoint form

(xbe~xyx)x — axb~1e~"y = 0, (2.2)

we see that

F = x"e" > 0, x > 0; G = -axb'le~x >0, a < 0 (2.3)

and
(FG)X = — ae~2xx2b~1(2b - 1 - 2x) >0, x < (b - 1/2). (2.4)

The fact that we must have a < 0 in order to maintain G > 0 and therefore have an
oscillatory solution had been overlooked in Bateman [2] and Slater [3], and this error
is repeated in Abramowitz and Stegun [1], If a > 0, then G < 0 for all x > 0 and the
solution cannot be oscillatory. The correct statements concerning the oscillations of the
confluent hypergeometric functions are therefore only those for a < 0, namely, that the
successive maxima of \y\ are then decreasing if 0 < x < (b — 1/2), and increasing if
x > (b — 1/2) > 0. For a > 0 the confluent hypergeometric function does not oscillate
for x > 0. This is immediately apparent from the Kummer's series for , as given
by Eq. (1.3), and by the figures presented in [1, p. 514]. It should also be noted that in
Abramowitz and Stegun [1, p. 511] there is a misprint in the statement concerning the
required variation of FG in the Sonin-Polya theorem; the words "increasing" and "de-
creasing" should be interchanged.

3. The linearized shallow-water edge wave. We use the same notation as in Lamb
[5, p. 291] for the surface displacement f(j", y, t) of a shallow-water wave over a bottom
of constant slope (s) so the depth is given by h = sy, and the horizontal z-axis is selected
to coincide with the equilibrium water line so that

Ztt/g = (Ht)x + (Hy)v = sy$vv + sf„ + sy$xx . (3.1)

The periodic wave along the x-axis then generates an edge-wave r/(y) so that we may
write

f(z, y, t) = 7){y) cos k(x - ct), (3.2)

which thereby reduces Eq. (3.1) to

V>hv + + Qfc/gs - k2y)v = 0. (3.3)

In its self-adjoint form Eq. (3.3) becomes

(yVv)v + k2(c2/gs — y)rt = 0 (3.4)

which corresponds to Eq. (2.1) with

F{y) = y; G(y) = k\c2/gs - I/), (3.5)
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so that
(FG)„ = k2(c2/gs - 2y). (3.6)

Consequently we have an oscillating solution, corresponding to a wave profile with
t](y) having nodes, only in the region

0 < y < c2/gs. (3.7)

For y values greater than c2/gs we then would expect an exponential decay in the edge-
wave profile 77(y). However, when the Sonin-Polya theorem is applied to Eq. (3.6) we
find that the relative maxima of |jj| form a decreasing sequence only for

0 < y < c2/2gs, (3.8)

while the relative maxima of |rj| can increase in the region defined by

c2/2gs < y < c/gs. (3.9)

For y > c2/gs the oscillations of ij(y) cease and the exponential decay of |ij| commences.
These conclusions, which have been derived from the differential equation representing

the linearized shallow-water edge waves, can be confirmed by the exact solution of
Eq. (3.1) that was first given by Hunt and Hamzah [6] as

t(x, y, t) = T)(y) cos k(x - ct); v(y) = e~ky 1F1(a, 1, 2ley), (3.10)

where the parameter in the confluent hypergeometric function is given by

a = (1/2) (1 — kc/gs). (3.11)

First we note that if a < 0 then iF^a, 1, £) behaves as a simple polynomial of order N,
defined by ( — a + 1) > N > ( — a), with all of its roots contained in the interval 0 < £ <
(2 — 4a) (e.g., see Slater [3]). Consequently Eqs. (3.10) and (3.11) show that ij(y) is
oscillatory only if

y < (c2/gs) > 1/k. (3.12)

The first inequality confirms the relation given by Eq. (3.7) while the second inequality
above shows that the beach slope must be sufficiently small, s < kc2/g, before linearized
shallow-water theory can provide a satisfactory approximation. With this restriction
to sufficiently small beach slopes, shallow-water theory predicts infinitely many edge-
wave modes, whereas the exact linearized theory predicts only a finite number of modes
for a finite beach slope. Ursell [7] has shown that for a fixed wave number k the exact
linearized theory has only one frequency (fee) for beach slopes between ir/2 and 71-/6,
only two frequencies for slopes between ir/6 and 7r/10, and likewise an increasing but
still finite number of frequencies as the slope decreases. Consequently, as would be
expected, shallow-water theory would be most applicable as the beach slope s —» 0.
In this limiting case we see from Eq. (3.11) that -a» 1, so we can introduce the asymp-
totic form of jFi [1, p. 508]

