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THE DRAG AND SPHERICITY INDEX OF A SPINDLE*

By D. M. STASIW, F. B. COOK, M. C. DETRAGLIA and L. C. CERNY

(Masonic Medical Research Laboratory and Utica College of Syracuse University, Utica)

Introduction. Several years ago, Payne and Pell [1, 2, 3] published a series of
articles pertaining to the Stokes flow of a viscous, incompressible fluid about a body
in which the flow is two-dimensional or has radial symmetry. Some of the shapes of
bodies that were considered were a lens, a torus, a sphere, and oblate and prolate sphe-
roids. Using this procedure, the differential equation to be satisfied in the flow region
is found to be

L-iVi = 0, (1)
where

L-*=-fi + i7-~T- (2)ox or r or

If the trace of the boundary of the body is called C, then the condition of vanishing
velocity on C can be stated in the form

ipi = 0, d\pjdn = 0, on C. (3)

Here n is the unit normal to C exterior to the body.
Recently, our interest lias been in the general area of the flow of diseased states of

blood. The above papers have been extremely useful in a problem of current medical
concern, sickle-cell anemia. The red cells in this diseased state approximate lens, sickles,
hemispheres and spindles. It is the purpose of this communication to show the calcula-
tion of the flow about a spindle.

Flow about a spindle. A convenient set of coordinates to represent a spindle are
the bipolar coordinates (<p, jj) [4], In terms of these coordinates

b sinh 7? /a\ L  (4)
cosh 7j — cos tp '

r - , (5)cosh tj — cos tp

x + r2 — 2br cot <p = b2, (6)

with <p > 7r/2; r > 0. The calculation of the drag, P, can be made by using

P = 8tii lim (pi^i/r2). (7)
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In this equation p = (x2 + r2)l/~, n is the coefficient of viscosity of the suspending
fluid and \px is a solution to

L-1V1 = 0. (1)

Payne and Pell [3] suggest that the drag can best be evaluated from

P = 8TrbfiU [ F(f*> da, (8)
J0 COSh aw

where

F(a) = f Ka(-r)Ka(2\r) dr / f Ka{r)Kj2\r) dr. (9)
Jt0 ' Jt0

In Eq. (9) Ka(r) is known as the conal function (5) and defined as

Ka(r) = P i „-i/2(t) (10)

and
KaM(r) = d"Ka(r)/drn, (11)

where P(r) is the Legendre function, and r = cos <p.
To date, the drag for a spindle has not been determined, although Payne and Pell

suggest that certain tables should facilitate the computation [6, 7]. However, in ex-
amining these tables, it was found that they were not adequate with regard to the
choice of the angle <p or with ease of determining the derivatives of the conal functions.
To overcome these difficulties the approach that follows was finally used.

The functions B(a) and A (a) are evaluated from the boundary conditions of the
problem and can be written as

01/2

A(a) = ncQgha7r lKa(-to)Ka"\t0) - Kaa)(-t0)Ka(t0)}, (13)

[«oK«(
?u2 I d

B{a) = ~ Ka{to) it (14)

where t0 = r0 = cos <pa and

a = t0[Kaw(t0)}2 - Ka(t0) (toKaw(to)) (15)

The value of t„ defines the shape of the spindle.
The calculation was facilitated by using the following series representation for

Ka(r) [8]:

KM - 1 + ̂  (V)4(1!)

1 (1 + 4q2) (32 + 4a2) (1 - T
+ 42(2 !)2 \ 2 .

(1 + 4a2)(32 + 4a2)(52 + 4a2) (l - rV
+ 43(3!)2 ^ 2 J + (lb)
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for |r — 1| < 2, where appropriate recursive relationships allowed rapid calculation
of the series terms for K a (r) and its derivatives.

In biological cellular flow systems, especially blood, an arbitrary parameter that is
used as a reference to changing shapes is the sphericity index (S.I.) [9], It is defined as

S.I. = 4.84 (y2/3AS), (17)

where V is the volume and S is the surface area of the particle respectively. If b is taken
as unity in Eq. (6), the volume and surface area of a spindle are found to be

V = 2*-

and

2 + 2/3 + a{a + 1) sin 1 ̂  ^ J (18)

8 = 4ir[(pa + l)(a2 + 1)1/2] (19)

where a = cot (p.
These values were used in Eq. (17) to calculate the sphericity index as a function

of the changing shape of the spindle.
In Table I, the drag coefficient and sphericity index are listed for several different

spindles.
A recent paper by Gluckman, Weinbaum and Pfeffer [10] also presents a solution

to the problem of axisymmetric slow viscous flow past a convex body of revolution.
Although these authors' presentation is thorough and interesting, the unique use of
peripolar or bipolar coordinates as suggested by Pell and Payne [13] seems to encompass
all of the above authors' bodies as well as several not included in their publication

TABLE I
Drag coefficients and sphericity indices for spindles

drag coefficient
f(deg) P/b/iU S. I. D/S. I.

90 18.85 1.000 18.85
95 17.86 0.999 17.88

100 16.95 0.997 17.00
105 16.13 0.992 16.26
110 15.38 0.985 15.61
115 14.71 0.975 15.09
120 14.12 0.962 14.68
125 13.59 0.947 14.35
130 13.13 0.928 14.15
135 12.72 0.905 14.06
140 12.37 0.879 14.07
145 12.07 0.848 14.23
150 11.81 0.811 14.56
155 11.60 0.768 15.10
160 11.43 0.716 15.96
165 11.30 0.654 17.29
170 11.20 0.572 19.58
175 11.15 0.455 24.51
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