\{a, 1, £) -> exp (£/2)J0[(2£ - 4a£)1/a], (3.13)

where J0 is the zero-order Bessel function of the first kind. Therefore for small beach
slopes Eq. (3.10) reduces to

t(x, y, t) —* J0[2kc(y/gs)1/2] cos k(x — ct). (3.14)
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Now the edge-wave profile jj(y) is identical to the linearized shallow-water wave that is
climbing a beach of constant slope (see Lamb [5, p. 276]) and has a monotonic decrease
in its successive maxima as y increases. In this asymptotic solution the interval predicted
by Eq. (3.9) for the increase of l^l is eliminated because we essentially have c2/gs —» .
It should be noted that for finite values of — a > 0 Eqs. (3.8) and (3.9) are more easily
derived from the Sonin-Polya theorem than from the exact solution, Eq. (3.10).

4. Longitudinal oscillations of a ballistic missile. In our second problem we find a
situation wherein the direct application of the Sonin-Polya theorem to the differential
equation yields more information than does the exact solution by itself. This occurs
because the exact solution involves the confluent hypergeometric function and we find
that its behavior, for the range of parameters involved, is not easily predictable. We
consider the differential equation developed by Allen [8] for predicting the angle-of-attack
(a) oscillations of a coasting missile that is decelerating while it is traveling at hypersonic
speeds in a straight-line trajectory that can be either ascending or descending, namely,

a** + 2k,e 'a, + (k2e x + k:ie 2x)a = 0. (4.1)

Here , k2 and k3 are constants that depend upon the trajectory inclination and the
aerodynamic coefficients of the missile, while x represents the non-dimensional altitude
above the earth's surface. The exact solution of Eq. (4.1) was found by Vinh and Laitone
[9] and may be written as

a = {exp [(fti/fo) - 1 /2]£}{c! iFi{a, 1, £) + c2U(a, 1, £)}, (4.2)

where

£(*) = = 2(/cj2 - k3)1/2e-*, (4.3)

a= 1/2 - (h + k2%r = (1/2)[1 - (fc, + fc.Xfc,2 - fc3)"1/2]. (4.4)

Allen found that any ballistic missile that had satisfactory static longitudinal stability
was dominated by the term fc2 since all of the bodies studied had

k2 > 0(104) » (|fc,| + |/c3|) > 0. (4.5)

Consequently for the usual ballistic missile that has static longitudinal stability we have
— a > 10', and therefore the asymptotic representation of the confluent hypergeometric
functions, as in Eq. (3.13), provides an excellent approximation so that Eq. (4.2) may
be replaced by

a(x) = [cIt/0(fI/2) + c2r0(f1/2)] exp (4.6)

where

f = 4(/c, + k2)e~' w 4k2e~* > 0 (4.7)

and Jo , Ya are the zero-order Bessel functions of the first and second kind respectively.
This Bessel-function solution was first given by Allen [8] as an approximate solution
of Eq. (4.1) for the usual missile that satisfied Eq. (4.5), and it is evident that the effect
of fc3 has been completely eliminated in this approximate solution.

Now it will be shown that the stability criteria that Allen developed for the a oscilla-
tions, by using the approximate solution given by Eq. (4.6), can be made exact and
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therefore include the effect of k3 by simply applying the Sonin-Polya theorem directly
to Allen's differential equation. In its self-adjoint form Eq. (4.1) corresponds to Eq. (2.1)
with y = a(x) if

F(x) = exp ( — 2fc1e~I); G(x) = (k2e~x + k3e~2') exp (—2kle~x), (4.8)

so that F > 0 for all cases and G > 0 as long as k2 > |fc3| >0. Then the slope of FG is
given by

(FG), = -k2e"[ 1 - (4fc, - 2k3/k2)e'x - (ik^/k^e'2'] exp (-4fc,0

= — k2[e2' — (4kl — 2k3/k2)ez — (4fc1fc3/A:2)] exp (—3x — 4kye~*). (4.9)

Consequently we see that if k1 < 0 then the envelope of the |a| oscillations increases
with x, since (FG)X < 0 for all x > 0 as long as the term in the square brackets remains
positive. In other words, the |a| envelope decreases in descending flight, and increases
in ascending flight, as shown in Fig. 1, whenever ki < 0 and fc3 > 0. However, if fc3 < 0
when ki < 0 we then must satisfy the inequality

1 - 4fcj(l -t- k3/k2) > - 2k3/k2 > 0. (4.10)

10 -8 -6 -4 -2 0 2 4 6 8 -1.0-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8

Fig. 1. The oscillations in the angle of attack (a) of a coasting ballistic missile that is decelerating
along a straight line trajectory inclined either upward, or downward as in the re-entry case studied

by Allen [8, Fig. 1], In both cases ki = 0 = k3 and h = 104.
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Therefore the conclusions of Allen [8] and Tobak and Allen [10] for k, < 0 are satisfied
by the inequalities in Eq. (4.10), which are much less restrictive than those of Eq. (4.5).

Now for the case of fci > 0 we have

(FG)X >0 for x < x* ; (FG), <0 for x > a, , (4.11)

where

^ = In [2k, - (k3/k2) + (4k* + k32/k22)u% (4.12)

Consequently, as long as kx > 0 and

4fc1(l + k3/k2) > (1 + 2k3/k2) (4.13)

we find that the envelope of the |a| oscillations decreases as x increases up to the critical
altitude defined by x^ , and then continually increases with x above this altitude. On
the other hand, for a descending missile |a| continually decreases until the critical altitude
defined by Eq. (4.12) is reached; from there on the envelope of the |a| oscillations con-
tinually increases as the missile descends. When lc3 = 0 the critical altitude given by
Eq. (4.12) is identical to the one originally derived by Allen [8]. His derivation was for
re-entry flight only, since he used Eq. (4.6) with c2 = 0 and c, = a0 so as to satisfy the
initial conditions when x —> (f —■> 0). Consequently Allen was able to use the asymptotic
trigonometric approximation for J0 to find the critical altitude for descending flight.

On the other hand, we must have c2 ^ 0 for ascending flight in order to satisfy the
initial conditions when x remains finite, e.g., f = 4(/cx + fc2) when x = 0. Since f —» 0
as the missile ascends, and F0(0) —> — °°, we can therefore predict another critical
altitude that exists for any ascending missile, regardless of the algebraic sign of , by
noting that F0(f1/2) diverges with no further oscillations whenever f01/2 < 0.8936 so that

exp (-z./2) < (0.8936/2)(lc, + fc2)"1/2; a;c > In 5(k, + k2). (4.14)

This critical altitude is shown in Fig. 1 for the ascending missile having /cx = 0 = k3
so the previous critical altitude x^ = 0, since (FG)X < 0 for all x > 0 as long as k2 > 0.
As shown by Allen [8], Fig. 1 would not be greatly altered in appearance if k, < 0 because
the term fc2 = 104 so dominates Eq. (4.6). However, any k, > 1/4 produces a severe
divergence as x —> 0 (f —> 4k2 = 4 X 104) for the descending missile (see [8, Fig. 1]).

It is interesting to note that when k2 = k3 > 0 then Eq. (4.6) becomes the exact
solution of Eq. (4.1), while Eq. (4.2) is no longer applicable since £0 = 0. This means
that Eq. (4.6) can be used to provide an exact oscillatory solution for any value of
(fc„ + k2) > 0. However, if (fcl + k2) < 0 then the solution diverges exponentially with
no oscillations, since (J0 , Y0) are replaced by the non-oscillating Bessel functions
(/0 , K0). Allen's solution, as given by Eq. (4.6), is the only useful solution of Eq. (4.1)
because U(a, 1, £) has not been tabulated, and even though ,F,( — n, 1, £) reduces to a
finite polynomial of order n, its practical use is restricted in this particular problem
because —a = n > 104.
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